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Abstract

We compare the fit of two variants of a standard Christiano et al. (2005)/

Smets and Wouters (2003) -type DSGE model, one where agents have perfect

information about the value of the policymaker’s inflation target, and one where

they need to infer this value from changes in interest rates as in Erceg and Levin

(2003). We find that a standard set of macro variables is unable to discriminate

among the two models. Observed inflation expectations provide strong evidence

as to which model fits the data best: the perfect information.
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1 Introduction

This paper uses inflation expectations as an observable in the estimation of a DSGE

model, along with a standard set of macro variables. Observed inflation expectations

are rarely included among the observables in estimating DSGE models, but arguably

contain information that is valuable in discriminating across models. We compare

the fit of two variants of a standard DSGE model with with several nominal and real

rigidities along the lines of Christiano et al. (2005), Smets and Wouters (2003), and

Smets and Wouters (2007), where the different lies in the agents’ information set.

In the first model (Perfect Information) agents have perfect information about the

Central Bank’s inflation target, while in the second model (Imperfect Information)

agents need to infer the target from the behavior of interest rates, as in (Erceg

and Levin (2003)). We find that a standard set of macro variables over a standard

estimation period (the post-Volcker disinflation period: 1982Q2-2008Q2) is unable

to discriminate among the two models. Observed inflation expectations instead

provide strong evidence as to which model fits the data best. This is perhaps the

least plausible of the two models: the Perfect Information one. We provide evidence

that the relative failure of the Imperfect Information model to fit observed inflation

expectations is due to the fact that this model imposes much more stringent cross-

equation restriction on the law of motion of the perceived inflation target than the

Perfect Information model.

There are several reasons for including measured inflation expectations among

the set of observables in the estimation of DSGE models. First, as our study shows,

inflation expectations help discriminate across models, especially when these mod-

els differ in the way agents form expectations. Yet observed expectations are rarely

formally used in previous literature, even when comparing rational expectations

with learning models (e.g., Milani (2007); a recent paper by Ormeno (2009) is an

exception). In fact, we know very little on the extent to which DSGE models can ac-

curately describe the behavior of observed inflation expectations.1 Second, inflation

1Recent literature has used survey measures of inflation expectations in the limited information

estimation of models of inflation dynamics. Roberts (1997) estimates a reduced-form New Keyne-
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expectations are allegedly important in determining the term structure of interest

rates. While this paper makes no attempt to explain the term structure directly

since we use a linear model, the model comparison exercise done here can be helpful

indirectly in investigating how one should formulate expectation formation.2 Mod-

els that have a hard time generating observed inflation expectations may not be too

helpful in understanding the term structure of interest rates. A third reasons to add

observed expectations (for inflation as well as other variables) to the econometri-

cian’s information set is that agents in the real economy have a richer information

set than the econometrician using a standard set of macro variables. Including

measured expectations among the observables is a way to exploit such information

set.3 This information can be exploited for both forecasting and estimating latent

variables, such as shocks. We show for instance that the estimated process for the

inflation target changes whether we include or not inflation expectations among the

observables.

There are several issues with using measured expectations as observables in

DSGE models, which we discuss in section 4: data revisions, timing, choice of the

expectation measures. This paper shows that the results are robust to different

choices of measurement and timing assumptions, but does not really address many

of these difficult issues. By pointing out the information content from measured

expectations, we hope we have shown that it is worthwhile for future research to

sian Phillips curve using survey expectations from the Michigan and Livingston surveys and finds

that they are important in explaining inflation. In particular, he finds that measures of inflation

expectations have more explanatory power than past inflation. Adam and Padula (2002) estimate

a structural New Keynesian Phillips curve with SPF inflation forecasts and obtain plausible struc-

tural estimates of nominal rigidities, independently of the measure of marginal costs used (see also

Nunes (2009)). None of this papers however studies the extent to which New Keynesian models

can explain the dynamics of inflation expectations.
2There are attempts to use DSGE models to explain the terms structure, e.g. Rudebusch and

Swanson (2008).
3Following the FAVAR methodology (Bernanke et al. (2005)) there are some attempts to combine

factor and DSGE models with the goal of incorporating as much of the available data as possible

(Boivin and Giannoni (2006), Giannone et al. (2008)). We take a different route and incorporate

this information by adding agent’s expectations to the list of observables.
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address these issues more thoroughly than we have. Also, there are several other

mechanism of expectation formations, notably learning, that we do not consider in

this paper. It is interesting to ask whether learning models provide a better descrip-

tion of observed inflation expectations than rational expectation models (Ormeno

(2009) contains some preliminary results on this question).

Our results, while negative for the Imperfect Information model, are not neces-

sarily in contrast with Erceg and Levin (2003)’s. Erceg and Levin (2003) focus on

the Great Disinflation (81− 85), while we are interesting in assessing which model

best describes the evolution of inflation expectation in the post deflation period –

a period where allegedly the policy regime has not changed. Section 5.6 discusses

model comparison using data that include the the Great Disinflation period. We

find that this period provides some evidence in support of the Imperfect Information

model, in agreement with Erceg and Levin (2003).

In addition to Erceg and Levin (2003), several papers introduce imperfect in-

formation about the central bank’s inflation target in a monetary DSGE model.

Andolfatto et al. (2008) show that imperfect information about the central bank’s

inflation target can generate small sample rejection of rational expectations. They

conduct a Monte Carlo experiment using a calibrated new Keynesian model with

infrequent shifts in the monetary authority’s inflation target and find rejections of

rational expectations in samples of the same size as available measures of inflation

expectations.4 Keen (2009) shows that a calibrated new Keynesian DSGE model

with imperfect information about the inflation target implies a response to a mone-

tary expansion that is in accord with VAR studies (see also Melecky et al. (2008)).

These papers do not discuss the model’s ability to explain observed measures of

inflation expectation. Perhaps closer to our paper, Schorfheide (2005) estimates a

New Keynesian DSGE model with imperfect information using US data from 1960

to 1997. The paper finds that while the model with full information provides a bet-

4Several papers have documented that inflation expectations as measured by surveys like Michi-

gan, Livingston and SPF fail to be consistent with rational expectations in terms of unbiasness and

serially uncorrelated forecast errors – e.g., Lloyd (1999) and Roberts (1997). Rich (1989) provides

evidence in the opposite direction.
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ter fit over the whole sample, the model under imperfect information outperforms

for the period of the Volker disinflation. While measures of inflation expectations

are not included as observables in his dataset, he compares the time series of infla-

tion expecations generated by the two models and finds that the two models imply

inflation expectations – one-year and ten-years average – that are roughly similar

over the sample. Finally, Aruoba and Schorfheide (2009) study the distortionary

properties of inflation and the optimal long-run inflation rate using an estimated

DSGE model with a time-varying inflation target. Their dataset includes a measure

on long-run inflation expectations obtained by combining one-year and ten-years

SPF inflation forecasts with a one-sided bandpass filter on inflation that removes

short and medium term cycles. Their study does not focus on the model’s ability

to explain inflation expectations.

The next section briefly discusses the econometric framework for evaluating how

a model estimated to fit a baseline set of time series – here, the standard macro

variables – fares in fitting an additional time series – here, inflation expectations.

This is a straightforward application of Bayesian updating, which is routinely done

in the DSGE estimation literature in the time series dimension, to the cross-sectional

dimension. Section 3 describes the model, with particular emphasis on the difference

between perfect and imperfect information. Section 5 discusses our findings.

2 Predictive Checks in the Cross-Section

Let yi1,T = {yit}Tt=1 define time series i. A natural question in the DSGE model

estimation literature is the following: How does a model that is estimated to fit

time series y1
1,T through yJ1,T fare in fitting time series yJ+1

1,T through yJ+K
1,T ? In this

paper, for instance, we ask how the Christiano et al. (2005)/Smets and Wouters

(2003) model, which allegedly fits standard macro time series well, fare in describing

observed inflation expectations. The same question can be posed for asset prices,

the yield curve, and several other time series.
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Let Y 0
1,T and Y 1

1,T denote {y1
1,T , . . . , y

J
1,T } and {yJ+1

1,T , . . . , yJ+K
1,T }, respectively.

One can of course compute the marginal likelihood for series y1
1,T though yK+J

1,T :

p(Y 0
1,T , Y

1
1,T |Mi)

where Mi is the model under consideration While the quantity p(Y 0
1,T , Y

1
1,T |Mi) is

certainly of interest, it may not necessarily address the researcher’s question. This

is for two reasons. First, by construction, the marginal likelihood depends on the

prior chosen:

p(Y 0
1,T , Y

1
1,T |Mi) =

∫
p(Y 0

1,T , Y
1

1,T |θ,Mi)p(θ|Mi)dθ, (1)

where p(Y 0
1,T , Y

1
1,T |Mi) denotes the likelihood function for model Mi, θ the vector

of DSGE model parameters, and p(θ|Mi) the prior chosen for θ. Prior elicitation

for some of the DSGE model parameters can be challenging, and the choice of

prior – not surprisingly given the above definition – affects the marginal likelihood

computation and therefore the outcome of model comparisons (see DelNegro and

Schorfheide (2008)). The researcher who is interested in knowing how well the model

fits the time series yJ+1,T through yJ+K,T may want to use as a prior the posterior

obtained from estimating the model on time series y1,T through yJ,T . This posterior

– p(θ|Y 0
1,T ,Mi) – will be far less dependent on the initial prior p(θ|Mi) chosen. In

our case, the exercise would be to use the posterior obtained from fitting standard

macro time series in order to evaluate the model’s ability to fit expectations. The

object of interest would then be:

p(Y 1
1,T |Y 0

1,T ,Mi) =

∫
p(Y 1

1,T |θ, Y 0
1,T ,Mi)p(θ|Y 0

1,T ,Mi)dθ. (2)

In expression (2) the set of time series Y 0
1,T represents the training sample in Bayesian

parlance, and p(θ|Y 0
1,T ,Mi) is the training sample prior, whence the title of the

section. While training sample priors are often used in Bayesian macroeconometrics

along the time series dimension (e.g., using Y 0
−P,0 as a training sample and then

estimating the model over Y 0
1,T ), here we apply the approach to the cross sectional

dimension. The second reason why we may be interested in p(Y 1
1,T |Y 0

1,T ,Mi), rather

than in p(Y T |Mi), is that p(Y T |Mi) provides information on how well model Mi
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fits both Y 0
1,T and Y 1

1,T , while the researcher may want to disentangle the goodness

of fit of one set of time series versus the other. The quantity p(Y 1
1,T |Y 0

1,T ,Mi) tells

us how well model Mi fits Y 1
1,T only, conditional on the parameter distribution

delivering the best possible fit for Y 0
1,T . This quantity easily obtains as the ratio of

two objects we know how to compute, p(Y 0
1,T , Y

1
1,T |Mi) and p(Y 0

1,T |Mi), since:

p(Y 1
1,T |Y 0

1,T ,Mi) =
p(Y 0

1,T , Y
1

1,T |Mi)

p(Y 0
1,T |Mi)

. (3)

3 Model

The economy is described by a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital

utilization, and habit formation. The model is based on work of Smets and Wouters

(2003), Smets and Wouters (2007), and Christiano et al. (2005). The specific version

is taken from DelNegro et al. (2007), except for the monetary policy rule, which

we subsequently describe in detail. For brevity we only present the log-linearized

equilibrium conditions and refer the reader to the above referenced papers for the

derivation of these conditions from assumptions on preferences and technologies.

Monetary Policy: Perfect versus Imperfect Information The central

bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR) (ψ1πt − ψ1π
∗
t + ψ2ẏt) + σrεR,t, (4)

where ŷt captures some measure of economic activity in log-deviations from its

steady state (in the baseline specification ẏt coincides with the growth rate of output

ŷt + ẑt − ŷt−1), and εR,t is an i.i.d. shock. The inflation target π∗t , defined in log-

deviations from its non-stochastic steady state π∗, evolves according to

π∗t = ρπ∗π
∗
t−1 + σP εP,t, (5)

where 0 < ρπ∗ < 1 and εP,t is an i.i.d. shock. We follow Erceg and Levin (2003)

and model π∗t as following a stationary process (although our prior for ρπ∗ will make

sure the this process is highly persistent). This choice is also motivated by the fact
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that in our sample long-term (10 year ahead) inflation expectations have moved very

little, especially in the last ten years. We view this as evidence against the random

walk assumption for our post-84 sample.

Under perfect information, agents observe π∗t . Under imperfect information they

need to infer the inflation target from the observed interest rate behavior (see Erceg

and Levin (2003)). Call π̃t the residual in the feedback rule, defined as:

π̃t = (ρrRt−1 + (1− ρr)(ψ1πt + ψ2ŷt)−Rt)/(1− ρr)ψ1. (6)

Agents solve a signal extraction problem using

π̃t = π∗t + σT εR,t (7)

as the measurement equation (where σT = σr
(1−ρR)ψ1

) and (5) as the transition equa-

tion. The law of motion of π∗t+1|t is obtained using the steady state Kalman filter

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
, (8)

where K =
V (

σP
σT

,ρπ∗ )

1+V (
σP
σT

,ρπ∗ )
is the steady state Kalman gain coefficient and σ2

TV (σPσT , ρπ
∗)

is the steady state uncertainty regarding the inflation target. V solves:

V = ρ2
π∗

[
V − V (V + 1)−1 V

]
+ (

σP
σT

)2.

We also consider the alternative law of motion for inflation target π∗t proposed

in Gurkaynak et al. (2005):

π∗t = ρπ∗π
∗
t−1 + χπt−1 + σP εP,t. (9)

As above agents know the policy rule and the evolution of the unobserved inflation

target. The forecast of the unobserved inflation target π∗t+1|t (10 ) now becomes:

steady state Kalman filter

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
+ χπt (10)

where K is defined as before.
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Firms. The economy is populated by a continuum of firms that combine capital

and labor to produce differentiated intermediate goods. These firms have access to

the same Cobb-Douglas production function with capital elasticity α and total factor

productivity Zt. Total factor productivity is assumed to be non-stationary, and its

growth rate zt = ln(Zt/Zt−1) follows the autoregressive process:

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (11)

Output, consumption, investment, capital, and the real wage can be detrended by

Zt. In terms of the detrended variables the model has a well-defined steady state.

All variables that appear subsequently are expressed as log-deviations from this

steady state.

The intermediate goods producers hire labor and rent capital in competitive

markets and face identical real wages, wt, and rental rates for capital, rkt . Cost

minimization implies that all firms produce with the same capital-labor ratio

kt − Lt = wt − rkt (12)

and have marginal costs

mct = (1− α)wt + αrkt . (13)

The intermediate goods producers sell their output to perfectly competitive final

good producers, which aggregate the inputs according to a CES function. Profit

maximization of the final good producers implies the following demand curve

ŷt(j)− ŷt = −
(

1 +
1

λfe
λ̃f,t

)
(pt(j)− pt). (14)

Here ŷt(j)− ŷt and pt(j)− pt are quantity and price for good j relative to quantity

and price of the final good. The price pt of the final good is determined from a zero-

profit condition for the final good producers. We assume that the price elasticity of

the intermediate goods is time-varying. Since this price elasticity affects the mark-

up that intermediate goods producers can charge over marginal costs, we refer to

λ̃f,t as mark-up shock. Following Calvo (1983), we assume that in every period a

fraction of the intermediate goods producers ζp is unable to re-optimize their prices.
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A fraction ιp of these firms adjust their prices mechanically according to lagged

inflation, while the remaining fraction 1− ιp adjusts to steady state inflation π∗. All

other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the Phillips curve:

πt =
β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1 +
(1− ζpβ)(1− ζp)
ζp(1 + ιpβ)

mct +
1

ζp
λf,t, (15)

where πt is inflation and β is the discount rate.5 Our assumption on the behavior

of firms that are unable to re-optimize their prices implies the absence of price

dispersion in the steady state. As a consequence, we obtain a log-linearized aggregate

production function of the form

ŷt = (1− α)Lt + αkt. (16)

Equations (13), (12), and (16) imply that the labor share lsht equals marginal costs

in terms of log-deviations: lsht = mct.

Households. There is a continuum of households with identical preferences,

which are separable in consumption, leisure, and real money balances. Households’

preferences display (internal) habit formation in consumption, that is, period t util-

ity is a function of ln(Ct−hCt−1). Households supply monopolistically differentiated

labor services. These services are aggregated according to a CES function that leads

to a demand elasticity 1 + 1/λw (see Equation (14)). The composite labor services

are then supplied to the intermediate goods producers at real wage wt. To introduce

nominal wage rigidity, we assume that in each period a fraction ζw of households

is unable to re-optimize their wages. A fraction ιw of these households adjust their

t − 1 nominal wage by πt−1e
γ , where γ represents the average growth rate of the

economy, while the remaining fraction 1 − ιp adjusts to steady state wage growth

π∗eγ . All other households re-optimize their wages. First-order conditions imply

that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt−1

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt − ξt +

1

1− ζwβ
φt

)
, (17)

5We used the following re-parameterization: λf,t = [(1− ζpβ)(1− ζp)λf/(1 + λf )(1 + ιpβ)]λ̃f,t.
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where w̃t is the optimal real wage relative to the real wage for aggregate labor

services, wt, and νl would be the inverse Frisch labor supply elasticity in a model

without wage rigidity (ζw = 0) and differentiated labor. Moreover, ξt denotes the

marginal marginal utility of consumption defined below and φt is a preference shock

that affects the intratemporal substitution between consumption and leisure. The

real wage paid by intermediate goods producers evolves according to

wt = wt−1 − πt − zt + ιwπt−1 +
1− ζw
ζw

w̃t. (18)

Households are able to insure the idiosyncratic wage adjustment shocks with

state contingent claims. As a consequence they all share the same marginal utility

of consumption ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt), (19)

where ct is consumption. In addition to state-contingent claims households accu-

mulate three types of assets: one-period nominal bonds that yield the return Rt,

capital k̄t, and real money balances.6

The first order condition with respect to bond holdings delivers the standard

Euler equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[zt+1]. (20)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)
[
k̄t−1 − zt

]
+ (eγ + δ − 1)it, (21)

where it is investment, δ is the depreciation rate of capital. Investment in our

model is subject to adjustment costs, and S′′ denotes the second derivative of the

investment adjustment cost function at steady state. Optimal investment satisfies

the following first-order condition:

it =
1

1 + β

[
it−1 − zt

]
+

β

1 + β
IEt[it+1 + zt+1] +

1

(1 + β)S′′e2γ
(ξkt − ξt), (22)

6Since preferences for real money balances are assumed to be additively separable and monetary

policy is conducted through a nominal interest rate feedback rule, money is block exogenous and

we will not use the households’ money demand equation in our empirical analysis.
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where ξkt is the value of installed capital and evolves according to:

ξkt −ξt = βe−γ(1−δ)IEt
[
ξkt+1−ξt+1

]
+IEt

[
(1−(1−δ)βe−γ)rkt+1−(Rt−πt+1)

]
. (23)

Capital utilization ut in our model is variable and rkt in the previous equation rep-

resents the rental rate of effective capital kt = ut + k̄t−1. The optimal degree of

utilization is determined by

ut =
rk∗
a′′
rkt . (24)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at

the steady state utilization rate. The aggregate resource constraint is given by:

ŷt = (1 + g∗)

[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt. (25)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-

output ratios, respectively, and g∗/(1 + g∗) corresponds to the government share

of aggregate output. The process gt can be interpreted as exogenous government

spending shock. It is assumed that fiscal policy is passive in the sense that the

government uses lump-sum taxes to satisfy its period budget constraint. Finally,

all stochastic processes described above are assumed to be AR(1) processes with

normally distributed errors.

State-Space Representation of the DSGE Model. We use the method in

Sims (2002) to solve the log-linear approximation of the DSGE model. We collect

all the DSGE model parameters in the vector θ, stack the structural shocks in the

vector εt, and derive a state-space representation for our vector of observables yt,

which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (26)

which summarizes the evolution of the states st, and of the measurement equations:

yt = Z(θ)st +D(θ), (27)

which map the states onto the vector of observables yt, where D(θ) represents the

vector of steady state values for these observables. Specifically, for our standard set
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of macro time series the set of measurement equations is:

Real output growth (%, annualized)

400(lnRGDPt − lnRGDPt−1) = 400(ŷt − ŷt−1 + zt)

Hours (%)

100 lnLt = 100(Lt + lnLadj)

Labor Share (%)

100 lnLSHt = 100(Lt + wt − ŷt + ln lsh∗)

Inflation (%,annualized)

400(lnPt − lnPt−1) = 400(πt + lnπ∗)

Interest Rates (%,annualized)

400 lnRt = 400(Rt + lnR∗),

(28)

where RGDPt, Lt, LSHt, Pt, and Rt represent real per capita GDP, total per capita

hours, the labor share, the price level, and the Federal Funds Rate, respectively. The

quantities lsh∗, π∗, and R∗ are the steady states of the labor share, the inflation

rate, and the nominal interest rate, respectively, and the parameter Ladj captures

the units of measured hours (it can be viewed as a re-parameterization of the steady

state associated with the time-varying preference parameter φt that appears in the

households’ utility function).

Whenever we include observed k-quarter ahead inflation expectations πO,t+kt to

our set of time series, the set of equations (28) is augmented to include:

πO,t+kt = 400(IEdsget [πt+k] + lnπ∗)

= 400(Z(θ)π,.T (θ)kst + lnπ∗),
(29)

where IEdsget [.] are the inflation expectations obtained from the DSGE model. The

second line shows how to compute these expectations using the transition equa-

tion (26), where Z(θ)π,. is the row of Z(θ) corresponding to inflation. In our appli-

cation k = 4.7

7Equations (29) embodies the assumption that observed expectations are rational, which ar-

guably clashes with some of the evidence mentioned in the introduction. See section 5.5 for a

discussion of this issue.



This Version: January 21, 2010, First version: April 2009 13

4 Measurement and Issues with Modeling Inflation Ex-

pectations

Several issues arise in using inflation expectations as observables in the estimation of

DSGE models. First, there are several measures of inflation expectations available,

for different inflation measures, and at different horizons. Our measurement choice of

inflation expectations for the benchmark specification coincides with that of Erceg

and Levin (2003): we use four-quarter ahead expectations for the GDP deflator

obtained from the Survey of Professional Forecasters. We check for the robustness

of the results using different sources of expectations (Blue Chip versus SPF), and

different inflation measures (CPI versus GDP deflator). An alternative source of

inflation expectations is the Michigan Survey of households, which are available at

the one and ten years horizons. However in that Survey households are asked about

inflation in general, as opposed to any specific measure, and that makes it hard to

have a measurement of expectations that is consistent with the chosen measure of

inflation.

In terms of forecast horizons, we choose the longest forecast horizon for which

data are available since the 1980s, namely four quarters, since arguably longer fore-

cast horizons are more informative on agents’ views about the policymakers’ inflation

target. Erceg and Levin (2003) also choose this horizon.8 Measures of inflation ex-

pectations for forecasting horizon longer than 4 quarters ahead are available but

with limitations in terms of sample length and frequency. SPF provides average

CPI inflation forecasts for the following 10 years but the sample starts in 1990Q4.

Bluechip and the Philadelphia Fed’s Livingston survey also provide 10-years CPI

inflation forecast staring 1979Q4 but the forecasts are taken only twice a year. In

one of our specifications we use the SPF 10-years CPI inflation forecast together

with the four-quarter ahead expectations.9

8Shorter horizons forecasts are available but are less informative.
9Concerning the 5-years horizon, Bluechip includes forecasts which are also taken twice a year,

while SPF produces quarterly forecast starting only in 2005Q3. SPF also provides quarterly 5

and 10 years forecast for PCE inflation but those start in 2007Q1. Finally, SPF produces 2 year
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Another serious issue is that forecasters (whether SPF or Blue Chip) have only

the latest vintage of data available, while the econometrician often uses the final

vintage. This is a potentially important issue, especially for revision in the inflation

measure itself, which will heavily condition the forecasts. This is not the only

paper that uses inflation expectations together with revised data for macroeconomic

variables (Canova and Gambetti (2007), Leduc et al. (2007), and CLARK AND

DAVIG, who use structural VARs, are recent examples). Addressing the issue of

data revisions when using observed expectations as observables represents a major

challenge, which we do not undertake in this paper. We do however show the

robustness of the results when we use CPI as a measure of inflation, as opposed to the

more heavily revised GDP deflator. Non-seasonally CPI is never revised. Seasonally

adjusted CPI adjusted has revisions, but these are fairly small compared to those

for the GDP deflator, as shown by Figure 1. Of course, measured expectations are

also function of measures of economic activity. Hence the issue of data revisions is

by no means fully addressed by using CPI inflation.

A third issue is the one of information synchronization. SPF forecasters pro-

vide their forecasts in the middle of the quarter, and hence have partial information

about the state of the economy in the current quarter. We deal with this issue by

checking the robustness of the results to different assumptions regarding the timing

of the agents’ information set. The benchmark results are obtained assuming that

observed expectations are formed using current quarter information (which is also

the assumption used in Canova and Gambetti (2007)). The alternative assumption,

which we call “Lagged Information” specification, is that the forecasters are only

endowed with information up to the previous quarter. Last, forecasts are hetero-

geneous, and our model cannot account for such heterogeneity (sticky information

models can produce heterogeneous expectations, see Mankiw et al. (2003)). This is

a very interesting and important avenue of research, which we do not pursue in this

paper. 10

forecasts for CPI (core and total) and PCE (core and total) inflation but they are available since

2007Q1 (CPI is available since 2005Q3).
10QUOTE recent papers.
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The standard set of macro data used in the estimation includes the following

variables: Output growth (log differences, quarter-to-quarter, in %); hours worked

(log, in %); labor share (log, in %); inflation (annualized, in %, we use either

GDP deflator and CPI, depending on the the corresponding inflation expectation

measure); nominal interest rate (annualized, in %). See Appendix A for details.

In our benchmark specification we use 97 quarters of data spanning the Volcker-

Greenspan period: 1984Q2 to 2008Q2.

5 Comparing Perfect and Imperfect Information Mod-

els of Time-Varying Inflation Target

5.1 Prior Choice and Prior Predictive Checks

Table 1 shows the priors for the parameters of the policy rule (4) and the associated

law of motion for the inflation target π∗t (5), which are the key parameters for the

exercise conducted here. Priors for the responses to inflation (ψ1) and the measure

of economic activity (ψ2) – output growth in the baseline specification – in the policy

rule, persistence (ρr), and steady state inflation target (π∗) are as chosen as follows.

In particular, The prior on π∗ is centered using pre-sample information on inflation,

as in DelNegro and Schorfheide (2008). The prior on ψ1 and ψ2 are centered at

2 and .2 respectively, and imply a fairly strong response to inflation and a much

moderate response to output. Priors on variance of i.i.d. policy shocks σr is centered

at .15. In general the priors on the standard deviations of the shocks are chosen

so that overall variance of endogenous variables is roughly close to that observed

in the pre-sample 1959Q3-1984Q1, informally following the approach in DelNegro

and Schorfheide (2008). Key priors are those on persistence and standard deviation

of the innovation to π∗t process, as they determine, together with the prior on σr,

the agents’ Kalman gain in the Imperfect Information model. We follow Erceg and

Levin (2003) and make the process followed by π∗t very persistent: The prior for ρπ∗

is centered at .95 and the 90% bands range from about .91 to .99.
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In the Benchmark prior the prior on σπ∗ , centered at .05, is independent from

all other parameters, and is fairly loose.11 An alternative prior (“Signal-to-Noise

Ratio Prior”) places a prior directly on the Signal-to-Noise ratio (and hence induces

dependence between σπ∗ and σr) and is centered at the value that delivers a Kalman

gain of approximately .13, the value calibrated by Erceg and Levin (2003).

Priors on nominal rigidities parameters are shown in the top panel of Table 2).

To check robustness to the degree of nominal rigidities in the economy we consider

two priors, as in DelNegro and Schorfheide (2008): “Low Rigidities” (loosely cali-

brated at Bils and Klenow (2004) values of average duration less than 2 quarters),

and “High Rigidities” (duration about 4 quarters).

Priors on remaining parameters are shown in the bottom panel of Table 2). The

priors on “Endogenous Propagation and Steady State” are all chosen as in DelNegro

and Schorfheide (2008). Specifically, the prior for the habit persistence parameter

h is centered at 0.7, which is the value used by Boldrin et al. (2001). The prior

for a′ implies that in response to a 1% increase in the return to capital, utilization

rates rise by 0.1 to 0.3%. These numbers are considerably smaller than the one used

by Christiano et al. (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-

level estimates at the lower end, and the estimates of Kimball and Shapiro (2003)

and Chang and Kim (2006) at the upper end. We use a pre-sample of observations

from 1959Q3-1984Q1 to choose the prior means for the parameters that determine

steady states.

The priors on standard deviations and autocorrelations are chosen so that over-

all variance and autocorrelations of endogenous variables is roughly close to that

observed in the pre-sample 1959Q3-1984Q1 (see Table 3). Table 3 also shows that

although we use the same prior for both the models under consideration – the Im-

perfect and Perfect Information models – the prior predictive statistics are fairly

similar across models.

11In this and all other tables the standard deviations σπ∗ and σr are not annualized.
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5.2 Model Comparison Results

Table 4 shows the log marginal likelihood for three models: Imperfect Information,

Perfect Information, and the model with constant inflation target (Fixed-π∗). For

all models we use the Benchmark prior. The Dataset with Expectations uses the

SPF 4-quarters ahead median forecast for the GDP deflator. For these results we

assume that the expectations are generated using current quarter information. In

the remainder of the paper we condition on two lags of the variables included in

Y 0 when computing both marginal likelihoods and posteriors unless we indicate

otherwise.

Table 4 shows that for the dataset without expectations (column (1)) all three

models perform about the same, with the Fixed-π∗ model performing slightly worse.

The difference in lnp(Y 0
1,T |Mi) for the Imperfect and Perfect Information models

is .69, which implies a posterior odd of roughly 2 in favor of the Imperfect Infor-

mation model. The difference in ln p(Y 0
1,T |Mi) for the Fixed-π∗ is larger, about

5. Although this difference implies that the posterior odds are heavily against the

Fixed-π∗ model, DelNegro and Schorfheide (2008) show that for marginal likelihoods

for DSGE models are quite sensitive to the choice of priors, so that a difference of

5 can in principle be overturned by choosing a slightly different prior.

When SPF inflation expectations are included among the observables, the Per-

fect Information model with time-varying π∗ performs significantly better than both

the Fixed-π∗ and, most importantly, the Imperfect Information model. The differ-

ence in the log marginal likelihoods ln p(Y 0
1,T , Y

1
1,T |Mi) between the Perfect and Im-

perfect Information models is about 25 in favor of the latter. The data disfavors the

Fixed-π∗ even more strongly. Since the marginal likelihoods ln p(Y 0
1,T |Mi) are sim-

ilar across models, these differences translate into differences in ln p(Y 1
1,T |Y 0

1,T ,Mi).

They imply that the Perfect Information model fits observed inflation expectations

much better than either the Imperfect Information or the Fixed-π∗ model. The

fact that the differences are large indicates that the extra observable included in

Y 1
1,T contains quite a lot of information as to which model describes it best. In

the remainder of the section we will provide additional evidence that the Imperfect
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Information model has a much harder time at explaining observed inflation expec-

tations than the Perfect Information one. Next, we will provide the intuition as to

why this is the case.

Table 5 shows the median in-sample forecast errors for the Imperfect and Per-

fect Information models computed using the Kalman filter. In the top panel we

compute the RMSEs using for each model the respective parameter values that

maximize the posterior for the dataset without expectations (that is, the value of

θ that maximizes p(θ|Y 0
1,T ,Mi)). Columns (1) and (2) show the errors for the two

models computed without providing the econometrician with the information about

observed inflation expectations. Specifically, for each variable xt we show the av-

erage value of (xt − IE[xt|Y 0,t−1,Mi])
2. The next column shows the ratio of the

RMSEs for the two models. These figures are all in the neighborhood of one, indi-

cating that the forecasting performance of the models is roughly equal. In fact, the

log likelihood ln p(Y 0
1,T |Mi, θ) is quite similar for the two models. Interestingly, the

ratio of RMSEs is about one also for observed inflation expectations, which are not

part of the econometrician’s information set (the numbers for inflation expectations

are in parenthesis to emphasize that the corresponding forecast errors are computed

without including this variable in the information set).

For the same set of parameters the forecast performance of the two models for

the variables in Y 0
1,T worsens considerably when inflation expectations are included

into the econometrician’s information set, and this is particularly the case for the

Imperfect Information model. This is apparent from columns (3) and (4), which

show (xt − IE[xt|Y 0,t−1, Y 1,t−1,Mi])
2 for the two models. The last two columns of

Table 5 show the ratio of the RMSEs with and without including inflation expec-

tations among the observables for the Imperfect and Perfect Information models,

respectively. All these figures are larger than one for both models for all the vari-

ables included in Y 0
1,T (of course, for inflation expectations the RMSEs decrease).

The worsening of in-sample forecasting performance is particularly large for the Im-

perfect Information model, where the increase in RMSEs range from 7% to 46%.

As a consequence, when inflation expectations are included in the set of observables
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the Perfect Information model performs better than the Imperfect Information one:

The ratios between the figures in column (3) and (4) are all larger than one (and

the log likelihood ln p(Y 0
1,T , Y

1
1,T |Mi, θ) is much larger for the Perfect Information

model).

The values of θ that maximizes p(θ|Y 0
1,T ,Mi) for the two models are of partic-

ular interest because it is the mode of the prior in formula (2). Nonetheless, such

value may overemphasize the effect of including inflation expectations among the

observables, since it maximizes the model’s fit (adjusting for the prior) when this

variable is excluded. Therefore the bottom panel of Table 5 repeats the exercise

using the value of θ that maximizes p(θ|Y 0
1,T , Y

1
1,T ,Mi)) for each of the two models,

respectively. For these parameters it is still the case that the ratios of the RMSEs

in column (3) and (4) are all larger than one, except for inflation expectations were

the in-sample forecasting performance is the same. Moreover, for the Imperfect In-

formation model it is also still the case that forecasting performance worsens for all

variables when inflation expectations are included into the econometrician’s infor-

mation set. For the Perfect Information model this is the case only for some of the

variables, notably for inflation.

Including inflation expectations among the observables worsens the fit of Im-

perfect Information model relative to that of the Perfect Information, consistently

with the marginal likelihood results in Table 4. In order to understand this result

we ask what kind of inflation expectations the two models generate whenever actual

inflation expectations are not among the observables. Figure 3 plots the projections

for the 4-quarter ahead inflation forecasts generated by the Imperfect (black solid)

and Perfect (gray solid) Information models. This exercise is performed using the

value of θ that maximizes p(θ|Y 0
1,T ,Mi) for the two models – the mode of the prior

in formula (2).

To the extent that the inflation expectations generated by the model are roughly

in line with the observed data, including measured expectations among the observ-

ables is unlikely to change the estimates of the states, and hence the forecasts of the

other variables. However, if there is a large discrepancy between a model’s forecasts
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of inflation expectations and what we observe in the data, we expect both the esti-

mates of the states and the forecasts of the other variables to change substantially

following the addition of measured expectations to econometrician’s information set.

Figure 3 also plots the actual inflation expectation data – namely, the SPF 4-quarters

ahead median forecast for the GDP deflator (red dashed-and-dotted) – along with

the projections. It is clear that the inflation forecasts generated by the both models

are at odds with the data. They are too low in the early part of the sample, and

too high in the later part. Interestingly, the inflation expectations generated by the

two models are very similar.

The top panel of Figure 4 plots the mean estimate of the latent variable π∗t|t for

the Imperfect Information model for the dataset without (black line) and with (gray

line) inflation expectations. Similarly, the middle panel shows the mean estimate

of the latent variable π∗t for the Perfect Information model for the dataset without

(black line) and with (gray line) inflation expectations. Since in the Imperfect

Information model agents do not observe the actual π∗t , these two latent variables

are conceptually equivalent in that in each model they drive the agents’ beliefs

about the inflation target.12 In both panels these figures are computed using the

value of θ that maximizes p(θ|Y 0
1,T ,Mi). Both panels also show observed inflation

expectations (dashed-and-dotted line).

The time series for π∗t|t and π∗t look very similar across the two models when

the econometrician does not have information about inflation expectations (black

lines in top and middle panels). Not surprisingly, for both models the movement

in these time series mirrors that of the model-generated inflation expectations in

Figure 3. When inflation expectations are included among the observables, the path

for π∗t in the Perfect Information model moves closer to that of observed inflation

expectations. Very loosely speaking, the filtering procedure realizes that the model

is failing to match the new observable, and adjusts the latent state π∗t accordingly.

For the Imperfect Information model the path for π∗t|t barely move, and only at the

12In the Imperfect Information model all the econometrician can infer from the data is the agents’

belief about π∗t .



This Version: January 21, 2010, First version: April 2009 21

very beginning. The law of motion of the agents’ perception of the inflation target

π∗t|t is given by:

π∗t|t = (1−K)ρπ∗π
∗
t−1|t−1 +Kπ̃t, (30)

which obtains rearranging equation (10). As we iterate this law of motion forward

starting from the initial condition π∗0|0, we realize that the econometricians only

degree of freedom lies in the choice of this initial condition. After that, the path

for π∗t|t is pinned down by that of the interest feedback rule residual π̃t, defined in

equation (6). In the baseline model where the interest rate responds to inflation

and output growth this residual is pinned down by the data, for given parameters

(the bottom panel of Figure 4 plots π̃t, and shows that its fluctuations are consistent

with the evolution of π∗t|t). Hence the filtering procedure cannot adjust π∗t|t to match

inflation expectations, and needs to rely on large, and likely persistent, shocks to fill

the gap between π∗t|t and observed expectations. These large shocks negatively affect

the fit for the other observables. In conclusion, the Imperfect Information model

imposes tighter cross-equation restrictions than the Perfect Information model, in

the sense that it cannot rely on adjusting the latent variable π∗t to fit the data.

5.3 Robustness to the Choice of Priors, Datasets, Timing Conven-

tions, Initial Conditions, Policy Rules, and Choice of Shocks

This section investigates the robustness of the model comparison results to the

choice of priors, datasets, timing conventions, and policy rules. Robustness to

Priors: Lines (1) and (2) of Table 6 report the model comparison results under

the “‘High Nominal Rigidities” prior and “Signal-to-Noise Ratio” prior described in

section 5.1, respectively. We find that the “High Nominal Rigidities” prior favors

the Perfect Information relative to the Imperfect Information model, in that the

difference in ln p(Y 1
1,T |Y 0

1,T |Mi) is larger in favor of the Perfect Information model

(we use the “Low Nominal Rigidities” prior precisely because it gives the Imperfect

Information model the best shot). Using the “Signal-to-Noise Ratio” prior makes

little difference.



This Version: January 21, 2010, First version: April 2009 22

Robustness to Data Sets and Timing Assumptions: Lines (3) through (6)

show the log marginal likelihoods for the two models under different timing as-

sumptions (“Lagged Information” specification), source for inflation expectations

(“Blue Chip” versus SPF), and inflation measure (CPI versus GDP deflator). Un-

der the “Lagged Information” specification the forecasters in the SPF Survey are

only endowed with information up to the previous quarter. Results are robust to

both timing assumptions and measurement choices. The gap in ln p(Y 1
1,T |Y 0

1,T |Mi)

between the Perfect and Imperfect Information models varies among the different

specifications, but is always larger than 20. The gap widens substantially whenever

we use CPI (which is less subject to revisions) as opposed to the GDP Deflator.

Robustness to Conditioning Assumptions: As mentioned above, in our bench-

mark specification we condition on two lags of the variables included in Y 0 when

computing marginal likelihoods, so that effectively we compute ln p(Y 0
1,T |Mi, Y

0
−1,0)

and ln p(Y 0
1,T , Y

1
1,T |Mi, Y

0
−1,0) (for simplicity of notation we mostly omit the con-

ditioning on Y 0
−1,0). Given that during the first part of our sample both inflation

and inflation expectations are trending down, conditioning may play a non trivial

role (see Sims ...). For this reason, line (7) reports the marginal likelihoods without

conditioning on any variables, while line (8) reports the results when conditioning

also on the first two lags of inflation expectations. While initial conditions mat-

ter in terms of marginal likelihood computations, from the perspective of model

comparison the results do not change.

Robustness to Policy Rule Specification: Lines (9) through (11) report the

model comparison results under different specifications of the policy rule, where

the policy makers target output growth as opposed to the output gap (“Output

Growth”), a four-quarter moving average of inflation as opposed to current inflation

(“4Q Inflation”), or where the the law of motion for the inflation target follows the

rule suggested by Gurkaynak et al. (2005) (“GSS”). Under this rule the marginal

likelihood gap between the Imperfect and Perfect Information models stays roughly

constant or increases. Under the rule proposed by Gurkaynak et al. (2005) the
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gap narrows, but it is still larger than 17.13 The last two rows of Table 6 show

the marginal likelihoods for the models where we allow for measurement error in

expectations. We discuss this case in detail in section 5.5.

Robustness to Choice of Shocks (Discount Rate): The Imperfect Information

models in principle has seven shocks, as discussed in section 3. Due to the fact that

two of the shocks (the i.i.d. policy shock and the shocks to the target π∗t ) are

not separately observed by either the agents in the model or the econometrician,

but commingle into the policy rule innovation π̃t, effectively this model has six

independent disturbances. Whenever observed inflation expectations are added to

the data set, this model has therefore as many shocks as observables. DelNegro and

Schorfheide (forthcoming) show that introducing additional shocks into a model is

tantamount to relaxing the cross-equation restrictions: the additional shocks can

improve the model’s fit by capturing dynamics that the existing set of shocks was

not able to capture. One may wonder to what extent the worse fit for the imperfect

information model relative to the perfect information is partly due to the set of

shocks originally chosen. If so, introducing another shock may improve the imperfect

information’s model ability to explain inflation expectations. We therefore introduce

a shock that is commonly used in DSGE models, namely a shock to the rate at which

the representative agent discounts the future, which we refer to as bt. Like most

other shocks, bt is also assumed to follow an AR(1) process. In terms of the log-

linearized conditions this shock enters equation (19), which becomes:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)(ct − bt)

+ βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt)− βhe−γ(e2γ + βh2)IEt[bt+1],
(31)

and equation (17), which becomes:

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt−1

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt +

eγ(eγ − h)

(e2γ + βh2)
bt − ξt +

1

1− ζwβ
φt

)
. (32)

13In the estimation of the GSS model we used the value of χ = .02 in expression (9), which is

the value used by Gurkaynak et al. (2005).
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Line (12) of Table 6 reports the marginal likelihoods under these different model

specification. For the standard set of macro variables the addition of discount rate

shocks barely improves the marginal likelihood, especially for the Imperfect Informa-

tion model. For the data set with observed inflation expectations the improvement

over the benchmark specification is substantial. This is the case for both models,

however, so the relative ranking is unaffected.

5.4 Posterior Estimates and Variance Decomposition

Table 7 shows the posterior mean and standard deviation (in parenthesis) of the

parameters. The differences in parameter estimates between the posterior without

(p(θ|Y 0
1,T ,Mi)) and with inflation expectations (p(θ|Y 0

1,T , Y
1

1,T ,Mi)) are not particu-

larly noticeable for the Imperfect Information model. The ratio of σπ∗ to σr decreases

from .13 to .11 between columns 1 (p(θ|Y 0
1,T ,Mi)) and 2 (p(θ|Y 0

1,T , Y
1

1,T ,Mi)) , and

the estimates of ρπ∗ and ρrdecrease as well. The importance of nominal rigidities

decreases, consistently with the results in line (1) of Table 6. The importance of

investment adjustment increases by about 60%, which implies that investment spe-

cific shocks become much more powerful when inflation expectations are used in the

estimation. The persistence of shocks all increase, except for productivity shocks,

and the increase is particularly noticeable for preference shocks to leisure φt (re-

call that hours is the variable for which the RMSE in Table 5 worsens the most

when inflation expectations become part of the econometrician’s information set).

The shocks standard deviations generally rise, and particularly that of government

spending shocks gt.

Changes in parameters for the Perfect Information model are even less dramatic.

The curvature of the dis-utility from working nul decreases between columns 1

(p(θ|Y 0
1,T ,Mi)) and 2 (p(θ|Y 0

1,T , Y
1

1,T ,Mi)), thereby making hours more elastic, and

the persistence of φt shock decreases (with a more elastic labor supply the reliance

on φt shocks to explain movements in hours decreases). Movements in the inflation

target become larger and more persistent (both σπ∗ and ρπ∗ increase).
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Table 8 shows the (unconditional) variance decomposition computed using the

posterior distribution for the Imperfect and Perfect Information models obtained

using the dataset that includes observed inflation expectations. The time -varying

inflation target π∗t is the main driver of inflation expectations in the Perfect Infor-

mation model, while it explains very little under Imperfect Information, consistently

with the intuition discussed in section 5.2.

5.5 Allowing for Measurement Error/Irrationality in Observed In-

flation Expectations

Taken at face value, the measurement equation (29):

πO,t+kt = 400(IEdsget [πt+k] + lnπ∗)

may seem to be at odds with part of the body of literature that studies the “ra-

tionality” of observed inflation expectations, and which we briefly discussed in the

introduction. Don’t we know that observed inflation expectations are “irrational”?

If we accept this preposition, how can we assume that they are generated by a ra-

tional expectation model, as implied by expression (29)? First, the irrationality of

observed expectations is not an accepted fact in this literature. For instance, An-

dolfatto et al. (2008) show that in small samples a rational expectation model with

imperfect information can often generate rejections of the null hypothesis. But even

if we accept that from a statistical perspective rationality of observed expectations

is often rejected, it is not clear from the existing literature that deviations from

rationality are large enough from an economic standpoint that equation (29) is not

a reasonable first pass assumption. Recall that the issue studied in this paper –

explaining the joint dynamics of observed inflation expectations – is different from

that addressed by that literature – whether one can reject the rationality of expec-

tations. At the same time it is legitimate to ask whether our results are robust to

violations (29), whether these are due to “irrationality” of private forecasters or to

issues of data revisions and data synchronization. This is the question addressed in

this section.



This Version: January 21, 2010, First version: April 2009 26

First, we allow for measurement error in equation (29):

πO,t+kt = 400(IEdsget [πt+k] + lnπ∗) + χt, (33)

where the error χt is assumed to be either i.i.d. (“i.i.d. Meas. Error” case) or to

follow and AR(1) process (“AR(1) Meas. Error” case). In both cases χt evolves

independently from all other shocks in the model. Rows (1) and (2) of Table 9 show

the marginal likelihoods for the models where we allow for measurement error in

expectations.14 The Perfect Information model is still superior to the specification

with Imperfect Information when the measurement error is i.i.d.. The difference in

ln p(Y 1
1,T |Y 0

1,T |Mi) is about 16, which is smaller than in Table 4 but still substantial.

The fit of the two models are essentially the same under AR(1) measurement error.

We conjecture that the autoregressive measurement error largely “takes care”

of the misspecification in the Imperfect (and to some extent also in the Perfect)

Information model, so we revert to the original result that when the dataset does

not include inflation expectations the fit of the two models is about the same. We

substantiate this conjecture using the variance decomposition for observed inflation

expectations – both unconditional and 10-quarters ahead – shown in Table 10. We

find that i.i.d. measurement error is not all that important for both the Imper-

fect and Perfect Information models. Its contribution is small for the unconditional

variance, and between 30 and 45% at the 10-quarters ahead horizon. The AR(1)

measurement error is the most important source of variation for observed expec-

tations in both models, however. Measurement error explains about 60 and 40-45

percent of the variance for the Imperfect and Perfect Information models, respec-

tively. These results may be easily explained just by appealing to irrationality of

forecasters, or to data revisions. While issues of data revisions and data synchro-

nization are likely to introduce a mismatch between measured and model-generated

inflation expectations, our prior would be that this mismatch is relatively short-

14Note that the marginal likelihood for the data set without expectations ln p(Y 0
1,T |Mi) is the

same as in the benchmark case: Whenever observed expectations are not part of the observables,

the measurement error parameters do not enter the likelihood. Since the priors on these parameters

are proper (they integrate to one), the marginal likelihood is the same.
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lived. The results for the AR(1) measurement error show otherwise: For both the

Perfect and Imperfect Information model the mean estimate of the AR(1) coefficient

for measurement error is about .87.

We conclude that introducing classical measurement error, especially if AR(1),

tends to mask the difference among models as it largely takes care of model misspec-

ification by explaining a large fractions of fluctuations in the variable of interest.

For this reason, we choose to put more structure on the discrepancy between model

implied and observed expectations. First, even under specification (33) the measure-

ment error is assumed to have mean zero: forecasts are unbiased. Some literature

(QUOTE) argues to the contrary that a bias exist. Row (3) of Table 9 investigates

this hypothesis by introducing a constant in (29) (the prior for the constant has

mean zero and standard deviation .75%). The marginal likelihood results indicate

that the evidence in favor of a bias is very weak. The marginal likelihood is actually

worse for the imperfect information model, and only slightly better for the perfect

information one. The 90% posterior bands for the bias parameter are on both sides

of zero.

Next, we assume that the discrepancy between model implied and observed

expectations depends on observables. This is a natural assumption for two reasons.

First, the “irrationality” of observed expectations literature shows that inflation

forecast errors depend on current information. Second, there is evidence that data

revisions are dependent from the state of the economy (ARUOBA?). We therefore

use the alternative measurement equation:

πO,t+kt = 400(IEdsget [πt+k] + lnπ∗) + γ′xt, (34)

where γ is a κ × 1 parameter vector, and xt consists of a κ × 1 vector of time t

observables. We always allow for the possibility of a bias in this exercises, so the

first element of xt is 1. Note that to the extent that there is a mapping between xt

and the model’s states st – or even more simply, if the elements of xt are already

part of the measurement equation, as is the case here – equation can be recast in
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terms of the canonical form

yt = Z(θ)st +D(θ),

so the likelihood can be computed via usual methods. Row (4) of Table 9 investi-

gates whether the discrepancy depends on current inflation, and row (5) in addition

allows for dependence on current output and labor share (the prior for the constant

has mean zero and standard deviation .5%). None of these models significantly

improves over the benchmark specification. The only parameters for which 90%

posterior bands are not on both sides of zero is the response to output growth,

but economically this coefficient is small. In summary, we find that the Imper-

fect Information model fits observed inflation expectations worse than the Perfect

Information one regardless of whether we allow for a discrepancy between model

implied and observed expectations. The only exception is the AR(1) measurement

error. In this case the two model have roughly the same fit, but that is because

the measurement error explains about half of the fluctuations in observed inflation

expectations.

5.6 Using Data from the Great Disinflation

According to Erceg and Levin (2003) the Great Disinflation of the early eighties is

the poster child for the Imperfect Information model: The Central Bank raised rates

in order to bring down inflation, but agents initially have trouble telling whether

it represented a shift in π∗t or a temporary interest rate shock. As a consequence,

inflation expectations decline very gradually. One would therefore think that our

conclusions about the ability of the Imperfect and Perfect Information model could

be reversed using data from that period.

The trouble with the Great Disinflation period, and particularly with its early

phase, is that the rule adopted by the monetary authorities may have been different

from that employed since the mid-eighties. At the same time, estimating the models

over the 1980-1984 period only would imply using a very short time series. For the

sake of notation, call T0, T1, and T2 the quarters corresponding to 1980Q1 (beginning
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of time series considered in Erceg and Levin), 1984Q2 (beginning of our benchmark

estimation period) to 2008Q2 (end of our sample). The first row of Table 11 performs

the standard model comparison exercise over the benchmark estimation period T1

to T2, computing the usual quantities ln p(Y 0
T1,T2
|Mi) and ln p(Y 0

T1,T2
, Y 1

T1,T2
|Mi).

The only difference between these numbers and those in Table 4 is that we do

not condition on any pre-sample observations for reasons that will soon become

apparent (these numbers correspond to those in row (7) of Table 6). The second

row of Table 11 performs the model comparison exercise over the period T0 to T2,

and computes the quantities ln p(Y 0
T0,T2
|Mi) and ln p(Y 0

T0,T2
, Y 1

T0,T2
|Mi). We find

that our findings are once again fairly robust: For the standard set of observables

Y 0
T0,T2

the two models perform very similarly, but once observed expectations are

added to the set of observables the Perfect Information model fares better.

We now ask a slightly different question. Suppose we have estimated the model

over the post-84 period and made an assessment about the relative fit of the two

models, how does the additional information from the Great Disinflation period

update our view of the two models? The objects of interest are now

ln p(Y 0
T0,T1 , Y

1
T0,T1 |Y

0
T1,T2 , Y

1
T1,T2 ,Mi) = ln p(Y 0

T0,T2 , Y
1
T0,T2 |Mi)−ln p(Y 0

T1,T2 , Y
1
T1,T2 |Mi),

where the equality shows that these objects can computed as the difference between

quantities we already have computed (not conditioning on any pre-sample obser-

vations makes this convenient). Note that this exercise can be seen as a training

sample in reverse. Usually in training sample exercises we move forward: We form

a prior over the T0 to T1 sample and then estimate the model using data between

T1 and T2. Here we go backward: We form a prior over the post-84 period and then

compare the models over the Great Disinflation. The result is that during the Great

Disinflation period the Imperfect Information model fares better, consistently with

Erceg and Levin (2003). The third row of Table 11 shows that the differences in log

marginal likelihoods is about 10 in favor of the Imperfect Information model.
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6 Conclusions

The paper shows that data on inflation expectations are quite informative as to

which model – Perfect and Imperfect Information – fits the data best, unlike stan-

dard macro time series. The paper finds that the model comparison exercise always

favors what we would consider to be the most “implausible” of the two models,

namely Perfect Information. The paper documents that this conclusion is robust

to a number of auxiliary assumptions, and provides a fairly straightforward intu-

ition behind this result: The Imperfect Information poses tighter restrictions on the

econometrician than the Perfect Information model. Under Perfect Information the

econometrician can use the latent variable π∗t to fit the data. Under Imperfect In-

formation the path of (the agents’ perception of) π∗t is tied down by the realizations

of the residual in the policy rule. Under this latter model the econometrician has, in

a sense, less free parameters. Of course, having less free parameters is not an issue

to the extent that the restrictions agree with the data. In the present situation it

appears that they do not, however.

These results are informative, in that arguably they help updating economists’

views on the Imperfect Information model’s ability to describe the data, At the same

time these findings leave the researcher with two bad options: a “plausible” model

that does not fit the data versus an “implausible” one that fits better.15 A natural

solution is to improve the “plausible” model. We leave this task for future research.

15The extent to which the Perfect Information model can be considered implausible is of course

open to debate.
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A Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We

compile observations for the variables that appear in the measurement equation (28).

Real output is obtained by dividing the nominal series (GDP) by population 16 years

and older (LN16N), and deflating using the chained-price GDP deflator (JGDP).

We compute quarter-to-quarter output growth as log difference of real GDP per

capita and multiply the growth rates by 100 to convert them into percentages. Our

measure of hours worked is computed by taking total hours worked reported in the

National Income and Product Accounts (NIPA), which is at annual frequency, and

interpolating it using growth rates computed from hours of all persons in the non-

farm business sector (LXNFH). We divide hours worked by LN16N to convert them

into per capita terms. We then take the log of the series multiplied by 100 so that all

figures can be interpreted as percentage changes in hours worked. The labor share

is computed by dividing total compensation of employees (YCOMP) obtained from

the NIPA by nominal GDP. We then take the log of the labor share multiplied by

100. Inflation rates are defined as log differences of the GDP deflator and converted

into annualized percentages. The nominal rate corresponds to the effective Federal

Funds Rate (FFED), also in percent. As an alternative measure of the nominal rate

we use the three months Tbill (FTBS3),

We use Survey of Professional Forecasters (SPF) quarterly measures of expected

inflation. We consider both expectations for GDP deflator16 and for CPI inflation.

In particular, we use the median four -quarters-ahead forecast of inflation in annu-

alized terms. Concerning the information available to the forecasters, the survey

is sent out at the end of the first month of each quarter and responses deadlines

occur in the middle month of each quarter. Therefore, respondents have knowl-

edge about the BEA advance report of the National Income and Product Accounts.

We also compute the revisions in GDP deflator and CPI occurred since 1982 us-

ing the real time dataset available from the Federal Reserve Bank of Philadelphia.

16In more detail, the forecast are for the GDP price index, seasonally adjusted (base year varies).

Prior to 1996, the forecast variable was the GDP implicit deflator. Prior to 1992, the GNP deflator.
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(http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/)

As an alternative measure of inflation expectations, we use Bluechip monthly

forecasts of CPI inflation. We choose forecast horizons of 3 and 4 quarters ahead.

In order to compare Bluechip and SPF quarterly forecast of CPI inflation, we use

the Bluechip forecasts available in the middle month of each quarter. This roughly

corresponds to the time period when SPF participants provide their forecasts.
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Table 1: Priors on Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

ψ1 R+ Gamma 2.00 0.25 1.592 2.408

ψ2 R+ Gamma 0.20 0.10 0.049 0.349

ρr [0,1) Beta 0.50 0.200 0.170 0.827

π∗ R Normal 4.3 2.5 0.520 8.17

σr R+ InvGamma 0.150 4.00 0.080 0.298

ρπ∗ [0,1) Beta 0.950 0.025 0.913 0.989

Benchmark Prior

σπ∗ R+ InvGamma 0.050 8.000 0.032 0.078

Signal-to-Noise Ratio Prior

σNR = σP
σT

R+ Gamma 0.180 0.150 0.001 0.380

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 2: Priors on Non-Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

Priors on Nominal Rigidities Parameters

Low Rigidities (Benchmark)

ζp [0,1) Beta 0.450 0.100 0.285 0.614

ζw [0,1) Beta 0.450 0.100 0.285 0.614

High Rigidities

ζp [0,1) Beta 0.750 0.100 0.590 0.913

ζw [0,1) Beta 0.750 0.100 0.590 0.913

Priors on “Endogenous Propagation and Steady State” Parameters

α [0,1) Beta 0.330 0.020 0.297 0.362

s′ ′ R+ Gamma 4 1.500 1.614 6.303

h [0,1) Beta 0.700 0.050 0.619 0.782

a′ R+ Gamma 0.200 0.100 0.049 0.349

νl R+ Gamma 2 0.75 0.787 3.137

r∗ R+ Gamma 1.5 1 0.106 2.883

γ R+ Gamma 1.650 1 0.204 3.073

g∗ R+ Gamma 0.300 0.100 0.143 0.459

ιp [0,1) Beta 0.5 0.280 0.043 0.922

ιw [0,1) Beta 0.5 0.280 0.049 0.932

Priors on ρs and σs

ρz [0,1) Beta 0.400 0.250 0.000 0.764

ρφ [0,1) Beta 0.750 0.150 0.530 0.982

ρλf [0,1) Beta 0.750 0.150 0.530 0.982

ρµ [0,1) Beta 0.750 0.150 0.530 0.982

ρg [0,1) Beta 0.750 0.150 0.530 0.982

σz R+ InvGamma 0.200 4.000 0.107 0.395

σφ R+ InvGamma 2.500 4.000 1.326 4.930

σλf R+ InvGamma 0.300 4.000 0.161 0.596

σµ R+ InvGamma 0.500 4.000 0.264 0.99

σg R+ InvGamma 0.300 4.000 0.159 0.594

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 3: Prior Implications for Moments of the Endogenous Variables

Variables St. Dev. Autocorr.

Imperfect

Information

Perfect

Information
Data

Imperfect

Information

Perfect

Information
Data

OutputGrowth 3.48 3.47 4.33 0.39 0.39 0.28

LaborSupply 2.98 2.98 3.20 0.93 0.93 0.96

LaborShare 1.39 1.39 2.24 0.86 0.86 0.95

Inflation 3.13 3.15 2.77 0.71 0.72 0.88

InterestRate 4.34 4.38 4.30 0.85 0.85 0.87

Exp. Inflation 1.37 1.40 0.86 0.85

Notes: II: imperfect information; PI: perfect information. The pre-sample statistics (column Data) are

in italics. These statistics are computed over the sample 1959Q3-1984Q1. Inflation expectations are not

available during most of the pre-sample. The in-sample standard deviation and first-order autocorrelation

of inflation expectations are 1.21, and 0.86, respectively.
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Table 4: Model Comparison

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1

1,T ) ln p(Y 1
1,T |Y 0

1,T )

Dataset Dataset

without with

Expectations Expectations

(1) (2) (2) - (1)

Imperfect Information -703.62 -811.04 -107.42

Perfect Information -704.31 -786.35 -82.04

Fixed π∗ -709.29 -821.84 -112.55

Notes: The Table shows the log marginal likelihood for three models: Imperfect Information, Perfect

Information, and the model with constant inflation target (Fixed-π∗). For all models we use the Benchmark

prior. The Dataset with Expectations uses the SPF 4-quarters ahead median forecast for the GDP deflator.

We assume that the expectations are generated using current quarter information.
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Table 5: In-sample RMSEs

Dataset without

Expectations

Dataset with

Expectations

Increase/Decrease

in RMSE

Imperfect

Info.

Perfect

Info.

Imperfect

Info.

Perfect

Info.

(1) (2) (1)/(2) (3) (4) (3)/(4) (1)/(3) (2)/(4)

Posterior mode estimates for the dataset without expectations

Output Growth 2.221 2.258 0.984 3.056 2.374 1.287 1.376 1.052

Labor Supply 0.573 0.563 1.017 0.838 0.660 1.271 1.463 1.171

Labor Share 0.537 0.540 0.994 0.575 0.559 1.029 1.071 1.036

Inflation 0.869 0.895 0.971 1.014 0.996 1.018 1.167 1.114

Interest Rate 1.526 1.543 0.989 1.758 1.673 1.051 1.152 1.084

Exp. Inflation (0.987) (.959) (1.029) 0.512 0.487 1.051 0.518 0.507

Likelihood -656.7 -660.3 -1088.4 -791.7

Posterior mode estimates for the dataset with expectations

Output Growth 2.271 2.166 1.048 2.370 2.119 1.119 1.044 0.978

Labor Supply 0.580 0.556 1.043 0.654 0.554 1.182 1.129 0.996

Labor Share 0.544 0.530 1.025 0.563 0.539 1.044 1.035 1.016

Inflation 1.010 0.922 1.096 1.030 0.977 1.054 1.020 1.060

Interest Rate 1.583 1.487 1.064 1.635 1.499 1.090 1.033 1.008

Exp. Inflation (0.774) (0.703) (1.101) 0.477 0.479 0.996 0.616 0.682

Likelihood -685.2 -668.7 -760.9 -732.4

Notes: The table shows the in-sample Root Mean Square Errors (RMSEs) for the Imperfect and Perfect

Information models computed using the Kalman filter. The top panel shows the RMSEs using for each

model the respective posterior mode for the dataset without expectations. The bottom panel shows the

RMSEs using for each model the respective posterior mode for the dataset with expectations.
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Table 6: Robustness of Model Comparison Results

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness to Priors

(1) High Nominal Rigidities Prior

-701.65 -820.84 -119.19 -705.39 -789.26 -83.87

(2) Signal-to-Noise Ratio Prior

-703.86 -811.97 -108.11 -709.66 -786.59 -76.93

Robustness to Data Sets and Timing Assumptions

(3) Lagged Information

-703.62 -800.74 -97.12 -704.31 -780.53 -76.22

(4) Blue Chip Expectations

-703.62 -761.68 -58.06 -704.31 -742.11 -37.80

(5) CPI and SPF Expectations

-761.28 -844.98 -83.70 -763.72 -771.38 -7.66

(6) CPI and Blue Chip Expectations

-761.28 -865.04 -103.76 -763.72 -779.31 -15.59

Robustness to Conditioning Assumptions

(7) No Conditioning

-711.641 -816.67 -105.03 -711.67 -789.84 -78.17

(8) Conditioning on Initial Level of Inflation Expectations

-810.49 -784.83

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models under different choices of priors, datasets, timing conventions, policy rules, and set of shocks. Lines

(1) and (2) report the results under the “High Nominal Rigidities” prior and “Signal-to-Noise Ratio” prior,

respectively. Lines (3) to (6) show the log marginal likelihood for the two models under different timing

assumptions (“Lagged Information” specification), measures of inflation and measures of inflation expecta-

tions (“Blue Chip Expectations”, “CPI and SPF Expectations”, “CPI and Blue Chip Expectations”). Lines

(7) and (8) report the results under different conditioning assumptions. Lines (9)-(11) report the results

under different specifications of the policy rule, where the policy makers target output growth as opposed

to the output gap (“Output Growth”), a four-quarter moving average of inflation as opposed to current

inflation (“4Q Inflation”), or where the the law of motion for the inflation target follows the rule suggested

by Gurkaynak et al. (2005) (“GSS”). Line (12) reports the results after augmenting the model with an

additional shock (discount rate shock).
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Table 6: Robustness of Model Comparison Results – Continued

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness to Policy Rule Specification

(9) Output Level

-715.46 -816.23 -100.77 -709.17 -791.74 -82.57

(10) 4Q Inflation

-703.74 -820.96 -117.22 -698.88 -790.42 -91.5

(11) GSS

-707.79 -805.64 -97.85 -709.45 -789.99 -80.54

Other Robustness Checks

(12) Additional Shocks (Discount Rate)

-701.09 -792.10 -90.01 -703.58 -773.04 -69.46
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Table 7: Posterior Estimates for Selected Parameters

Parameters

Imperfect
Information

Dataset without
Expectations

(1)

Imperfect
Information

Dataset with
Expectations

(2)

Perfect
Information

Dataset without
Expectations

(3)

Perfect
Information

Dataset with
Expectations

(4)

Policy Parameters

ψ1 2.442 ( 0.225) 1.915 ( 0.123) 2.497 ( 0.247) 2.324 ( 0.191)

ψ2 0.282 ( 0.112) 0.255 ( 0.106) 0.232 ( 0.093) 0.264 ( 0.110)

ρr 0.407 ( 0.077) 0.375 ( 0.065) 0.454 ( 0.067) 0.592 ( 0.043)

ρπ? 0.945 ( 0.025) 0.907 ( 0.021) 0.943 ( 0.025) 0.974 ( 0.011)

σr 0.404 ( 0.037) 0.422 ( 0.033) 0.389 ( 0.036) 0.435 ( 0.035)

σπ∗ 0.054 ( 0.010) 0.048 ( 0.009) 0.058 ( 0.012) 0.066 ( 0.009)

Nominal Rigidities Parameters

ζp 0.579 ( 0.061) 0.530 ( 0.057) 0.558 ( 0.051) 0.580 ( 0.061)

ιp 0.285 ( 0.182) 0.494 ( 0.202) 0.346 ( 0.181) 0.317 ( 0.167)

ζw 0.249 ( 0.069) 0.186 ( 0.031) 0.238 ( 0.061) 0.353 ( 0.098)

ιw 0.400 ( 0.251) 0.540 ( 0.257) 0.375 ( 0.253) 0.370 ( 0.236)

Other “Endogenous Propagation and Steady State” Parameters

α 0.340 ( 0.003) 0.340 ( 0.004) 0.340 ( 0.003) 0.341 ( 0.003)

s′ ′ 2.831 ( 0.880) 4.529 ( 1.152) 3.002 ( 0.902) 3.543 ( 1.205)

h 0.649 ( 0.047) 0.636 ( 0.053) 0.658 ( 0.049) 0.640 ( 0.046)

a′ 0.291 ( 0.112) 0.212 ( 0.097) 0.275 ( 0.102) 0.274 ( 0.095)

νl 2.153 ( 0.534) 2.690 ( 0.649) 2.271 ( 0.588) 1.327 ( 0.510)

r∗ 1.000 ( 0.423) 1.424 ( 0.541) 1.019 ( 0.452) 1.259 ( 0.471)

π∗ 2.470 ( 0.996) 3.068 ( 0.574) 2.106 ( 0.759) 3.662 ( 1.134)

γ 1.629 ( 0.333) 1.511 ( 0.330) 1.646 ( 0.362) 1.454 ( 0.314)

g∗ 0.272 ( 0.090) 0.304 ( 0.100) 0.287 ( 0.092) 0.306 ( 0.107)

ρs and σs

ρz 0.203 ( 0.094) 0.200 ( 0.095) 0.247 ( 0.090) 0.177 ( 0.098)

ρφ 0.837 ( 0.071) 0.980 ( 0.013) 0.850 ( 0.062) 0.569 ( 0.218)

ρλf 0.823 ( 0.073) 0.838 ( 0.059) 0.840 ( 0.058) 0.803 ( 0.071)

ρµ 0.885 ( 0.050) 0.910 ( 0.025) 0.897 ( 0.044) 0.894 ( 0.051)

ρg 0.810 ( 0.116) 0.824 ( 0.056) 0.798 ( 0.140) 0.982 ( 0.016)

σz 0.699 ( 0.055) 0.693 ( 0.052) 0.709 ( 0.055) 0.689 ( 0.047)

σφ 3.008 ( 0.516) 3.327 ( 0.589) 3.055 ( 0.638) 2.656 ( 0.660)

σλf 0.146 ( 0.031) 0.175 ( 0.031) 0.156 ( 0.026) 0.149 ( 0.023)

σµ 0.468 ( 0.115) 0.410 ( 0.083) 0.464 ( 0.111) 0.398 ( 0.099)

σg 0.291 ( 0.050) 0.426 ( 0.047) 0.267 ( 0.050) 0.410 ( 0.050)

Notes: The table reports the posterior mean and standard deviation (in parenthesis) of the parameters for

the Imperfect and Perfect Information models obtained from both the datasets with and without inflation

expectations.
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Table 8: Variance Decomposition

Variables Tech φ µ g λf π∗ Money

Imperfect Information

Output Growth 0.25 0.35 0.11 0.22 0.05 0.00 0.01

Labor Supply 0.00 0.94 0.05 0.01 0.01 0.00 0.00

Labor Share 0.05 0.03 0.00 0.02 0.88 0.00 0.01

Inflation 0.13 0.15 0.44 0.07 0.08 0.03 0.07

Interest Rate 0.08 0.09 0.60 0.08 0.05 0.00 0.00

Exp. Inflation 0.01 0.01 0.90 0.00 0.00 0.05 0.00

Perfect Information

Output Growth 0.29 0.12 0.17 0.20 0.10 0.00 0.04

Labor Supply 0.03 0.09 0.31 0.3 0.06 0.00 0.01

Labor Share 0.06 0.07 0.00 0.01 0.83 0.00 0.02

Inflation 0.06 0.08 0.11 0.01 0.08 0.59 0.05

Interest Rate 0.05 0.08 0.35 0.01 0.06 0.28 0.14

Exp. Inflation 0.01 0.00 0.14 0.00 0.00 0.84 0.00

Notes: The Table shows the (unconditional) variance decomposition computed using the posterior distri-

bution for the Imperfect and Perfect Information models obtained using the dataset that includes observed

inflation expectations.
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Table 9: Allowing for Measurement Error/Irrationality in Observed Inflation Ex-

pectations

Imperfect Information Perfect Information

ln p(Y 0
1,T ) ln p(Y 0

1,T , Y
1
1,T ) ln p(Y 1

1,T |Y
0
1,T ) ln p(Y 0

1,T ) ln p(Y 0
1,T , Y

1
1,T ) ln p(Y 1

1,T |Y
0
1,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

(0) Benchmark specification

-703.62 -811.04 -107.42 -704.31 -786.35 - 82.04

Measurement Error

(1) i.i.d. Measurement Error

-703.62 -796.31 -92.69 -704.31 -780.89 -76.58

(2) AR(1) Measurement Error

-703.62 -775.31 -71.69 -704.31 -775.21 -70.90

(3) Bias

-703.62 -811.48 -107.86 -704.31 -784.82 -80.51

(4) Bias + Response to Current Inflation

-703.62 -811.08 -107.46 -704.31 -788.69 -84.38

(5) Bias + Response to Current Inflation, Labor Share, and Output Growth

-703.62 -814.29 -110.67 -704.31 -786.16 -81.85

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models when allowing for discrepancies between observed and model generated expectations. Line (0) shows

the results from the benchmark specification for ease of comparison. Lines (1) and (2) report the log

marginal likelihood for the two models measurement errors are added (“i.i.d. Measurement Error”, and

“AR(1) Measurement Error”).
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Table 10: Variance Decomposition for Observed Inflation Expectations: Models

with Measurement Errors

Variables Tech φ µ g λf π∗ meas. Money

Unconditional

Imperfect Information
i.i.d.

Meas. Error
0.02 0.02 0.63 0.00 0.01 0.16 0.14 0.01

AR(1)

Meas. Error
0.01 0.01 0.26 0.00 0.01 0.12 0.57 0.00

Perfect Information
i.i.d.

Meas. Error
0.01 0.01 0.21 0.00 0.01 0.67 0.07 0.00

AR(1)

Meas. Error
0.01 0.00 0.25 0.00 0.00 0.27 0.41 0.00

10 Quarters Ahead

Imperfect Information
i.i.d.

Meas. Error
0.01 0.01 0.39 0.00 0.01 0.12 0.44 0.01

AR(1)

Meas. Error
0.01 0.00 0.25 0.00 0.01 0.08 0.63 0.01

Perfect Information
i.i.d.

Meas. Error
0.01 0.02 0.23 0.00 0.02 0.41 0.28 0.00

AR(1)

Meas. Error
0.01 0.00 0.26 0.00 0.01 0.24 0.46 0.00

Notes: The Table shows the posterior means of the variance decomposition for observed inflation expecta-

tions – both unconditional and 10 quarters ahead – for the Imperfect Information and Perfect Information

models with both i.i.d. and AR(1) measurement error. The posteriors are obtained using the dataset that

includes observed inflation expectations.
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Table 11: Using Data from the Great Disinflation

Imperfect Information Perfect Information

ln p(Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

, Y 1
Ti,Tj

) ln p(Y 1
Ti,Tj

|Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

) ln p(Y 0
Ti,Tj

, Y 1
Ti,Tj

) ln p(Y 1
Ti,Tj

|Y 0
Ti,Tj

)

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

(1) Post-Disinflation Data Set (1984-2008, standard)

-711.641 -816.67 -105.03 -711.67 -789.84 -78.17

(2) Post-1980 Data Set (1980-2008)

-918.02 -1057.45 -139.43 -921.38 -1041.51 -120.13

(3): (2)-(1), Updating over the Great Disinflation Period

-240.78 -251.67

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models under different data sets.
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Figure 1: Revisions in Inflation Data: Real Time vs Last Vintage
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Notes: The figure plots data revisions for two measures of inflation: GDP deflator and CPI. The solid line

shows the real time measure (that is, first vintage available) while the dashed-dotted line shows the most

recent vintage.
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Figure 2: Inflation Expectations: SPF vs Blue Chip

Four quarters ahead
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Notes: The figure plots inflation expectations from Blue Chip (solid line) and SPF (dashed line). The top

panel shows quarterly (annualized) inflation expectations four quarters ahead, while the bottom panel shows

expectations three-quarters ahead.
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Figure 3: Inflation Expectations: Data vs Model Prediction
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Notes: The figure plots SPF 4-quarters ahead median forecast for the GDP deflator (red dashed-and-dotted),

together with the projections for the 4-quarter ahead inflation forecasts generated by the Imperfect (black

solid) and the Perfect (gray solid) information models. The projections are computed using for each model

the respective posterior mode for the dataset without expectations.
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Figure 4: π∗t

π∗t|t – Imperfect Information
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π∗t – Perfect Information
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Notes: The top panel of the figure plots the mean estimate of the latent variable π∗
t|t for the Imperfect

Information model for the dataset without (black line) and with (gray line) inflation expectations. The

middle panel shows the mean estimate of the latent variable π∗t for the Perfect Information model for the

dataset without (black line) and with (gray line) inflation expectations. The bottom line shows the interest

feedback rule residual p̃it.


