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L Introduction

Introduction (Realized Volatility)

@ ARFIMA model has often used to estimate data that has a long
memory property, for example financial data.
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Figure: The sample ACF of the log realized volatility of Nikkei 225,
2001.7.2-2010.6.30

Introduction (Realized Volatility)

@ This figure shows that the log realized volatility has a long memory
property.

@ It has been shown that the log realized volatility had a long memory
property in previous studies, for example Watanabe (2007),
Watanabe (2010), and Nishino (2010) etc.
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Introduction (Estimation methods of ARFIMA model)

@ Some methods are surveyed.

Estimation methods of ARFIMA model

@ Beran (1995) proposes estimation model using an approximated AR(M)
model.

@ Chan and Palma (1998) proposes estimation model using an approximated
MA(M) model.

@ Robinson (2006) proposes the method using Conditional-sum-of-squares
estimation (CSS) method.

@ We want to estimate an ARFIMA model with change points of
fractional difference or mean.
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Introduction (Detecting the change points)

Some methods that can estimate the ARFIMA model with change points
have been proposed in Bayesian framework.
@ Ray and Tsay (2002) detects change points using the approximated
MA(M) model.

Detect change points of u

1
ﬂt=l~lo+25j = -1 + OB (1)
J=1
If there is a change point, we set 6, = 1 otherwise §, = 0.
B is a scale value from y,_; to y; when &, = 1.

@ Watanabe (2010) used an approximated AR(M) model which
introduced by Beran (1995) and a hidden Markov model to detect
change points.

An approximated AR(M) model and a hidden Markov model are
described later.
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Introduction

@ These methods in previous studies need the decision of the order of
the approximated MA or AR model before estimation.

@ Ray and Tsay (2002)’'s method needs much time until finishing the
calculation.
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Our goal

We propose the method that can estimate ARFIMA model with change
points using the Markov chain Monte Carlo (MCMC) method.

@ The proposed method also uses an approximated AR model and a
hidden Markov model.

@ Conditional-sum-of-squares estimation (CSS) method with the
approximated AR model is introduced by Robinson (2006).

CSS method uses all observed residuals, so we need not decide the
order of the approximated AR model.

The hidden Markov model is used to detect multiple change points.

The proposed method needs less calculation time than the method
by Ray and Tsay (2002).

@ We apply the proposed method to the simulation data, to the yearly
minima of Nile river, and to the log realized volatility of Nikkei 225.
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L ARFIMA mode!

ARFIMA model

Introduce an ARFIMA(p, d, g) model estimates data with a long memory
process.

Let {y,} is a long memory process.
@ ARFIMA(p, d, q) model

oL - LYy —p) = (L), t=1,2,...,T. )

o {g) WN(0, %), we use a Gaussian white noise.

@ dis a fractional difference and 0 < d < %

@ uis mean.

o Lis the lag operator, Ly, = y,_;.

o Ifthe roots of ¢(L) = 1 — ¢\ L — ¢L? —--- — ¢,L” = 0 and
O(L)=1+6,L+6,L*+---+6,L7 = 0 lie outside of the unit circle, the
process has stationary and invertible.

o And the roots have no common root.
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L conditional-sum-of-squares estimation method

Representation of likelihood function

To use the MCMC method, we need a likelihood function.

Beran (1994), Robinson (2003), and Palma (2007) give the survey of the
estimation methods.

Beran (1995), Chan and Palma (1998), and Robinson (2006) propose the
following estimation methods.

Various approximated likelihood functions

@ Beran (1995) proposes the AR approximation method.
@ Chan and Palma (1998) proposes the MA approximation method.

@ Robinson (2006) proposes the conditional-sum-of-squares
estimation (CSS) method.
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L Conditional-sum-of-squares estimation method

Beran’s AR approximation method

The difference between Beran’s method and CSS method is whether
uses M or not in the residuals.

The Beran’s AR approximation method is

@ The likelihood function is

z T
1)\2 1
2 2
L(Yrld, 1,02, ,0) (;) exp{—E;e,}, (3)
min(—1,M)
o = ) ndo.0)W-p. @)
j=0

@ M is the order of the approximated AR model.
o Yr=0nyn....yr).
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L Gonditional-sum-of-squares estimation method

Conditional-sum-of-squares estimation method

@ The conditional-sum-of-squares estimation method

o The likelihood function is represented as an AR approximation.

o The CSS method needs less calculation time than the MA
approximation method.
The CSS method needs not to decide the order of an approximated
AR model.
The Beran’s method can be seen as a special case of the CSS
method.

@ The likelihood function is

1\ R
L(Yrld, p, 02, ®,0) o (;) exp{—ﬁZe,z}, (5)

e = 7(d. ©,0)(yi-j — ). (6)
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Hidden Markov model

To estimate multiple change points of time series data, we use the
irreversible hidden Markov model.

If the state shifts from state i to state j, the state can never shift to state i.

From Chib (1998), the hidden Markov model is
@ Variable parameters are

6, 0<t<t,
01, tHh <t<t,

O = @
Opy tm<t<T.
@ The hidden values are
St = (s1,82,...,57), (8)
sio€ {0, 1,...,m}. 9)

13169
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Hidden Markov model

@ The transition probability matrix is

po po 0 .- 0 0
0 pn pn - 0 0
P=|: . (10)
0 0 o Pm-lm-1 Pm-1m
0 0 0 1

o The element p;; = P(s, = jls,.1 = i) on the matrix is the probability of
state i to state j.

o When we use this model, we decide the number of change points
before estimation.

o The number of change points should be compared with the log
marginal likelihood.
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L Hidden Markov model

Sampling {s,}

When using the MCMC method, the hidden values S = (s1,...,s7) and
the elements of P are estimated.

And the {6;}’s sampling method is described later.

@ The conditional posterior distribution of S'7, 7(S 7|Y7) by Chib (1996)

aSrl¥r) = nlsr-il¥r,s7.0,P)x - X a(s|Vr, 8", 6,P)x -
x  n(s1|Yr,82,0,P). (11)

From this conditional distribution, {s,} can be sampled from s7_; to
S1.

15/69
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Sampling {s;}

{s;} is sampled by the following the probability function.
@ Sampling {s,}
e s, is sampled by p(s/|Yr, S, 6, P)

p(slYr,$™,6,P) o« p(s|Yr,6, P)p(silsi, P). (12)

o 6 is the parameter vector that consists of the variable parameters and
the another parameters.

0 S = (St s s7)s S = (515,58,

o p(s/|Yr,0,P)is the mass function.

P(si1lsq, P) is the element of the transition probability matrix.

A model and Change point
L Hidden Markov model

Sampling {s;}

To sample {s;}, we have to calculate the mass function.

@ The mass function

p(s = KYi1,0,P) X filYi_1,60)
Sk (s = 0Y,21, 0, P) X f(il Y1, 6)

@ The part of the numerator

p(s; = kY., 6,P) =

(13)

k
plsi = KYi1,0,P) = )" pyxplsi = 1Y-1,6,P).  (14)
I=k-1

@ The initial value

p(s1 =0[Yp,0) = 1. (15)

where f(y:|Y,_1, 6)) is the conditional distribution.
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Sampling {p;;}

{pii} are sampled by the Gibbs sampler.
@ Sampling {p;i}

e The prior distribution

pi  ~ Beta(y,72). (16)

o The conditional posterior distribution

pil0,St  ~ Beta(y, + ny,y, + 1). 17)

@ n;; is the number of one-step transitions from state i to state i.
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L Random persistence-shift ARFIMA model

Previous studies

Sampling step of the hidden Markov model

@ Sampling step
@ Sampling @ and P
@ Calculate the mass function p(s/|Yr, S, 6, P)
@ Sampling {s;}
@ s7_1 is sampled from p(s7_1|Y7, s7 = m, 0, P),
@ s7_ is sampled from p(s7_o|Y7,S7"',6, P),
°:
@ sy is sampled from p(s)|Yr, 5%, 6, P).
where we set sy =m

@ Detect the time having a change point from P(s;|Y7)

o We can get P(s,|Yr) taking average of p(s,|Y,_, 0, P) over the MCMC
iteration.

Ray and Tsay (2002) proposes a random persistence-shift (RPS)
ARFIMA model and a random level-shift ARFIMA (RLS) model.
RPS and RLS-ARFIMA model ( Ray and Tsay (2002) )
@ Estimate multiple change points of fractional difference (RPS).
@ Estimate multiple change points of mean (RLS).
@ Use the MA approximation method by Chan and Palma (1998).
@ The hidden Markov model isn’t used.

ARFIMA model with change points ( Watanabe (2010) )

@ Estimate multiple change points of fractional difference, mean, and
variance.

@ Use the AR approximation method by Beran (1995).
@ The hidden Markov model by Chib (1998) is used.
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L Random persistence-shift ARFIMA model

Proposed method

The proposed model

@ Estimate multiple change points of fractional difference (RPS).
@ Estimate multiple change points of mean (RLS).

@ Use the CSS method by Robinson (2006).

@ The hidden Markov model by Chib (1998) is used.

The proposed method follows the method by Watanabe (2010).
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RPS-ARFIMA+CSS+HMM

Propose the another estimation method for RPS-ARFIMA model.
@ RPS-ARFIMA+CSS+HMM

LY =LYy —p) = 6(L)e, (18)

dy, 0<t<t,
di, t <t<t,

di = (19)
dp, ty<t<T.

Sr = (51,82,...,57), (20)

s, € {0,1,...,m}. (21)
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RPS-ARFIMA+CSS+HMM

@ RPS-ARFIMA+CSS+HMM

po pon 0 .- 0 0
0 pn pn - 0 0
P = . (22)
0 0 o Pm=1m-1 Pm-1m
0 0 0 1

@ The likelihood function with CSS method

1) 1<
L(Yrldo, ..., dy, p, 02, P.ST) o (—) exp{— Zﬂf}&za)

2
20 =1

e = 7i(ds,, ©,©)(yr-; — p). (24)
=0

where we call this model as RPS-ARFIMA+CSS+HMM.
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The prior distribution (RPS)

We describe RPS-ARFIMA(0, d, 0)+CSS+HMM to use the MCMC
method.
@ The prior distributions

di ~ U(0,0.5), (25)
po~ No,op), (26)
) vo Ao

ot~ 16(3.5) @7)
pi ~ Beta(a,b). (28)

@ The posterior distributions

T(dos . .. oy pt, 2, P,S 7) < L(O)(dg) - - () (T 2IT(P00)  + - (D).
(29)




L Random persistence-shift ARFIMA model

CSSHMM
L ARFIMA model and Change point
L Random persistence-shift ARFIMA model

The conditional posterior distribution (RPS)

{d}} is estimated by an acceptance-reject (AR) MH algorithm.
The another parameters are estimated by the Gibbs sampler.

First, we show about the another parameters.

@ The conditional posterior distributions

T
> V0+T ﬁ l 5
o2ldo, .. dpo it P,S 1, Y7 fg[ 5 +2;e, , (30)

pildo, ..., dwopts 02, S1,Yr  ~ Beta(a+ny, b+ 1), (31)

Conditional posterior distribution (RPS)

@ The conditional posterior distributions

13

ldo, ..., dy, a2, P,S7, Yr N, o), (32)

25T 2
05 D=y €11 + Ty

s S——, (@33
K 0'32?:1"?*‘73; ©3)
252

0,0,
o? = o (34)

25T 2 2’
05 X=1 € + 07

-1
¢ = ni(dy,), (35)
a = (s, Vi) (36)
i=0

- o

~.

CSSHMM
L ARFIMA model and Change point

L Random persistence-shift ARFIMA model

Sampling {d}

Sampling {d;}, we use an acceptance-rejection (AR) MH algorithm.
@ The log proposal distribution In g(dy) following by Chib and
Greenberg (1995) and Watanabe (2001).

The log proposal distribution is the second-order Taylor expansion of
the likelihood function around d;.

A L(d;10) 12 In L(d}16)

InL(d;l0) =~ InL(d;l0)+ di —dy) + di - d;)?
(d;16) (0) + —g e = ) + 5 (k=)
= Ing(dp). (37)
e d is the posterior mode.
o InL(d;|0) is the log likelihood function.
@ 0 exclude the parameter d| from the parameters.
In 2 n
o Mean: d; - (al ;Zw)) (ﬁ ]l,zLLj;Im)
. P ini@ie)!
o Variance: —( M}" ))
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The Conditional distribution (RPS)

When sampling S 7, we use the conditional distribution f(v,|Y,_1, 6).

@ The conditional distribution

JilYi1,0)

1 =l R
ol {ZV ;n,(dy,)w,‘ -’ (38)
=1
vo= Varti=3) = yoldy) x [ [ -, (39)
j=1
_(;) T(-dl(t—d-j+1)

b = ~\) T rCare=d+

(40)

where I'() is the gamma function.
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Sampling step (RPS)

Sampling step (RPS)

Step 0 Set the hyperparameters of the prior distributions and the
initial values of the parameters.

Step 1 Fori=1,2,..., we iterate the next step.
a Sampling {di}? , u@, o2, {pf:)}
b Sampling S(Ti)
Step 2 For a sufficient large number N, we save
(dO), 40, 520, (501 SO i SN N +1,....
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RLS-ARFIMA+CSS+HMM

Next, we propose the another estimation method for RLS-ARFIMA
model.

@ RLS-ARFIMA+CSS+HMM

oY1 - LY —p) = OL)es, @1
& N0, (42)
o, 0<t<1y,
M, h <t<t,
e = . (43)
My ty <t<T.
Sy = (s1,8,...,57), (44)

se € {0, 1,...,m}, (45)
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RLS-ARFIMA+CSS+HMM
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L—Random level-shift ARFIMA model

The prior distribution (RLS)

poo por O 0 0
0 pn pn 0 0
P = : R (46)
0 0 © Pm-lm-1 Pm-lm
0 0 e 0 1

The likelihood function of RLS-ARFIMA+CSS+HMM

z T
1\? 1 ,
L(Yrld,p, 02, P,Sp) < (;) exp{—wg;e,}, @7)

=1
@ = Y ) ®)
j=0

where g = (uo, - - ., ) and we call this model as
RLS-ARFIMA+CSS+HMM.

We describe RLS-ARFIMA(0, d, 0)+CSS+HMM.

@ The prior distributions

d ~ U©,0.5), (49)
2 vo Ao

- 16(33) ©0)
pii ~ Beta(a,b), (51)
W~ N(uo.op). (52)
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L Random level-shift ARFIMA model

The conditional posterior distribution (RLS)

d is estimated by the AR-MH algorithm.

Another parameters are estimated by the Gibbs sampler.

@ The conditional posterior distributions

T
2 vo+T Ao 1 5
old,u, P.St,Yr ~ IQ[T,7 +3 ;:1 e (53)

pild,p,0?, S, Yy~ Beta(a+ny, b+ 1). (54)
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The conditional posterior distribution (RLS)

@ The conditional posterior distributions

ald i P ST Y~ N, o), (55)
0'(2) Z,T:1 cja;+ rrﬁluo f=0
— =
. 0'(2)2/-:10§+0'§ 56
Ho o2 ZT c-a~+0’2;10 (56)
0 &j=t+1 “J%) &l . ISkSm

25T 2 2
g 2/:1“1 ¢+ 03

® p_j exclude yy from p.
@ g, exclude the terms of g from e;.
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The conditional posterior distribution (RLS)

@ The conditional posterior distributions

~1
Z m, 1<t k=0
J=0
-1
dim, <t k=0
J=t=t
=1
o = Dlm, 1<t 1<k<m (57)
=0
—t=1
M, e <t, 1<k<m
JE e
t=ty=1
n;, k=m,
Jj=0
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The conditional posterior distribution (RLS)

@ The conditional posterior distributions

22
oy = % (58)
T
o Z &+ol, k=0,
G = = (59)
(r32c§+0'§, I1<k<m
J=te+1
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The conditional distribution (RLS)

When sampling S'7, we use the conditional distribution f(y/|Y;-1, ).
@ The conditional distribution

-1
SN, 6 = %v, exp {zlw ; 7 d)yi-j = m)z} » (60)

=1
v o= Var-3) =y x [ |- @). 61

J=1

When we calculate p(s, = k|Y;, 6, P), the conditional distribution is

2
1 1 =1
Sollios i) = e {z [‘V' S SRR —m)] }
t t

=1
(62)
where p(;”) is drawn at the iteration of the MCMC method.
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Sampling step of RLS-ARFIMA+CSS+HMM

Sampling step

Step 0 Set the hyperparameters of the prior distributions and the
initial values of the parameters.

Step 1 Fori=1,2,..., we iterate the next step.
a Sampling d?, {u)@, 2@, {pfl’)}
b Sampling S(Ti)
Step 2 For a sufficient large number N, we save
d?, {ﬂg)}, a9, {pl(.::)}, i=N,N+1,....
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L Model comparison

Model comparison

@ Chib (1998) uses the log marginal likelihood to compare the number
of change points.

@ To calculate the log marginal likelihood, we use the modified
harmonic mean estimator by Geweke (1999).

Simulation Results

Simulation

In this section, we see whether the proposed model can detect multiple
change points or not.

@ We use the simulation data having change points of d or p.

@ We make a comparison of the calculation time between the
proposed method and the method by Ray and Tsay (2002) in RLS
model.

@ Simulation

o First, we estimate RPS-ARFIMA(0, 4, 0)+CSS+HMM for the simulation
data having two change points of d.

o Next, we estimate RLS-ARFIMA(0, d, 0)+CSS+HMM for the simulation
having two change points of x.

@ The computer spec
OS: Mac OS X Lion 10.7.5, Processor: 2.5GHz Intel Core i7,
Memory: 8GB, Software: Ox version 6.21.

L RPS-ARFIMA+CSS+HMM
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RPS-ARFIMA+CSS +HMM

Simulation data (RPS)

We explain the set up of the simulation for
RPS-ARFIMA(0, d, 0)+CSS+HMM.
In this simulation, the change points were detected by every 2 periods.
@ Simulation data: Sample size 7' = 1200, u = 1.0, o-ﬁ = 1.0 and
do=0.15, 0<1t<449,

di=1 dy =045 449 < <849, (63)
dy =0.10, 849 < < 1200.

@ The hyperparameters of the prior distributions

o = 0.0, (rg =5.0, v =4.0, 1p=4.0,a=38.0,b=0.1. (64)
and (burn-in,draw)=(15000,10000).

Simulation data (RPS)

@ The simulation data
==
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Figure: The simulation data having two change points of fractional difference
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Log marignal likelihood (RPS)

The comparison of the proposed models with .#,, .#,, and ..

Table: Log marginal likelihood of RPS-ARFIMA(0, d, 0)+CSS+HMM

./ﬂ] ,ﬁz e/ﬂL&
Log marginal likelihood | —1749.1 —1738.5 -1741.5
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Mean of the parameters with .#, (RPS)

Table: Esitmation result of RPS-ARFIMA(0, d, 0)+CSS+HMM with .#,

Mean SD. 25% 975% CD |IF
u 1.060 0.127 0.810 1320 0.1 1.8
o2 | 1.036 0.043 0955 1.123 0.3 0.7
dy | 0.172 0.043 0.091 0261 0.1 1.6
dy | 0482 0.015 0445 0499 0.7 11
d, | 0.184 0.075 0.053 0358 0.1 8.4
poo | 0.997 0.003 0.991 1.000 0.2 1.8
pu | 0997 0.004 0.987 1.000 0.1 23

@ The convergence diagnostic (CD) gives a criteria on whether a
sample convergence or not, proposed by Geweke (1992).

@ The inefficiency factor (IF) measures efficiency of sampling.
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Posterior probability of s, = k with .2, (RPS)

. "‘W

o 1 i N AL
0 100 200 300 400 500 700 800 900 1000 1100 1200

Figure: Posterior probability of s, = k with .#, given the data Y7
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Summary of RPS-ARFIMA(0, d, 0)+CSS+HMM

@ From the log marginal likelihood, this model can estimate the true
number of the change points

@ From the posterior probability, RPS-ARFIMA(0, 4, 0)+CSS+HMM
can estimate the change points of the simulation data

@ From the table, RPS-ARFIMA(0, d, 0)+CSS+HMM can also estimate
change in parameters and another parameters

CSSHMM
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Simulation data (RLS)

We explain the set up of the simulation for
RLS-ARFIMA(0, d, 0)+CSS+HMM.

In this simulation, the change points were detected by every 1 period.

And the calculation time were also compared between the proposed
method and the method by Ray and Tsay (2002).

@ The simulation data: Sample size T = 1200, d = 0.4, 02 = 1.0 and

uo =0.0, 0<17<350,
=1 =25, 350<1<850, (65)
uy =-1.0, 850 << 1200.

@ The hyperparameters

o =10, 02=50,v9=40, y=40,a=80,b=01.  (66)
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L RLS-ARFIMA+CSS +HMM

Simulation data (RLS)
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Figure: Simulation data having two change points of
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Log marginal likelihood (RLS)

Table: Log marginal likelihood of RLS-ARFIMA(0, d, 0)+CSS+HMM

‘/”1 ///2 -/[3
-1736.6 17333 -1754.7

Log marginal likelihood
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Estimation result of .#, (RLS)

Table: Estimation result of RLS-ARFIMA(0, 4, 0)+CSS+HMM with .4,

Estimates  S.D. 25% 975% CD |IF
d 0.396 0.023 0.350 0443 09 17
o? 0.997 0.041 0.920 1.081 0.5 0.9
Ho -0.065 0.380 -0.811 0.688 09 26
o 2790 0426 1935 3.618 09 41
1 -1.135 0496 -2.122 -0.171 0.5 3.3
Poo 0.997 0.003 0.989 1.000 0.6 1.0
pi 0.998 0.002 0.992 1.000 0.1 1.0
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Posterior probability of s, = k& with .#, (RLS)

i

N s
0 100 200 300 400 500 600 700 80 900 1000 1100 1200

Figure: Posterior probability of s, = k with .#, given the data Y, Simulation data
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Calculation time (RLS)

Table: Calculation time

Ray and Tsay (2002) M My M3

Calc.time 21175005 3:2034.52 3:2624.65 3:4027.15

where the order is M = 40 and a change point was detected every 100
periods in Ray and Tsay (2002).
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Summary of RLS-ARFIMA(0, d, 0)+CSS+HMM

@ From the log marginal likelihood, we can select the true model .,
with two change points.

@ From the table, this model can estimate the change points of this
simulation data.

@ From the table, this model can also estimate change in parameters
and the another parameters.

@ From the table, the proposed model needs less the calculation time
than the method by Ray and Tsay (2002).
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L Summary of the simulation result

Summary of simulation result

@ Using the hidden Markov model, we can estimate the ARFIMA
model with multiple change points.

@ The propose method can estimate the variable parameters.

@ CSS method’s calculation time is shorter than the time of the MA
approximation method.

@ The proposed method needn’t to decide the order of an
approximated AR model.
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Applications

In this section, we estimate the data.

@ The yearly minima of the Nile river
@ The realized volatility of Nikkei 225
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The yearly minima of the Nile river

It has been known that the yearly minima of the Nile river had a long
memory property.

And this data that has one change point of d is shown by Beran and
Terrin (1996).

Sample period is A.D.622-A.D.1284 and sample size is T = 663.

We use the models
@ ARFIMA(0, d, 0)+CSS, .#,
@ RPS-ARFIMA(0, d, 0)+CSS+HMM with .#, and ..
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The yearly minima of the Nile river

v

—— Vearly minima of Nile fiver]

1400)

ikl m

\ h‘ ’/ “\
M e L

650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

=

1000)

Figure: The yearly minima of the Nile River
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Previous study (Nile river)

Beran and Terrin (1996) estimates the change points of d for the Nile
river data.

Table: Estimation result of Beran and Terrin (1996)

H d=H-1
r=1,..,100 |05433  0.0433
£=101,...,200 | 0.8531 0.3531
£=201,...,300 | 0.8652  0.3652
£=301,...,400 | 0.8281 0.3281
£=401,...,500 | 0.8435  0.3435
£=501,...,600 | 0.9354  0.4354

Beran and Terrin (1996) shows that d is different between for
t=1,...,100 and for = 101, .. ..
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The prior distribution (Nile river)

We set the hyperparameters of the prior distributions.
@ The hyperparameters of ARFIMA(0, d, 0)+CSS

Ho = 1100.0, 03 = 200.0, v = 4.0, 4y = 4.0. (67)
@ The hyperparameters of RPS-ARFIMA(0, 4, 0)+CSS+HMM

to = 1100.0, o2 = 200.0, vo = 4.0, 4o = 4.0, a=8.0, b=0.1. (68)

@ (burn-in,draw) are (10000, 10000).

@ When we use RPS-ARFIMA+CSS+HMM, we detect a change point
every 10 periods.
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Log marginal likelihood (Nile river)

Table: Log marginal likelihood of the yearly minima of Nile River

My M) M
Log marginal likelihood | -3778.0 —-3777.5 -3778.9
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Estimation result (Nile river)

Table: Estimation result of .,

Estimates S.D. 2.5% 97.5% CD IF
do 0.175 0.114 0.010 0435 09 11
dy 0.424 0.034 0.360 0488 09 17

H 1118.960  13.791 1091.838 1145.155 0.3 1.0
ol | 4856.900 274.044 4348.937 5425553 04 1.0
Poo 0.956 0.048 0.827 0.999 05 0.9
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Posterior probability of s, = k£ with .#, (Nile river)
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Figure: Posterior probability of s, = k with .#; given the data Yr
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Result (Nile river)

@ ./, has the largest log marginal likelihood among these models.
@ There is one change point of d in the yearly minima of the Nile river.
@ From the figure, the change point is around at r = 120, A.D.742.

@ We can see the this estimation result is consistent with Beran and
Terrin (1996).

L Realized volatiity

Realized volatility

We use the realized volatility of Nikkei 225 made by five-minutes
log-return.

Realized volatility is the sum of the square of intraday returns by Hansen
and Lunde (2005) and Watanabe (2007).

Realized volatility (RV) by Hansen and Lunde (2005) is

n

RV, = c)i, (69)
i=1
Li(R —R)?

¢ = 72"1(/ v (70)
DR

@ r;, is the ith intraday log-return at date 7.
@ R, is a dairy log-return.
@ R is the sample mean of dairy log-return.
The empirical result and conclusion will be given today.
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