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Abstract

This paper investigates the evolution of firm distributions for entrant manufacturing
firms in Canada using nonparametric methods. These nonparametric methods allow
a flexible method based on functional principal components or dynamic densities to
characterize how these densities evolve over time. This method is applied to a novel
administrative firm-level database from Statistics Canada to investigate the evolution
of the 1985 and 1989 cohorts of new entrants. We find that firm leverage (debt-to-asset
ratio) distributions have persistent deviations from the initial distributions and boot-
strap test statistics suggest that the distributions are different across all time periods.
Firm size and labour productivity have transitory deviations and some of the distri-
butions are the same across all time periods. Univariate finite mixture and stochastic
dominance tests are used to conduct pairwise comparisons as robustness measures.
We find that these static pairwise comparisons confirm the dynamic evolution of these
densities. This method illustrates the efficacy of functional principal components to
analyze firm distributions.
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1 Introduction

Understanding the evolution of firm distributions has been a major concern among economists,

businesses, and policymakers. This paper investigates the evolution of firm debt-to-asset ra-

tio (leverage), labour productivity, and size distributions of manufacturing firms in Canada.

Previous literature has focused mostly on productivity and firm size distributions. The nov-

elty of this analysis is the inclusion of financial information (debt-to-asset ratio) of small,

young, and privately-owned firms. However, little is known about the evolution of financial

variables due to the lack of detailed financial data on small, private firms. This paper uses

the T2LEAP, a unique administrative firm-level database combining information from the

Corporate Tax Statistical Universe File (T2SUF) with Longitudinal Employment Analysis

Program (LEAP) database in Canada. Information in the database allows us to analyze

the evolution of debt-to-asset ratio distributions, in addition to size and productivity distri-

butions, for two entry cohorts (1985 and 1989) in the manufacturing sector. The analysis

focuses on nonparametric methods to examine variable distributions from both a static and

dynamic perspective.

Beginning with Gibrat (1931), firm size distributions (FSD) have been a concern for

studies on industry dynamics. Typically, FSD for an industry are found to be skewed and

lognormal in shape. Work on firm dynamics suggests financial frictions are relevant in the

evolution of firm size distributions. Cabral and Mata (2003) document that the FSDs move

towards a lognormal distribution with age. One possible explanation for the changes in FSD

associated with age is a learning and selection process as suggested in Jovanovic (1982).

Cabral and Mata (2003) provide evidence against selection and suggest a simple model where
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the relaxing of financial constraints with firm age generate the dynamics observed for FSD.

Angelini and Generale (2008) provide further evidence of the impact of financial constraints

on the evolution of FSD. Recent work using the T2LEAP by Huynh and Petrunia (2008)

documents empirically that a firm’s growth depends nonlinearly on its leverage (debt-to-asset

ratio) even when controlling for firm size and age. Huynh, Petrunia, and Voia (forthcoming)

find a similar nonlinear conditional relationship between a firm’s survival prospects and its

initial leverage; survival rates increase with leverage for firms in the low to mid range of the

leverage distribution and fall for firms at the upper end.

We perform the following procedures to capture both the static and dynamic statistical

properties of variable distributions:

1. Functional principal component analysis (FPCA) is used to perform dynamic analy-

sis of variable distributions for each entry cohort. Debt-to-asset ratio sees persistent

changes to a cohort’s distribution over time. Movements of the size and productivity

distributions are mostly transitory.

2. The equality of densities of each variable’s distribution across years is tested via a

bootstrap procedure. The bootstrap procedure analyzes distributions over time for

entry cohorts between 1985 and 1993. Across time debt-to-asset ratio distributions are

found to be not jointly equal statistically for all cohorts. Joint equality of an entry

cohort’s across time productivity distributions is rejected for every cohort except the

1990 entry cohort. We do not reject equality in across time size distributions for the

1985, 1991, 1992, and 1993 entry cohorts, while joint equality is rejected for all other

entry cohorts.
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3. Pairwise comparisons of distributions are made using stochastic dominance tests and

finite mixture analysis. Finite mixtures are more stable for size and productivity

distribution, while continual movements occur for the mixtures of the debt-to-asset

ratio distribution. Stochastic dominance tests indicate the debt-to-asset ratio and

size distributions change with an entry cohort’s age, while no movement occurs for a

cohort’s productivity distribution.

The rest of the paper is organized as follows: Section 2 provides a description of the

data used in the paper. Section 3 discusses the methodology and the results of this dy-

namic distributional analysis. Pairwise comparison of the cross-sectional aspects of variable

distributions are examined in Section 4. Finally, section 5 concludes.

2 T2LEAP: Firm-Level Data

2.1 Data Description

The firm-level data used in this study comes from the T2LEAP database maintained by

Statistics Canada. This database was created through the merging of two administrative

databases; employment information from the Longitudinal Employment Analysis Program

(LEAP) is linked to financial records from the Corporate Tax Statistical Universe File

(T2SUF). A firm is incorporated if it files a corporate (T2) tax return. T2LEAP uses a

business registry number (BSNUM) to track all incorporated firms operating in a given

year. The data effectively covers the universe of incorporated Canadian firms hiring work-

ers. The T2LEAP database contains firm details from 1984 until 1997. A firm’s entry into

the database allows us to identify birth year and place firms into entry cohorts. Birth year

is measured as the first year in which a firm both hires employees and files a corporate tax
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return. We do not observe a birth year for firms existing in the database in 1984. A firm is

considered to exit when it fails to hire employees and/or file a tax return. The removal of the

firm occurs in all years subsequent to exit. Each firm receives an unique identify, BSNUM,

which ensures that exit and re-entry does not occur.

The paper uses the following firm level information available in the T2LEAP database:

Annual measures of a firm’s employment, sales, assets, and debt. Each firm is classified

by a three-digit Standard Industry Classification (SIC) code. The paper only considers

manufacturing firms. The following generated variables are calculated using the firm in-

formation: Leverage or the debt-to-asset ratio (Debtit/Assetit), and labour productivity or

(Salesit/ALUit), where the Average Labour Units (ALU) measure a firm’s yearly employ-

ment. Analysis is performed on leverage, the logarithm of sales and labour productivity.

2.2 Univariate Densities

We perform the analysis on two entry cohorts: (i) 1985 and (ii) 1989. Focusing on new

entrants allows us to capture the dynamic process related to the post-entry evolution of new

firms. The 1985 entry cohort is the first identifiable birth cohort, and thus, is the entry

cohort with the longest time-series. The 1989 entry cohort provides a comparison group,

but also allows for us to separate age effects from time effects. The 1989 cohort is chosen

since 1989 is the first year after the Canada-US free trade agreement (CUSFTA) and last

year prior to the recession of early 1990s.

Figures 1 illustrates the densities for leverage, logarithm of sales, and labour productivity

for the two entry (1985 and 1989) cohorts. In each figure there is a density for ages one,

four and seven. In the first row, the leverage distribution shows a clear pattern of moving
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leftwards left with age. As firms age (survive) they reduce their debt relative the asset hold-

ings. For the 1989 entry cohort, there is clear decrease in leverage with age as the leverage

distribution shifts right with age. Alternatively, the decrease is not uniform as a crossing

occurs between the age four and age seven leverage distributions for the 1985 cohort. The

results are not surprising since at age seven the 1985 cohort is in the midst of a deep recession

in Canada while age seven for the 1989 would have seen a recovery.

The second row contains the logarithm of sales, which is our measure of firm size. The

distinguishing feature of firm size is that the densities shift to the right as the entrant cohort

ages. This stylized fact is known as the ‘trend to bigness’, see Lucas (1978). The difference

between the two cohorts is that the 1989 has more mass in terms of larger size firms while

1985 has smaller firms.

Finally, row three contains the densities for labour productivity. In contrast to the two

other variables, the labour productivity distribution does not show as much movement much

with age. The 1989 cohort has higher productivity and has less dispersion in labour pro-

ductivity than the 1985 cohort. Overall, the labour productivity for the most part increases

with age for both cohorts.

Based on these observations, we note that as firms age they reduce their leverage, get

larger, and more productive. Between cohort comparison shows that members of the 1989

cohort reduce their leverage faster, are larger in size, and are more productive. As shown

in Huynh, Petrunia, and Voia (forthcoming), the over time changes to sales and leverage

distributions likely result from two factors: (i) selection due to exit of firms with age and

(ii) changes from initial conditions for surviving firms. The next section describes a general

method to describe the evolution of these densities in a formal statistical fashion.
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3 Dynamic Distribution Analysis

We make use of functional principal component analysis (hereafter FPCA), as suggested

by Kneip and Utikal (2001), to describe the underlying population densities of each cohort

and age group jointly in labour productivity, leverage, and firm size distributions. To the

best of our knowledge, the usage of this tool is novel in understanding firm distributions

and industrial dynamics. It is a powerful device that is able to decompose the changes in

distributions into dynamic factors. In the time-series and panel data literature Bai and Ng

(2002) and Pesaran (2006) have proposed to use factor models. The difference lies in how

the factors are estimated. We focus on nonparametric kernel methods since we want to place

minimal structure on how the dynamic factors are computed. The next section presents

these procedures.

3.1 Functional Principal Component Analysis

The approach of Kneip and Utikal (2001) analyzes jointly the underlying population densities

{ft}Tt=1. In particular, to characterize differences and similarities of {ft}Tt=1, we assume their

expansions into the first L principal components, g1, g2, . . . , gL, and represent each ft in

terms of the model

ft = fµ +
L∑
j=1

θtjgj, (1)

where fµ =
∑T

t=1 ft/T is the common mean and L ≤ T corresponds to the number of nonzero

eigenvalues of the empirical covariance operator.1 Model (1) implies that each ft can be

1Consider the space of square-integrable functions ξ such that
∫
ξ2 (x)w (x) dx <∞, where w (x) > 0 is

some continuous, uniformly bounded weighting function ∀x ∈ D ⊂ R that lies in the support of ft, ∀t; and
define the scalar product 〈ξ1, ξ2〉 =

∫
ξ1 (x) ξ2 (x)w (x) dx and ‖ξ‖2 = 〈ξ, ξ〉. Then the empirical covariance

operator of {ft}Tt=τ is given by Vξ = (1/T )
∑T
t=τ 〈ft − fµ, ξ〉 (ft − fµ), where τ is the start year and T is

the last observed year. In this paper we use the uniform weight function, i.e. w (x) = 1, ∀x ∈ D.
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obtained by adding to fµ a transformation of compromising common components g1, g2, . . . ,

gL, with varying strengths encapsulated in the coefficients θtj. Since ft represent densities

obtained for each time period t = 1, . . . ,T , then the time evolution of their respective

coefficients θt1, θt2, . . . , θtL provides information about the evolution of the main differences

and similarities between the underlying distributions.

The unknown g1, g2, . . . , gL and θt1, θt2, . . . , θtL, can be obtained from the T × T

matrix M, whose elements are defined by Mts = 〈ft − fµ, fs − fµ〉, ∀t, s = 1, . . . ,T . In

particular, the unknown components gr, and parameters θtr relate to the T eigenvectors,

pr = (p1;r, . . . , pT ;r)
>, r = 1, . . . , T , with corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ,≥ λT of

M through:

θtr = λ1/2
r pt;r, gr = λ−1/2

r

T∑
t=1

pt;r, and ft =

∑T
t=1 θtrft∑T
t=1 θ

2
t

. (2)

Kneip and Utikal (2001) provide consistent estimators of θtr,
2 and gr. The next section

describes the results from these FPCA estimates.

3.2 Test of Densities via Bootstrap

The data contains the universe of all firms for the period of 1984-1997. In essence there

are 13 cohorts, 12 of which have a known entry date while those in the 1984 have censored

entry date. The first step is to construct a test of whether the densities of these variables

come from the same distribution, i.e. H0 : L = 0 as suggested in (Kneip and Utikal 2001).

They proposed using ρ̂ =
∑T

r=1 λ̂r as a plausible test statistic, and the following bootstrap

procedure for approximating its distribution: In each of 399 replications T subsamples of

sizes n∗1, . . . , n
∗
T are drawn with replacement from the pooled empirical cdf of the entire

2However, no asymptotic distribution was derived.
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sample, i.e.
∑T

t=1 nt, and calculated ρ̂∗ =
∑T

r=1 λ̂
∗
r. The null distribution of the test statistic

is then approximated by the empirical distribution of ρ̂∗. The results are shown in Table 1.

The bootstrap test statistic for the leverage distribution rejects the null hypothesis of equal

distributions across all cohorts at the 10% significance level. The result for size and labour

productivity is different as there are some cohorts that does not reject the null hypothesis

of equal distributions. Namely, the 1975, 1991, 1992, and 1993 cohorts for size while 1990

cohort for labour productivity.

Table 1: Bootstrap Test Statistics and P-values

Labour
Cohort Leverage p-value Size p-value Productivity p-value

84 476.422 0.000 13.440 0.028 147.856 0.000
85 205.937 0.000 11.610 0.318 97.762 0.000
86 193.368 0.000 11.391 0.015 86.358 0.020
87 167.574 0.000 9.376 0.003 43.955 0.005
88 146.996 0.000 7.973 0.000 47.092 0.045
89 123.089 0.000 5.777 0.005 43.152 0.045
90 101.145 0.000 4.528 0.010 39.214 0.278
91 86.000 0.020 3.139 0.667 28.966 0.098
92 71.180 0.093 2.621 0.233 14.420 0.050
93 55.195 0.090 2.070 0.419 10.975 0.015

Note: P-values calculated based on 399 bootstrap replications in each cohort.

3.3 Dynamic Scree Plots

Figure 2 displays λ̂r/
∑T

r=1 λ̂r, where λ̂r represent the estimated eigenvalues of the FPCA

decompositions of the 1985 and 1989 cohorts across the three variables. The estimated

eigenvalues are plotted across time and borrowing from the principal components literature

we call these Dynamic Scree Plots to emphasize the time-series dimension of these objects.

For leverage the dynamic scree plots show that the eigenvalues do not decline until the final
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time period at which it falls to zero by definition. For firm size there is a marked decline in

the eigenvalues. Labour productivity shows a decline and then plateau in the eigenvalues.

Figure 2 shows that the first 3 components for size and labour productivity explain at least

60% of the total density time variation, therefore we proceed to analyze their time pattern

next.

3.4 Estimated Dynamic Strength Components

Figure 3 contains the plots of the three principal components when analyzing the dynamic

properties of the variable distributions. The time evolution of θ̂tr is compared against θ̂1r,

so that the estimated θ̂tr − θ̂1r for r = 1, . . . , 3 are plotted. For each variable, we highlight

the movements of the first three principal components, as suggested in Figure 2.

The first row contains the leverage θ̂tr− θ̂1r. All the components of the leverage distribution

exhibit a high degree of persistence. The movement of θ̂tr − θ̂1r tracks the movement of θ̂tr

as θ̂1r is constant. For the 1985 cohort, the first component has a steep drop, slight increase,

and then flattens with a permanent negative difference between θ̂t,1 and θ̂1,1. The second and

third components show some variability at the beginning of the time sample but then have a

similar time pattern of falling below, at a constant rate, the corresponding component value

at age one. The 1989 cohort shows the same pattern in the first component. However, the

second and third components, although displaying some variability, do not show a remarked

divergence from θ̂1r as θ̂tr− θ̂1r is close to zero. For both cohorts, there are persistent changes

occurring to their respective leverage distribution. Both cohorts experience variability in

component values over the first five years, while after age five (1990 for the 1985 cohort and

1994 for the 1989 cohort) the value of θ̂tr − θ̂1r remains constant for all three components.
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The results suggest a cohort’s leverage distribution initially experiences turbulent movements

but stabilizes relatively shortly after entry.

The second row displays these changes in estimated principal components when analyzing

the logarithm of sales distribution. For 1985 cohort, each component is transitory with at

least one incidence of a short-lived deviations as indicated by the spikes. The 1989 cohort is

different in that the second component difference has a permanent and persistent decrease.

For the 1985 cohort, the size distribution does appear to be somewhat stable after age 3

(1988), but spikes in θ̂tr − θ̂1r are observed at age eight (1993) for the second component

and at age ten (1995) for the third component. For the 1989 cohort, the size distribution

appears to stabilize after age five (1994) as the value of θ̂tr− θ̂1r remains constant for all three

components. As will leverage, the size distribution appears to move towards an equilibrium

distribution with most of the movement occurring in the first five years of an entry cohort’s

life.

Finally, for labour productivity the deviations in the principal components for labour

productivity distribution are for the most part transitory. Unlike the other variables, stability

occurs at early ages followed by periods of instability. The 1985 cohort shows more transitory

and volatility in the differenced components. The volatility happens around 1989 and in the

1990s. The 1989 cohorts are for the most part stable until the end of the time period.

Both the 1985 and 1989 cohort suffer a spike in 1994. After 1994, the values of θ̂tr − θ̂1r

remain stable at close to zero for the 1985 cohort, while the component values continue to

move around for the 1989 cohort. Age effects are a possible explanation for the observed

movements. Aggregate effects provide alternative explanations. A recession occurred in

Canada between 1990 and 1992. Further, the Canada-US free trade agreement (CUSFTA)
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was enacted in 1989, while the North American free trade agreement (NAFTA) came into

effect in 1994. These events probably had an impact, at least temporarily, on individual

firm’s productivity.

4 Empirical Evidence from Static Distributions

Having analyzed the joint dynamic behaviour of the leverage, size and labour productivity

distribution, and in view of results in Table 1 we proceed to look at the the source of the

observed time changes for each distribution.

4.1 Finite Mixture Decompositions

The finite mixture models are used to understand the changes in heterogeneity over time

and between cohorts of the outcome variables of interest. Our analysis of the 1985 and

1989 entry cohorts moves to checking for the presence of mixtures in the individual vari-

able distributions at cross-sectional level. We estimate univariate finite mixtures using the

methodology described in McLachlan and Peel (2000). There are 2 × tj decompositions of

the distributions of each variable of interest requiring 2× tj estimates of the K-class proba-

bility density functions, with tj being the length of time for cohort j. In this case, if fk(y)

is the kth class probability density function and pk denotes the proportion of the kth class,

then the finite mixture model with K components is defined as f(y) =
∑K

k=1 pkfk(y). The

proportion pk can be interpreted as the prior probability of observing a sample from class

k, with the property that is greater or equal to zero and that they sum to one (pk ≥ 0 and∑K
k=1 pk = 1). The objective is to estimate the parameters of the class probability densities

and the proportions pk of each class, while fixing an upper bound on the number of possible
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classes. The class of probabilities densities are assumed to have parametric components that

can be estimated. We tested different parametric specifications and chose the ones that fit

better the true distributions. BIC measures and tests of equality of distributions are used

to evaluate which parametric specification fits better the true data.

The parameters of such mixtures can be estimated by maximum likelihood. For labour

productivity and logarithm of sales, a mixture of normal distributions is estimated with

the kth probability density function given by fk(y|θ) = 1
σk

√
2π

exp
(
−(y−µk)2

2σ2
k

)
. A mixture of

lognormal distributions is used for the leverage with the kth probability density function given

by fk(y|θ) = 1
yσk

√
2π

exp
(
−(log y−µk)2

2σ2
k

)
, where y is the variable of interest and the parameters

of interest are θ = {K, pk, µk, σk}> with k = 1, ..., K and K is the number of mixtures. The

parameter pk gives the weight on each mixture,
∑K

k=1 pk = 1, and µk, σk provide the mean

and standard deviation for each mixture respectively. All the parameters of interest with the

exception of the number of types are estimated by the maximum likelihood. The number of

types is selected using the AIC criteria, i.e. AICk = −2 log l (θ|y) + 2dk is minimized with

respect to k, where dk is equal to the dimension of the model and acts as a correction term

without which one would choose the model that maximizes the unconditional log-likelihood.

Tables 3 and 4 present the results of finite mixtures analysis for the distribution of log-

sales for the 1985 and 1989 entry cohort, respectively. There are various similarities as well as

differences between the two cohorts. At age one, the log-sales distribution for both cohorts is

composed of three mixtures, while at age four and seven two mixtures are identified for both

cohorts. At age one both cohorts have the highest share of sales associated to medium size

firms, while for ages four and seven both cohorts have the highest share of sales associated

with the smaller firms. The 1985 cohort presents an interesting feature at the age of four,
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when the 1989 cohort enters. It shows a concentration of the sales for the smaller firms (72

percent). In terms of mean sales by type, cohort 1985 has higher means than cohort 1989 at

ages one and four. At age seven, when compared with 1989 cohort, cohort 1985 has a higher

mean for the highest shares firms, but lower means for the other firms. The variances of the

sales types are showing some variation between the cohorts at different ages of the firms.

The difference is that cohort 1989 shows higher variation than cohort 1985 at ages one and

seven while the reverse is true at age four.

Table 5 and 6 examine the presence of finite mixtures for the leverage distribution of

the 1985 and 1989 entry cohorts, respectively. For this outcome variable, more differences

are observed between the two cohorts than for the previous outcome variable. The same

number of mixtures (three) are identified for ages one and four for both cohorts, with cohort

1989 keeping the same number of mixtures at age seven while cohort 1985 showing only

two mixtures at that age. For cohort 1985 the low leverage and medium leverage firms are

dominating the distribution at ages one and four, while for the cohort 1989 only at age seven

the low and medium leverage are dominating the distribution, for the other ages the low and

high leverage firms are dominating the distribution. In the same tone, cohort 1985 presents

less concentration of types of firms than cohort 1989, which shows a higher concentration of

firms with medium leverage. For cohort 1985 there is steady decrease in leverage over time,

with very small changes between age four and seven. In contrast, there is a steady decrease

in mean leverage for the 1989 cohort only for ages one and four and an increase in leverage

during year seven. Finally, there is a higher variation in leverage for cohort 1989 than for

cohort 1985 especially at age seven.

Finite mixture analysis for labour productivity is presented in tables 7 and 8 for the
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1985 and 1989 cohorts, respectively. For both cohorts, there is a reduction in the number

of mixture types. By age seven, there are only two types for both cohorts: low and high

productivity. The difference in mean productivity between the high and low types is small

between 0.4 and 0.7 with even smaller differences for cohort 1989. While the mean estimated

labour productivity values for these two groups are almost equal at all ages, the estimated

standard deviations are very different and provide the distinguishing factor between the

estimated types.

4.1.1 Coefficient of Variation of Mixture Components

Figure 4 illustrates the results of the finite mixture components of all time periods for the

1985 and 1989 cohort. The information is collapsed into a measure of a weighted coefficient

of variation: CVk = pkµk/σk, where k = 1, . . . , K, pk is the probability of the mixture k,

µk is the mean of the mixture k, and σk is the standard deviation of the mixture k. The

figures have discontinuous plots since for some cases the mixture component is not present

in certain years. The first row of the figure shows a downward trend in the first and second

mixture component for leverage in both the 1985 and 1989 component. This confirms the

density pictures which illustrates that the leverage distribution is shifting leftwards. The

third component does not show a downward trend but rather volatility.

The firm size finite mixture components is in the second row. The first stark pattern

is that the first component is always larger than the second component for both cohorts.

There is a trend of the first component increasing while the second component is decreasing.

This trend is indicative of the first component is getting larger while the second component

is getting smaller. The difference between the two components is larger in the 1985 cohort
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relative to the 1989 cohort. Once again, this confirms the density estimation that shows that

1985 cohort is more heterogeneous.

The third row contains the labour productivity finite mixture components. The first

component is larger than the second component for the most part in both cohorts. In the

1985 cohort there is marked decrease in the first component and increase in the second

component in 1993. Part of it maybe due to an emergence of a third component which

may decrease the weight in the first component and increase it for the second component.

A similar case is shown for the 1989 cohort in year 1991 where the emergence of another

component causes a large change in the first and second component.

4.2 Stochastic Dominance in the Presence of Finite Mixtures

To complete the static analysis we need to integrate the information obtained from finite

mixture decompositions into a unified measure of comparison, which can be done using

stochastic dominance testing. These tests are used to compare whether pair of distributions

are equal and if not what it is the level of dominance, i.e. equality of two distributions (EoD),

first-order stochastic dominance (FOSD) and second-order stochastic dominance (SOSD), as

explained in Table 2.

Let Yi,t;l represent either leverage, size or debt-to-asset ratio of firm i = 1, . . . , nt, at

age t, in cohort l, and let its distribution be Ft;l(y) ≡ Pr[Yi,t;l ≤ y]. Analogous, let Yi,s;j

represent the outcome variable of interest of firm i = 1, . . . ,ms, at age s, in cohort j with

its corresponding distribution Fs;j(y) ≡ Pr[Yi,s;j ≤ y]. Furthermore, let D
[t;l]
1 (y) = Ft;l(y),

and define higher orders for D(∗) as D
[t;l]
o (y) =

∫ y
0
D

[t;l]
o−1(x)dx. Note that we can also write

D
[t;l]
o (y) = 1/(o− 1)!

∫ y
0

(y− x)o−1dFt;l(x). Table 2 provides the null hypothesis and the test

16



Table 2: Test of Distributions

H0 Test Statistic

EoD: Ft;l(y) = Fs;j(y) K̂ =
√

ntms

nt+ms
supx |F̂t;l(y)− F̂s;j(y)|

FOSD: Ft;l(y) ≤ Fs;j(y) D̂ =
√

ntms

nt+ms
supx[F̂t;l(y)− F̂s;j(y)]

SOSD: D
[t;l]
2 (y) ≥ D

[s;j]
2 (y) Ĥ =

√
ntms

nt+ms
supx[D̂

[t;l]
2 (y) ≥ D̂

[s;j]
2 (y)]

a Linton, Maasoumi, and Whang (2005) is used to test EoD and FOSD.
b Andrews (2000) and Dufour (2006) are used to test SOSD.

statistics for each case.

Linton, Maasoumi, and Whang (2005) is used to test EoD and FOSD, while Andrews

(2000) and Dufour (2006) are used to test SOSD. However, since the above test statistics

depend on nuisance parameters (the number of finite mixtures in each variable’s distribution),

their critical values are tabulated by the following parametric bootstrap procedure:

1. Sample nt and ns values, (Y ∗1,t;l, . . . , Y
∗
nt,t;l

) and (Y ∗1,s;j, . . . , Y
∗
ns,s;j), from the estimated

distributions
∫ y

0
f̂(u)du =

∫ y
0

∑K
k=1 p̂kf̂k (u) du.

2. Using the bootstrap samples in step 1, calculate the empirical distribution functions

F̂ ∗t;l(y) and F̂ ∗s;j(y), and calculate K̂∗, D̂∗, and Ĥ∗accordingly.

3. Repeat steps 1-2 B many times and define the critical value as the smallest value of y

subject to at least 100(1− α)% of the obtained B values of K̂∗, D̂∗, and Ĥ∗ are at or

below y.

4. Reject if K̂∗, D̂∗, or Ĥ∗ are greater than the critical value found in step 3.
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4.2.1 Results of Stochastic Dominance Tests

The presentation of the tests refers to a) within a cohort comparisons. Analogous tests are

used for b) between cohorts comparisons. Table 9 presents distribution comparisons over

time within each cohort, i.e. t 6= s and l = j. For the 1985 log-sales distribution, age one

is SOSD dominated by ages four and seven, with ages four and seven stochastically equal.

For the 1989 cohort, the age one is equal to age four and both are SOSD by age seven. The

finding may suggest that cohort 1985 grew faster than cohort 1989.

The leverage story is very similar with the log-sales story but in opposite direction and

with a higher magnitude. Therefore, for the leverage distribution, age one SOSD age four and

seven for both cohorts, while the age four distribution does not look stochastically different

than the age seven distribution. This finding indicates that for cohort 1985 we may have a

convergence for the leverage distribution after age four. The convergence to an equilibrium

leverage distribution appears to be longer for 1989 cohort as we find this cohort’s age four

leverage distribution SOSD its age seven distribution. Labour productivity does not show

any changes in its distribution as we cannot reject equality of distributions across all ages

for both cohorts.

Table 10 presents the comparison of the distributions between the entry cohorts, i.e.

t = s and l 6= j. For log-sales variable, cohort 1985 SOSD cohort 1989 at age four, while the

two cohorts distributions at age one and seven are stochastically equal. In the leverage case

the 1989 cohort SOSD leverage distribution for the 1985 cohort at all ages. The finding may

suggest that pre free trade entry firms needed less leverage to survive than post free trade

entry firms as they were more protected by differential tariffs. In contrast, for the labour
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productivity distribution we do not find any statistical difference between the cohorts at any

ages.

5 Concluding Remarks

Our analysis looks at the evolution of debt-to-asset ratio, size and productivity distributions

for two entry cohorts (1985 and 1989) of manufacturing firms. Functional principal com-

ponent analysis provides a concise method to visualize how distributions evolve over time.

Functional principal component analysis provides a method to capture dynamics and breaks

a variable’s distribution into dynamic principal components. The results show deviations in

each entry cohort’s debt-to-asset ratio distribution are persistent, while deviations are tran-

sitory for productivity and size distributions. A persistent component allows a variable’s

distribution to move around a steady state distribution. Transitory components capture

changes in a variable’s distribution over time, such as a movement towards an equilibrium

distribution. The transitory components can account for deviations in a distribution occur-

ring over time.

Static analysis makes pairwise comparisons of distributions using stochastic dominance

tests and finite mixture analysis. The pairwise static distributional analysis confirms the

findings of the dynamic functional principal component analysis. The distribution for the

debt-to-asset ratio moves across time, while the distributions for productivity and size tend

to be more stable over time. The functional principal component analysis and the static pair-

wise analysis provide effective methods to describe the evolution of a variable’s distribution

over time with minimal assumptions.
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Table 3: Log of Size (Sales) Distribution: Cohort 1985
Year Type Share µ s.e. σ s.e. logL N
1986 I 0.610 5.861 0.079 1.085 0.131 -4371.73 2578
1986 II 0.247 6.415 0.151 2.048 0.135
1986 III 0.143 5.373 0.113 0.501 0.216
1989 I 0.717 6.206 0.052 1.017 0.067 -3377.69 1993
1989 II 0.283 7.048 0.155 1.828 0.110
1992 I 0.697 6.242 0.087 1.094 0.116 -2804.305 1615
1992 II 0.303 7.005 0.205 1.813 0.159

Table 4: Log of Size (Sales) Distribution: Cohort 1989

Year Type Share µ s.e. σ s.e. logL N
1990 I 0.506 5.93 0.217 1.07 0.159 -3793.08 2266
1990 II 0.291 5.232 0.129 0.681 0.193
1990 III 0.203 6.175 0.161 2.222 0.162
1993 I 0.536 5.771 0.086 0.978 0.143 -3049.33 1710
1993 II 0.464 6.522 0.133 1.808 0.106
1996 I 0.838 6.138 0.121 1.276 0.077 -2558.86 1402
1996 II 0.162 8.098 1.179 1.657 0.349

Note: The parameters of the finite mixtures: number of types (k), mean of type k (µk),
and standard deviation of type k (σk) were obtained by maximizing the log-likelihood
associated to the following density function:

flog-sales(y|θ) =
K∑
k=1

pk
1

σk
√

2π
exp

(
−(y − µk)2

2σ2
k

)
.

The number of types were chosen according to the number for which the likelihood is the
highest and the other parameters of interest are stable.
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Table 5: Leverage Distribution: Cohort 1985

Year Type Share µ s.e. σ s.e. logL N
1986 I 0.514 0.822 0.025 0.365 0.062 -1596.73 2578
1986 II 0.354 0.931 0.013 0.149 0.051
1986 III 0.132 1.018 0.080 1.584 0.103
1989 I 0.391 0.830 0.024 0.181 0.068 -1687.58 1993
1989 II 0.378 0.697 0.061 0.375 0.177
1989 III 0.231 0.716 0.115 0.996 0.101
1992 I 0.581 0.696 0.051 0.685 0.065 -1606.77 1615
1992 II 0.419 0.812 0.017 0.212 0.061

Table 6: Leverage Distribution: Cohort 1989

Year Type Share µ s.e. σ s.e. logL N
1990 I 0.718 0.966 0.013 0.239 0.042
1990 II 0.224 1.167 0.057 1.746 0.076 -1508.82 2266
1990 III 0.058 0.514 0.141 0.131 0.105
1993 I 0.618 0.911 0.028 0.239 0.060
1993 II 0.250 1.191 0.065 1.886 0.085 -1441.67 1710
1993 III 0.132 0.459 0.176 0.149 0.125
1996 I 0.519 0.819 0.019 0.240 0.069
1996 II 0.389 0.699 0.086 0.597 0.164 -860.71 1402
1996 III 0.092 1.736 0.762 4.959 0.301

Note: The parameters of the finite mixtures: number of types (k), mean of type k (µk),
and standard deviation of type k (σk) were obtained by maximizing the log-likelihood
associated to the following density function:

fleverage(y|θ) =
K∑
k=1

pk
1

yσk
√

2π
exp

(
−(log y − µk)2

2σ2
k

)
.

The number of types were chosen according to the number for which the likelihood is the
highest and the other parameters of interest are stable.
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Table 7: Labour Productivity Distribution: Cohort 1985

Year Type Share µ s.e. σ s.e. logL N
1986 I 0.702 4.342 0.035 0.543 0.071 -3084.8 2578
1986 II 0.224 5.052 0.418 0.843 0.204
1986 III 0.074 4.299 0.221 2.111 0.178
1989 I 0.755 4.428 0.018 0.473 0.043 -2021.03 1993
1989 II 0.245 4.852 0.071 1.125 0.084
1992 I 0.814 4.492 0.018 0.493 0.039 -1643.81 1615
1992 II 0.186 4.9 0.093 1.286 0.111

Table 8: Labour Productivity Distribution: Cohort 1989

Year Type Share µ s.e. σ s.e. logL N
1990 I 0.531 4.432 0.037 0.455 0.077 -2744.68 2266
1990 II 0.376 4.887 0.105 0.857 0.137
1990 III 0.093 4.569 0.201 2.081 0.201
1993 I 0.780 4.630 0.020 0.545 0.043 -2001.57 1710
1993 II 0.220 4.675 0.088 1.491 0.110
1996 I 0.715 4.594 0.024 0.481 0.05 -1472.24 1402
1996 II 0.285 4.976 0.074 1.091 0.091

Note: The parameters of the finite mixtures: number of types (k), mean of type k (µk),
and standard deviation of type k (σk) were obtained by maximizing the log-likelihood
associated to the following density function:

flabour productivity(y|θ) =
K∑
k=1

pk
1

σk
√

2π
exp

(
−(y − µk)2

2σ2
k

)
.

The number of types were chosen according to the number for which the likelihood is the
highest and the other parameters of interest are stable.
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Table 9: Stochastic Dominance: Within Cohorts

Sales Leverage Labour Productivity
1985 Age 1 Age 4 Age 7 Age 1 Age 4 Age 7 Age 1 Age 4 Age 7
Age 1 eq -2 -2 eq 2 2 eq eq eq
Age 4 . eq eq . eq eq . eq eq
Age 7 . . eq . . eq . . eq

Sales Leverage Labour Productivity
1989 Age 1 Age 4 Age 7 Age 1 Age 4 Age 7 Age 1 Age 4 Age 7
Age 1 eq eq -2 eq 2 2 eq eq eq
Age 4 . eq -2 . eq 2 . eq eq
Age 7 . . eq . . eq . . eq

Note: The results are read in terms of row versus columns. (eq) stands for equality of
distributions, (2) stands for second order stochastic dominance and a negative number
indicates that the column dominates the row, here (-2) stands for second order stochastic
dominated distribution. For example, for the 1985 cohort, line one (columns 2, 3 and 4 -
for leverage) reads that Age 1 SOSD both Age 4 and Age 7, while line two (columns 3 and
4 - for leverage) reads that Age 4 is stochastically equal to Age 7 distribution. All results
are significant at 5%.

Table 10: Stochastic Dominance: Between Cohort 1985 & 1989

Sales Leverage Labour
Productivity

1985 vs. 1989 1985 vs. 1989 1985 vs. 1989
Age 1 eq -2 eq
Age 4 2 -2 eq
Age 7 eq -2 eq

Note: The results are read in terms of row versus columns. For example column 2 (for
leverage) reads that at each age cohort 1989 SOSD cohort 1985. All results are significant
at 5%.
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Figure 1: Distributions
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a Cross-validated bandwidths are 0.2598, 0.3214, and 0.3585 for firms aged 1, 4 and 7-years
old respectively in the 1985 cohort (First column).

b Cross-validated bandwidths are 0.2642, 0.2707, and 0.3114 for firms aged 1, 4 and 7-years
old respectively in the 1989 cohort (Second column).

c Gaussian kernels are used throughout.
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Figure 2: Dynamic Scree Plot
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r=1 λ̂r for the 1985 and 1989 cohorts.
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Figure 3: Estimated Dynamic Strength Components
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Figure 4: Coefficient of Variation
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Note: Each plot displays CVk = pkµk/σk where k = 1, . . . , K, pk is the probability of
the mixture k, µk is the mean of the mixture k, and σk is the standard deviation of the
mixture k.
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