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1 Introduction

In this paper we test a dynamic stochastic general equilibrium (DSGE) model of the US economy on the
full sample of post-war data using the method of indirect inference. The aim of the tests is to determine the
degree of nominal rigidity in the US economy. The extent of nominal rigidity is a major area of disagreement
between economists and we believe – and this is confirmed by our results – that it holds a critical key
to the model’s dynamic performance. Our modelling framework is based on that of Smets and Wouters
(2007). Smets and Wouters (SW) adopt a New Keynesian (NK) model with sticky prices and wages. We
compare this with a New Classical (NC) version of their model which has flexible prices and wages and a
one-quarter delay for households in receiving macro information. We also consider the possibility that the
economy consists of a mixture of the two in which some parts of the economy display nominal rigidities and
other parts do not.

To anticipate our results, we find that for the full sample period a hybrid model in which most of the
economy enjoys price and wage flexibility but a non-negligible part is subject to nominal contracts, gets
closest to matching the data, whereas the NK and NC models are seriously at odds with the data. If,
however, we restrict the data to a sub-period from the mid-1980s to the mid-2000s then a model with a
high degree of nominal rigidity is then able to match key aspects of the data. Our results suggest that the
state-dependency of pricing could dominate its time-dependency for the bulk of the post-war period but
that during the later period of the ’great moderation’, when the economy was more stable, time-dependency
could have dominated.

The SW model contains a full range of structural shocks and nominal and real frictions, and the model is
estimated with Bayesian methods. They consider their model satisfactory in a variety of ways. For example,
it can compete with standard VAR and BVAR models in forecasting the main US macro variables at business
cycle frequencies. In this paper we focus on the model’s dynamic performance within the sample, using a
new evaluation procedure based on indirect inference. This exploits the properties of the model’s error
processes through bootstrap simulations and analyses whether the simulated data from the structural model
can explain the actual data when both are represented by the dynamic behaviour of an auxiliary model. Our
test, which is a form of Wald statistic, focuses on the overall capacity of the model to fit the data’s dynamic
performance.

The idea is to use indirect inference to test the structural model. Indirect inference has been widely
used in the estimation of structural models, see Smith (1993), Gregory and Smith (1991,1993), Gourieroux
et al. (1993), Gourieroux and Monfort (1995) and Canova (2005). Here we make a different use of indirect
inference as our aim is to evaluate an already estimated or calibrated structural model. The common element
is the use of an auxiliary time series model. In estimation the parameters of the structural model are chosen
so that when this model is simulated it generates estimates of the auxiliary model similar to those obtained
from actual data. The optimal choice of parameters for the structural model are those that minimise the
distance between a given function of the two sets of estimated coefficients of the auxiliary model. Common
choices of this function are the actual coefficients, the scores or the impulse response functions. In model
evaluation the parameters of the structural model are taken as given. The aim is to compare the performance
of the auxiliary model estimated on simulated data derived from the given estimates of a structural model -
which is taken as a true model of the economy, the null hypothesis - with the performance of the auxiliary
model when estimated from actual data. If the structural model is correct then its predictions about the
impulse responses, moments and time series properties of the data should statistically match those based
on actual data. The comparison is based on the distributions of the two sets of parameter estimates of the
auxiliary model, or of functions of these estimates.

In other words, the testing procedure involves first constructing the errors derived from the previously
estimated structural model and the actual data. These errors are then bootstrapped and used to generate
for each bootstrap new data based on the structural model. An auxiliary time-series model is then fitted
to each set of data and the sampling distribution of the coefficients of the auxiliary time series model is
obtained from these estimates of the auxiliary model. A Wald statistic is computed to determine whether
functions of the parameters of the time series model estimated on the actual data lie in some confidence
interval implied by this sampling distribution.

This paper builds on Le (2008), who examined the ability of the calibrated model of Canzoneri, Cumby
and Diba (2004) to fit the US data. This is a very simple New Keynesian model, designed to investigate
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certain policy issues by simulation; it contains Calvo contract assumptions in labour and product markets and
investment adjustment costs but no other rigidities. It is rejected by the Wald-statistic and other standard
ways of measuring the goodness of fit. Furthermore, whatever assumptions were added to the model about
indexation and whatever assumptions were made about the degree of nominal rigidity, including moving to
a New Classical version, made no impact on the data-acceptability of the model; all versions were rejected
at high levels of significance. In particular, the model did not have sufficient sources of lagged reaction to
fit the data well.

The SW model for the US economy has many of the features of the Canzoneri et al. model, including
Calvo contracts in product and labour markets. But it also embeds backward-looking indexation and real
rigidities other than and in addition to investment adjustment costs – both habit formation in consumption
and variable capital-utilisation with its own adjustment costs. These are features that New Keynesian
economists advocate in order to replicate the persistence of inflation and output and supposedly hump
shaped responses to monetary shocks – e.g. Christiano et al (2007).

We find in what follows that neither NK nor NC models can be used to represent the U.S. economy on
their own, because both of them fail to satisfy the most basic measures of fitness. However, when a limited
degree of nominal rigidity is embedded in the NC model the resulting ‘mixed’ model fits the data better.
This means that, although nominal rigidity is relevant in modelling the economy, its role is not as important
as New Keynesian economists propose. Real rigidities on the other hand are highly necessary to replicate
the data.

We do not directly consider micro data on price-setting such as that examined by Bils and Klenow
(2004), but we recognise that work in this field is continuing in order to establish how much nominal rigidity
is present. We also note that recently Gertler and Leahy (2008) have suggested that state-contingent (Ss)
pricing could account both the micro evidence on sticky prices as well as macro price behaviour and that
this could look quite like price-flexibility.

The paper is organised as follows. In section 2 we describe the Smets-Wouters model and summarise
their main findings. We explain the testing procedure in detail in section 3. In section 4 first we compare the
NK and NC models, and then we compare these with the hybrid model. In section 5 we examine whether
changes in monetary regimes are a possible source of misspecification. We summarise our conclusions in
section 6.

2 The Smets-Wouters model of the US

Smets and Wouters (2007) developed a New Keynesian model and estimated this model on US data covering
the period 1966Q1—2004Q4 using Bayesian methods. The model features many nominal and real frictions
that create hump-shaped responses of aggregate demand to shocks. The model’s dynamics are driven by
seven orthogonal structural shocks: total factor productivity shocks, risk premium shocks, investment-specific
technology shocks, wage mark-up shocks, price mark-up shocks, exogenous spending shocks and monetary
policy shocks.

Their model is based on Smets and Wouters (2003) which was estimated on EU data. In the US version
there are a few differences. First, the number of structural shocks is reduced from ten to seven. Second, the
Dixit-Stiglitz aggregator in the goods and labour markets is replaced by the aggregator developed by Kimball
(1995) where the demand elasticity of differentiated goods and labour depends on their relative price. Third,
the model features a deterministic growth rate driven by labour-augmenting technological progress which
is assumed in order to use the original data without having to detrend them. Their model is estimated by
Bayesian methods which combine calibrated parameters with sample information.

SW report that the estimated model fits the US data quite well. This is verified by comparing the
marginal likelihood of out-of-sample predictions of the model with Bayesian VAR models. Price and wage
rigidities are important in explaining the data but the indexation is not. They find that demand shocks,
such as those to the risk premium and to exogenous spending, and investment specific technology shocks
explain a significant fraction of the short-run forecast variance in output, but wage mark-up and productivity
shocks contribute little to explaining output variation in the medium to long run. They also confirm that
productivity shocks have a significant short-run negative impact on hours worked. Inflation developments
are mostly driven by the price mark-up shocks in the short run and wage mark-up shocks in the long tun.
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The model can capture the cross correlation between output and inflation at business cycle frequencies. As
an ultimate check of the model’s performance, they estimate the model for two subsamples: the "Great
Inflation" period from 1966Q2 to 1979Q2 and the "Great Moderation" period from 1984Q1 to 2004Q4, and
find that most of the structural parameters are stable over those periods except for the fall in the standard
deviation of the productivity, monetary policy and price mark-up shocks, which reflect the decrease in output
growth and inflation volatility, and for the fall in the monetary policy response to output developments in
the second subsample.

We note that all of these exercises are carried out in a Bayesian framework and that at no stage is the
specification of the model tested. In effect, the Bayesian procedure just improves the fit compared with using
only calibrated parameters by employing additional information from the data. Nonetheless, the original
calibration dominates the final coefficient estimates if the priors are too tight, see for example Del Negro
and Schorfheide (2007). A full test of the model in our sense does not arise under a Bayesian procedure
because the information in the priors is regarded as fixed and known. One reason why we are carrying out
such tests is that we do not accept these priors uncritically; in particular, we are concerned about the extent
of nominal rigidity assumed in the priors.

3 Model evaluation by indirect inference

Our aim is to evaluate an already estimated or calibrated (DSGE) macroeconomic model by indirect inference.
By evaluate we mean carry out classical statistical inference on a previously estimated or calibrated model.
This is related to, but is different from, estimating a macroeconomic model by indirect inference. The
common feature is the use of an auxiliary model in addition to the structural macroeconomic model. Before
considering model evaluation by indirect inference, to set the scene and establish notation, first we discuss
estimation by indirect inference.

3.1 Estimation

Estimation by indirect inference chooses the parameters of the macroeconomic model so that when this
model is simulated it generates estimates of the auxiliary model similar to those obtained from the observed
data. The optimal choice of parameters for the macroeconomic model are those that minimize the distance
between a given function of the two sets of estimated coefficients of the auxiliary model. Common choices of
this function are (i) the actual coefficients, (ii) the scores, and (iii) the impulse response functions. In effect,
estimation by indirect inference gives the optimal calibration.

Suppose that yt is an m× 1 vector of observed data, t = 1, ..., T, xt(θ) is an m× 1 vector of simulated
time series generated from the structural macroeconomic model, θ is a k× 1 vector of the parameters of the
macroeconomic model and xt(θ) and yt are assumed to be stationary and ergodic. The auxiliary model is
f [yt, α]. We assume that there exists a particular value of θ given by θ0 such that {xt(θ0)}

S
s=1 and {yt}

T
t=1

share the same distribution, i.e.
f [xt(θ0), a] = f [yt, α]

where α is the vector of parameters of the auxiliary model.
The likelihood function for the auxiliary model defined for the observed data {yt}Tt=1 is

LT (yt;α) = Σ
T
t=1 log f [yt, α].

The maximum likelihood estimator of α is then

aT = argmax
α

LT (yt;α).

The corresponding likelihood function based on the simulated data {xt(θ)}Ss=1 is

LS[xt(θ);α] = Σ
S
t=1 log f [xt(θ), α]

with
aS(θ) = argmax

a
LS[xt(θ);α].
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The simulated quasi-maximum likelihood estimator (SQMLE) of θ is

θT,S = argmax
θ

LT [yt;αS(θ)].

This is the value of θ that produces a value of α that maximises the likelihood function using the observed
data. We suppose that the observed and the simulated data are such that this value of α satisfies

plim aT = plim aS(θ) = α,

hence the assumption that xt(θ) and yt are stationary and ergodic, see Canova (2005). It can then be shown
that

T 1/2(aS(θ)− α) → N [0,Ω(θ)]

Ω(θ) = E[−
∂2L[α(θ)]

∂α2
]−1E[

∂L[α(θ)]

∂α

∂L[α(θ)]

∂α

′

]E[−
∂2L[α(θ)]

∂α2
]−1.

The covariance matrix can be obtained either analytically or by bootstrapping the simulations.
An alternative to the SQMLE is the extended method of simulated moments estimator (EMSME). This

is obtained as follows. Consider the continuous p × 1 vector of functions g(aT ) and g(αS(θ)) which could,
for example, be moments or scores, and let GT (aT ) =

1
T Σ

T
t=1g(aT ) and GS(αS(θ)) =

1
SΣ

S
s=1g(αS(θ)). We

require that aT → αS in probability and that GT (aT )→ GS(αS(θ)) in probability for each θ. The EMSME
is

θT,S = argmin
θ

[GT (aT )−GS(αS(θ))]
′W (θ)[G(aT )−GS(αS(θ))].

3.2 Model evaluation

The parameters of the macroeconomic model and their distributions are taken as given – either estimated
or calibrated. The aim is to compare the performance of the auxiliary model based on observed data with
its performance based on simulations of the macroeconomic model derived by bootstrapping its structural
disturbances. From these simulations we may obtain the joint distribution of the parameters of the auxiliary
model and use this to perform a Wald test. This tests whether the estimates of the auxiliary model based on
actual data could have come from the particular realisation of the structural model. We choose a VAR as the
auxiliary model and base our test on a function of the VAR coefficients (augmented by the data variances,
as a check for matching variability). We use a VAR(1) on a limited number of key variables. By raising the
order of the VAR and increasing the number of variables, the stringency of the overall test of the model is
increased. As we find that the structural model is already rejected by a VAR(1), we do not proceed to a
more stringent test based on a higher order VAR.

Non-rejection of the null hypothesis is taken to indicate that dynamic behaviour of the macroeconomic
model is not significantly different from that of the observed data. Rejection is taken to imply that the
macroeconomic model is incorrectly specified. Comparison of the impulse response functions of the observed
and simulated data should reveal in what respects the macroeconomic model fails to capture the auxiliary
model.

The Wald test statistic is obtained as follows. We assume that there exists a particular value of θ given
by θ0 such that {xt(θ0)}Ss=1 and {yt}

T
t=1 share the same distribution, where S = cT and c ≥ 1. If θ̂ is

the estimated or calibrated value of θ then the null hypothesis can be expressed as H0 : θ̂ → θ0. Consider
again the continuous p × 1 vector of functions g(aT ), g(αS(θ)), GT (aT ) =

1
TΣ

T
t=1g(aT ) and GS(αS(θ)) =

1
SΣ

S
s=1g(αS(θ)). The functions g(.) may be impulse response functions. Given an auxiliary model and

a function of its parameters, our test statistic for evaluating the macroeconomic model is based on the
distribution of GT (aT )−GS(αS(θ̂)). The resulting Wald statistic may be written as

[GT (aT )−GS(αS(θ̂))]
′W (θ̂)[GT (aT )−GS(αS(θ̂))]

where the estimate of the optimal weighting matrix is

W (θ̂) = {[
∂G(α(θ̂))

∂α
]Ω(θ̂)[

∂G(α(θ̂))

∂α
]′}−1
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We obtain the distribution of GT (aT )−GS(αS(θ̂)) and the Wald statistic using the bootstrap.
The following steps summarise our implementation of the Wald test by bootstrapping:

Step 1: Estimate the errors of the economic model conditional on the observed data and θ̂.

Estimate the DSGE macroeconomic model’s structural the errors εt given θ̂ and the observed data. The
number of independent structural errors is taken to be less than or equal to the number of endogenous
variables. The errors are not assumed to be normally distributed.

Step 2: Estimate the empirical distribution of the structural errors

On the null hypothesis the {εt}
T
t=1 errors are omitted variables. Their empirical distribution is assumed

to be given by these structural errors. The simulated disturbances are drawn from these errors. In some
DSGE models the structural errors are assumed to be generated by autoregressive processes which under
our method we need to estimate. This is the case with the SW model. The model is bootstrapped (drawing
these disturbances by time vector to preserve any simultaneity between them) and solved using Dynare
(Juillard, 2001).

Step 3: Compute the Wald statistic

We choose the function of the auxiliary model’s parameters to be the VAR coefficients themselves rather
than a multi-valued function of them such as the impulse response functions (IRFs). Hence

g(aT )− g(αS(θ)) = aT − αS(θ)

and so
GT (aT )−GS(αS(θ̂)) = aT − αS(θ̂)

The distribution of aT − αS(θ̂) and its covariance matrix W (θ̂)−1 are estimated by bootstrapping αS(θ̂).
Thus we use the appropriate small-sample distribution rather than the asymptotic distribution that emerges
from analytic methods.

The bootstrapping proceeds by drawing N bootstrap samples of the structural model, and estimating
the auxiliary VAR on each, thus obtaining N aS(θ̂). This set of vectors represents the sampling variation
implied by the structural model, enabling its mean, covariance matrix and confidence bounds to be calculated
directly. N is generally set to 1000.

We can now compute the properties of the model and compare them with those of the data; in particular,
we examine the model’s ability to encompass the variances of the data. Assuming the model can do so, we
go on to compute the bootstrap Wald statistic [aT − αS(θ̂)]′W (θ̂)[aT − αS(θ̂)]. Figure 1 shows, for just
two parameters in the auxiliary equation, the distribution of the statistic and an example of the statistic
for two cases – one with a diagonal covariance matrix and one with non-zero covariances. One can think
of estimation via indirect inference as changing the parameters of the structural model, thus changing the
implied distribution, so as to push the observed data point as far into the centre of the distribution as
possible. The test however takes the structural parameters as given and merely notes the position of the
observed data point in the distribution.

In addition to our basic Wald statistic we consider a number of related Wald statistics. The basic Wald
test is based on the full joint distribution of the VAR coefficients as implied by their full covariance matrix,
as in the second panel of Figure 1. We refer to this as the Full Wald test; it checks whether the VAR data-
based coefficients lie within the DSGE model’s implied joint distribution and is a test of the DSGE model’s
specification in absolute terms. We use the Mahalanobis Distance based on the same joint distribution,
normalised as a t-statistic, as an overall measure of closeness between the model and the data- in effect this
conveys the same information as in the Wald test but in the form of a t-value.

A second Wald test, which we refer to as a ‘Directed Wald statistic’, focuses on specific features of the
structural model. Here we seek to know how well a particular variable or limited set of variables is modelled
and we use the corresponding auxiliary equations for these variables in the VAR as the basis of our test. For
example, we may wish to know how well the model can reproduce the behaviour of US and EU output by
creating a Wald statistic based on the VAR equation for the two outputs alone.
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Figure 1: Bivariate Normal Distributions (0.1, 0.9 shaded) with correlation of 0 and 0.9.
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Filter/Walds Variances Coefficients Variances and Coefficients
Original 97 100 100

Differenced 100 100 100
HP 100 100 100

Linear Detrend 100 100 100

Table 1: The Wald statitistics for each filter on SW’s original model

We may also use this Directed Wald test to determine how well the structural model captures the effects
of a particular set of shocks. To do this we create the joint distribution of the IRFs for these shocks alone.
For example, to determine how well the model deals with supply shocks, we construct the joint distribution
of the IRFs for the supply shocks and calculate a Wald statistic for this. Even if a model is mis-specified
overall, through these Directed Wald tests we can say whether it is well-specified enough to deal with specific
aspects of economic behaviour.

Finally we should note that we also look at the usual battery of diagnostic statistics for these models,
such as ability to match (i.e. embrace within 95% limits) data variances, cross-correlations, and VAR-based
IRFs. We attach particular importance to the ability to match data variances, arguing that a failure in this
dimension is essentially terminal; for this reason we include the data variances in the full Wald statistic.
It should be noted that the cross-correlations (other than contemporaneous) and the IRFs are all derived
from the VAR coefficients; hence our focus on these rather than the many relationships that can be derived
from them. This makes our procedure in many ways quite traditional; our Wald statistics are our main
innovation, but these largely summarise the results of these more traditional measures.

We are implicitly assuming that the auxiliary model can distinguish between different structural models.
This has been challenged recently by Canova and Sala (2009). They argue that the identification of different
DSGE models is ’weak’ and may give rise to the same VAR. They explain the point analytically by taking
a 3-equation (IS-Phillips Curve-Taylor Rule) reduction of a DSGE model, deriving its VAR representation,
and pointing out that several parameters cannot be identified. As they note, however, their example is
rigged in particular ways. One is that the shocks in the three equations are i.i.d. and there are no lagged
endogenous variables (either from adjustment costs or indexation). In DSGE models like the SW, however,
shocks are generally autocorrelated and lagged endogenous variables enter widely. As a result, DSGE models
like that of SW are substantially over-identified through the rational expectations mechanism and changes
in its parameters imply quite different simulation properties. This is illustrated in our results which attempt
to distinguish between DSGE models according to the ’distance’ of their implied VAR from a data-generated
VAR - a related approach is due to Del Negro et al (2006). We find large changes in the variances implied by
the model as its degree of rigidity is changed. These variances can be thought of as providing the elements
in the distance function and they show how much it changes as rigidity changes. We also find that the
Mahalanobis Distance of the model varies with modest changes in model specification. This measure takes
account of the joint distribution of all the criterion parameters and so sensitively reflects the model’s complete
specification.

4 Testing the SW Model using the method of indirect inference

We apply the proposed testing procedure to this model for the period of 1947Q1—2004Q4. To do so we need
to choose a filtering method to stationarise the data. We looked at several methods and report basic results
on all of them in the Annexes. In all the model used by SW was rejected by the Wald outright when data
variances and VAR coefficients were included in it.

These filters were: SW’s own filter (log differencing of all variables except inflation, log of hours worked
and interest rates which are left in levels- Annex A); differencing all variables (log differencing as SW but
differencing the remaining three- Annex B); an HP filter (Annex C); and linear detrending as followed by
SW for their EU work (SW, 2003)- Annex D. In terms of the models’ success in fitting the data in the widest
sense there is not much to choose between these filters, as we have noted. If we consider the model’s ability
to replicate the data variances alone, again all are rejected.

We therefore decided that, in order to carry out our more detailed investigations of the model, we would
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pick the filter that extracted the least information from the raw data- linear detrending. It turned out that
this filter was adequate to generate stationarity for all the data. The results reported in the body of the
paper that follows all use this filter.

The VAR estimation is performed with five main observable variables: output, investment, consumption,
the quarterly interest rate and the quarterly inflation rate; and we use a VAR of order one. The more
variables are added to the VAR and the higher its order, the more detailed properties that the model must
match and so the higher is the theshold of the test. As we will see below a VAR(1) on this small list of
variables is testing enough.

4.1 Evaluating the SW model using SW’s own assumed error properties

First we test the original SW model using their Bayesian estimate means for the error variances and autore-
gressive coefficients. The model is rejected. This is not entirely a surprise since the Bayesian method only
updates priors with the data and does not test the model against the dynamics of the data.

The model is rejected with the Full Wald test statistic of 100;its normalised Mahalanobis Distance is 3.4,
indicating that the data’s dynamic properties are fairly far from the model’s. This can be explained by a large
number (9 out of 25) of the VAR’s parameters that lie outside the 95% model bounds. Based on the their
t-stats, some of these coefficients lie a long way outside the confidence intervals; note in particular the partial
autocorrelations of consumption and inflation where the model’s bounds lie higher than the VAR estimate.
One could interpret this as excessive inflation and consumption persistence in the model. Furthermore, the
IRFs of the VAR (when identified by the model) frequently lie modestly outside the model bounds (from
the model bootstrap distribution of VAR coefficients).

Futhermore the data variances (the bottom 5 entries in Table 2) for nominal variables are too low
compared with the data: for interest rates the data variance lies outside the model bounds while for inflation
it lies just on the top 95% bound. Overall, therefore, even with SW’s own assumed error properties their
model is badly out of line with the data. However, as we see in the next section, these properties are by no
means the same as those implied by the data under the null that the model holds.
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VAR coeffs Actual Estimate Lower Bound Upper Bound T-stats
AYY 0.99908 0.71104 0.96272 2.02349
ARY 0.01503 −0.00557 0.04018 0.07322
AπY −0.00417 −0.0068 0.0673 −1.41540
ACY 0.10174 −0.07815 0.02091 5.03459
AIY 0.22591 −0.27355 0.18519 2.34051
AYR −0.64529 −1.28857 −0.40445 0.84625
ARR 0.85001 0.66138 0.86763 1.60632
AπR 0.15154 −0.11021 0.18262 1.56321
ACR −0.5553 −0.83083 −0.2264 −0.16999
AIR −1.7064 −2.33113 0.39231 −1.14775
AYπ 0.11612 −0.44029 0.32551 0.93503
ARπ 0.02374 0.07066 0.26195 −2.89958
Aππ 0.59496 0.59853 0.85809 −2.05169
ACπ −0.38833 −0.56528 −0.04657 −0.63310
AIπ −0.25917 −1.90858 0.40689 0.83059
AYC −0.08009 −0.12788 0.08505 −0.74255
ARC −0.02553 −0.03697 0.00303 −0.98493
AπC 0.0121 −0.04785 0.01597 1.56170
ACC 0.78488 0.85948 0.95736 −5.18686
AIC −0.4296 −0.36543 0.08677 −2.66676
AYI 0.02034 0.01692 0.08499 −1.53642
ARI 0.01022 −0.00484 0.00905 2.21138
AπI 0.01159 −0.01534 0.00714 2.63929
ACI 0.01957 0.01241 0.04757 −1.12305
AII 1.02924 0.94769 1.08301 0.38801
σ2Y 18.32858 8.71183 47.42615 −0.32176
σ2R 0.65276 0.19035 0.56812 3.22089
σ2π 0.44451 0.18584 0.46733 1.96505
σ2C 10.3888 6.19987 45.31804 −0.74834
σ2I 71.79914 65.12685 269.8422 −1.23001

Wald stat 100 Mah. Normalised Distance 3.4

Table 2: VAR Parameters, data variances and Model Bootstrap Bounds of the SW Model with SW’s error
properties
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4.2 Evaluating the SW model using actual errors

So far we have supplied the SW model with essentially imaginary error properties, chosen by assumption.
We now turn to the actual errors derived from estimation on the observed data. We estimate the model’s
structural errors, that is, the residual in each structural equation is given by the actual data and the expected
variables in it. For this we followed a procedure of robust estimation of the structural residuals along the
lines suggested by McCallum (1976) and Wickens (1982) under which the expectations on the right hand
side of each equation are generated by an instrumental variable regression that is implied by the model.
The instruments chosen are the lagged values of the endogenous variables. Thus, in effect, the generated
expectations used in deriving the residuals are the predictions of the data-estimated VAR.

Seven behavioural residuals are estimated by this means: consumption, investment, productivity, mon-
etary policy, wage- and price-setting, and one exogenous process, government spending, which enters the
goods market clearing condition. These residuals are shown in Figure 2 a.

0 50 100 150 200 250
-20

-10

0

10

20
OUTPUT vs. GOVERNMENT SPENDING             

 

 

0 50 100 150 200 250
-10

-5

0

5

10
CONSUMPTION vs. CONSUMPTION EULER RESIDUALS

 

 

0 50 100 150 200 250
-40

-20

0

20

40
INVESTMENT vs. INVESTMENT EULER RESIDUALS  

 

 

0 50 100 150 200 250
-2

0

2

4
INTEREST RATE vs. TAYLOR RULE RESIDUALS    

 

 

0 50 100 150 200 250
-20

-10

0

10

20
OUTPUT vs. PRODUCTION RESIDUALS            

 

 

0 50 100 150 200 250
-2

0

2

4
INFLATION vs. INFLATION RESIDUALS          

 

 

0 50 100 150 200 250
-20

-10

0

10
REAL WAGE vs. REAL WAGE RESIDUALS          

 

 

data

resid

data

resid

data

resid

data

resid

data

resid

data

resid

data

resid

Figure 2: Single Equation Errors from SWNK model

We proceed as though five of these residuals follow an AR(1)and the price and wage residuals follow
ARMA(1, 1) processes. The standard deviations of the estimated error innovations are in all cases larger
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than those assumed by SW; in the case of investment and the price mark-up they are nearly twice as
large (see Table 3). Furthermore, the actual preference, investment and monetary shocks exhibit markedly
less persistence than SW assumed. Hence though the properties of the residuals estimated from the data
are recognisably similar to those assumed by SW, there are material differences whose effects we go on to
investigate in our subsequent bootstrap exercise. We use a vector bootstrap to preserve any dependence
between the structural innovations.

Government
Spending

Pref Inv Mon Prod
Price

Mark-up
Wage

Mark-up
SW stdev 0.53 0.23 0.45 0.24 0.45 0.14 0.24
Data stdev 0.673 0.371 0.704 0.344 0.553 0.239 0.311
SW AR(1) 0.97 0.22 0.71 0.15 0.95 0.89 0.96
SW MA(1) 0.52 −0.69 −0.84

Estimated AR(1) 0.944 −0.064 0.530 −0.062 0.971 0.925 0.915
Estimated MA(1) 0.553 −0.709 −0.848

Table 3: Standard deviations of innovations and coefficients of shocks (actual vs. assumed)
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The model again fails to capture the scale of the nominal data variances (Table 4, last 5 entries); for the
interest rate the data variance is now roughly double the model’s upper bound while for inflation it remains
around the model upper bound. The results for the VAR coefficients are also reported in Table 4. Based
on the Full Wald Statistic, for all of the VAR coefficients and data variances, the model is strongly rejected
on at the 5% level. Seven of the VAR coefficients lie outside their 95% bounds, besides the interest data
variance. The model’s Mahalanobis Distance is 3.6; notice that this is not much different from the SW model
using their assumed error properties, so that there is not much change from using the residuals implied by
the data.

4.3 Evaluating the New Classical model using actual errors

Next we consider the New Classical version of the SW model proposed above. The results are poor. The
main problem is the model’s massive overprediction of inflation variance (3rd last entry, Table 5). This
occurred regardless of variations in the Taylor Rule; we adopted the NK rule except for setting potential
output, ypt , to a constant. For example a larger inflation reaction causes the interest rate variance to blow up
but without bringing the inflation variance down sufficiently. Thus the model fails on the basic preliminary
test of data variance matching.

The model’s Full Wald statistic is again 100. Besides the model’s overprediction of the inflation variance,
out of 25 VAR coefficients, 13 lie outside their 95% bounds. The model wrongly predicts all the partial
autocorrelation coefficients, except for that of investment. Of the 13 coefficients that do not fit, five are
related to the inflation rate. Further, the cross effects from the main macroeconomic variables to the
interest, inflation rates and consumption are badly predicted. The cross-effect from inflation to interest rates
in the model is negative; theoretically the interest rate should react to offset a rise in the inflation rate.
The Mahalanobis Distance is 7.1 which is considerably worse than for the New Keynesian version of the SW
model.

The model’s IRFs also perform poorly (see Annex). The dominant shocks on real variables are produc-
tivity and labour supply shocks, and on nominal variables are preference, monetary, productivity and labour
supply shocks. The responses of all the variables to these shocks lie outside the model 95% bounds. Fur-
thermore, the model fails to replicate the cross-correlations of many of the main macroeconomic variables; it
underpredicts the autocorrelations of interest and inflation rates, and their cross-correlations with output; it
overpredicts the effect of investment on future output; due to excessive inflation variation, it fails to replicate
the correlation between inflation and output.

Overall therefore the New Classical version of the original SW model also fails to match the data in quite
serious ways.

4.4 Evaluating a hybrid model: a weighted combination of New Keynesian and

New Classical models

We have analysed two rather different macroeconomic models with a view to understand the mechanisms
behind each of them. The NK model is highly rigid with Calvo price and wage settings, while the NC is a
flexible wage/price model with only a simple one-period information delay for labour suppliers.

In SW’s NK model, because capacity utilisation is fairly flexible, output is substantially affected by shocks
to demand and this in turn – via the Phillips Curve – moves inflation and then – via the Taylor Rule
– interest rates. Supply shocks can affect demand directly (e.g. productivity shocks change the return on
capital and so affect investment) and also play a role as ‘cost-push’ inflation shocks (e.g. price/wage mark-up
shocks). Persistent shocks to demand raise ‘Q’ persistently and produce an ‘investment boom’ which, via
demand effects, reinforces itself. Thus the model acts as a ‘multiplier/accelerator’ of shocks both on the
demand and the supply side.

In the NC model an inelastic labour supply causes output variation to be dominated by supply shocks
(productivity and labour supply) while investment and consumption to react to output in a standard RBC
manner. These reactions, together with demand shocks, create market-clearing movements in real interest
rates and – via the Taylor Rule – in inflation. Supply shocks are prime movers of all variables in the NC
model, while demand shocks add to the variability of nominal variables. In order to mimic real variability
and persistence, suitably sized and persistent supply shocks are needed. But to mimic the limited variability
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VAR coeffs Actual Estimate Lower Bound Upper Bound T-stats
AYY 0.99908 0.75267 1.00004 1.52155
ARY 0.01503 0.00444 0.05065 −0.85584
AπY −0.00417 −0.00459 0.06545 −1.69669
ACY 0.10174 −0.02606 0.07359 2.97157
AIY 0.22591 −0.19814 0.26058 1.59418
AYR −0.64529 −1.06427 −0.27522 0.12295
ARR 0.85001 0.53595 0.73313 3.90309
AπR 0.15154 −0.13061 0.15756 1.94297
ACR −0.5553 −0.84942 −0.40004 0.60623
AIR −1.7064 −1.80976 0.3887 −1.85185
AYπ 0.11612 −0.55029 0.07888 2.23055
ARπ 0.02374 0.11413 0.27924 −4.05015
Aππ 0.59496 0.47347 0.72517 −0.16778
ACπ −0.38833 −0.40915 −0.0401 −1.78108
AIπ −0.25917 −2.2204 −0.48423 2.53019
AYC −0.08009 −0.15347 0.11375 −0.78433
ARC −0.02553 −0.06976 −0.01127 0.87955
AπC 0.0121 −0.06965 0.02018 1.70294
ACC 0.78488 0.8106 0.94474 −2.99327
AIC −0.4296 −0.3507 0.1845 −2.51936
AYI 0.02034 −0.00146 0.06908 −0.48864
ARI 0.01022 −0.00373 0.01252 1.44447
AπI 0.01159 −0.01151 0.01217 1.76852
ACI 0.01957 0.00317 0.03533 −0.02989
AII 1.02924 0.90238 1.03372 1.86272
σ2Y 18.32858 9.67374 45.56006 −0.41926
σ2R 0.65276 0.16837 0.37665 7.52511
σ2π 0.44451 0.22269 0.47431 1.84365
σ2C 10.3888 4.62427 35.15967 −0.46506
σ2I 71.79914 63.05612 258.1966 −1.24068

Wald stat 100 Mah. Distance (Normalised) 3.6

Table 4: VAR Parameters, data variances and Model Bootstrap Bounds of the SW Model with Estimated
Coefficients
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VAR coeffs Actual Estimate Lower Bound Upper Bound T-stats
AYY 0.99908 0.75964 0.98742 1.81743
ARY 0.01503 −0.0305 0.06499 −0.02425
AπY −0.00417 −0.03652 0.25225 −1.23410
ACY 0.10174 −0.05527 0.07763 2.72888
AIY 0.22591 −0.18755 0.24126 1.84048
AYR −0.64529 −0.77893 −0.00061 −1.29619
ARR 0.85001 0.16679 0.55328 4.77475
AπR 0.15154 −1.70697 −0.51682 4.01721
ACR −0.5553 −0.49638 0.04422 −2.35582
AIR −1.7064 −1.53308 0.39447 −2.34629
AYπ 0.11612 −0.14849 0.09029 2.45278
ARπ 0.02374 0.01012 0.12289 −1.43555
Aππ 0.59496 0.10313 0.43618 3.75306
ACπ −0.38833 −0.15269 0.00878 −7.46875
AIπ −0.25917 −0.43894 0.13493 −0.79497
AYC −0.08009 −0.11079 0.13547 −1.25499
ARC −0.02553 −0.14256 −0.02468 1.75061
AπC 0.0121 −0.42415 −0.06702 2.51545
ACC 0.78488 0.84915 1.00249 −3.95797
AIC −0.4296 −0.30533 0.16651 −2.94383
AYI 0.02034 −0.00818 0.06222 −0.31562
ARI 0.01022 −0.00083 0.03162 −0.58207
AπI 0.01159 −0.02859 0.07379 −0.40644
ACI 0.01957 −0.00999 0.03741 0.44958
AII 1.02924 0.90735 1.03984 1.47843
σ2Y 18.32858 9.43786 62.14178 −0.60189
σ2R 0.65276 0.36337 0.76928 1.30337
σ2π 0.44451 2.33699 3.60734 −7.64773
σ2C 10.3888 7.39139 63.64939 −1.00088
σ2I 71.79914 60.45211 284.8093 −1.12994

Wald stat 100 Mah. Distance (Normalised) 4.7

Table 5: VAR Parameters, data variances and Model Bootstrap Bounds of the NC Model with Estimated
Coefficients

in inflation and interest rates only a limited variance in demand shocks is required; and to mimic their
persistence, the supply shocks must be sufficiently autocorrelated.

We have seen, however, that both the NK and NC versions of the SW model fail to match the data.
Essentially, the NK model generates too little nominal variance while the NC model delivers too much. Given
that each model fails in an opposite way, we propose a hybrid model that merges the NK and NC models
by assuming that wage and price setters find themselves supplying labour and intermediate output partly
in a competitive market with price/wage flexibility, and partly in a market with imperfect competition. We
assume that the size of each sector depends on the facts of competition and do not vary in our sample but we
allow the degree of imperfect competition to differ between labour and product markets.1 We also assume

1Formally, we model this as follows. We assume that firms producing intermediate goods have a production function that
combines in a fixed proportion labour in imperfect competition (‘unionised’) with labour from competitive markets- thus the
labour used by intermediate firms becomes nt = n1t + n2t ={[∫

1

0
(n1it)

1
1+λw,t di

]1+λw,t
+
[∫

1

0
(n2it)di

]}

where n1it is the unionised, n2it the competitive labour provided by the ith

household at t; we can think of nt as representing the activities of an intermediary ‘labour bundler’. Note that n1t = vwnt,

n2t = (1 − vw)nt so that Wt = vwW1t +(1 − vw)W2t. Each household’s utility includes the two sorts of labour in the same

way, that is Uit = ...−
n
1+σn
1it

ǫ1nt

1+σn
−

n
1+σn
2it

ǫ2nt

1+σn
... W1t is now set according to the Calvo wage-setting equation, while W2t is set

equal to current expected marginal monetary disutility of work; in the latter case a 1-quarter information lag is assumed for
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that the monetary authority pursues a Taylor Rule that reflects the properties of the hybrid model.
In the hybrid model the price and wage setting equations are assumed to be a weighted average of the

corresponding NK and NC equations. This weighting process is an informal use of indirect inference, the
idea being to find the combination of the weights and Taylor coefficients that make the combined model
perform best when compared with the auxiliary model.

We find that the optimal weights are vw = 0.1 (the NK share for wages) and vp = 0.2 (the NK share for
prices). That is, only 10% of labour markets and only 20% of product markets are imperfectly competitive.
Therefore, the model requires only a small amount of nominal rigidity in order to match the data. The Taylor
rule then becomes: Rt = 0.6Rt−1+(1−0.6){2.3πt+0.08yt}+0.22 (yt − yt−1)+εt. This is a somewhat more
aggressive response to inflation than either the NK (Rt = 0.81Rt−1 + (1− 0.81)

{
2.04πt + 0.08(yt − yPt

}
+

0.22
[(
yt − yPt

)
−
(
yt−1 − yPt−1

)]
+ εrt ) or NC rules (the NC is the same as NK except that it sets ‘potential

output’ to a constant). Notice that if one substitutes out for the interest rate from a simple money demand
function with an exogenous money supply growth process, then one obtains a ‘Taylor Rule’ that has the
form ∆Rt =

1
β {πt + γ∆yt) + vt where β is the semi-log interest rate elasticity of money demand, (γ is the

corresponding income elasticity) and vt is a combination of the money supply growth process and the change
in the money demand error. This is fairly close to the rules adopted in these models when the lagged term in
interest rates is large and the term in the output gap is small compared with the term in the rate of change
of output.

The main difference between the hybrid and the NK and NC models is the hybrid model’s ability to
reproduce the variances in the data. Using the structural errors from the model and the observed data, we
find that all the data variances lie within the model’s 95% bounds (Table 6, last 5 entries). Furthermore,
only nine of the 25 VAR coefficients lie outside their 95% confidence intervals. While the Full Wald statistic
of 100 rejects this model version as it does the others, the Mahalanobis Distance of 3.1 implies that the
hybrid model is substantially closer to the data.

Since the optimal combination indicates that the majority of the market participants behave in a com-
petitive manner, it is not a surprise that the variance decomposition (Table 7) shows that the supply shocks
- (productivity and labour supply shocks - explain most of the movements of the real variables. They also
explain a large part of the nominal variables. While the demand shocks also contribute quite a lot to move-
ments in the interest rate, they do so less for movements in inflation. So why are these results different from
those of the NK and NC models?

The hybrid model mostly acts like the NC model, where the supply shocks explain most of the variation
and demand shocks play a small in part in the variability of real variables due to one period information lag
and they add to the variability of nominal variables. Since, however, some economic agents behave in the
New Keynesian manner, aggregate supply and labour supply are more elastic, demand shocks have a greater
impact on real variables. Most importantly, inflation variability is dampened down to encompass actual data
variability. It is remarkable how large the reduction in the lower bound is by the introduction of only small
Calvo shares (10% in wages, 20% in prices – or 30% rigidity overall); the lower bound of inflation’s standard
deviation falls no less than 57%. The reason appears to be that the variability of inflation also reacts to
the variability of expected inflation. Thus, as the Calvo element rises, expected inflation varies less which,
in turn, reduces the variability of actual inflation and, again in turn, reduces the variability of expected
inflation, and so on in a sort of ‘multiplier’ process. This is an effect anticipated by Dixon (1992,1994).

Now we investigate the VAR impulse response functions to three main shocks: investment, labour supply,

current inflation but for convenience this is ignored in the usual way as unimportant in the Calvo setting over the whole future
horizon.
These wages are then passed to the labour bundler who offers a labour unit as above at this weighted average wage. Firms

then buy these labour units off the manager for use in the firm.
Similarly, retail output is now made up in a fixed proportion of intermediate goods in an imperfectly competitive market and

intermediate goods sold competitively. Retail output is therefore yt = y1t + y2t =




[
∫
1

0
y

1
1+λp,t

j1t dj

]1+λp,t
+
[∫

1

0
yj2tdj

]




. The intermediary firm prices y1t according to the Calvo mark-up equation on mar-

ginal costs, and y2t at marginal costs.
Note that y1t = vpyt, y2t = (1 − vp)yt so that Pt = vpP1t +(1 − vp)P2t. The retailer combines these goods as above in a

bundle which it sells at this weighted average price.
Notice that apart from these equations the first-order conditions of households and firms will be unaffected by what markets

they are operating in.
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VAR coeffs Actual Estimate Lower Bound Upper Bound T-stats
AYY 0.99908 0.76761 0.99753 1.58317
ARY 0.01503 −0.04394 0.01945 1.55148
AπY −0.00417 −0.02898 0.06556 −0.76799
ACY 0.10174 −0.03905 0.10284 2.05348
AIY 0.22591 −0.2093 0.28019 1.59406
AYR −0.64529 −0.97523 −0.14419 −0.40543
ARR 0.85001 0.49302 0.75838 3.23533
AπR 0.15154 −0.27545 0.1136 2.20900
ACR −0.5553 −0.69948 −0.10079 −1.14167
AIR −1.7064 −1.69603 0.44879 −1.94286
AYπ 0.11612 −0.29996 0.30247 0.72094
ARπ 0.02374 0.07486 0.27241 −2.85460
Aππ 0.59496 0.51488 0.78029 −0.76721
ACπ −0.38833 −0.27412 0.18435 −2.98726
AIπ −0.25917 −1.31646 0.30961 0.54641
AYC −0.08009 −0.142 0.09477 −0.82072
ARC −0.02553 −0.06465 0.00228 0.19880
AπC 0.0121 −0.09455 0.00559 2.01856
ACC 0.78488 0.81382 0.96991 −2.92486
AIC −0.4296 −0.36452 0.1334 −2.63914
AYI 0.02034 −0.00329 0.07082 −0.56989
ARI 0.01022 0.00293 0.02417 −0.45314
AπI 0.01159 −0.01199 0.02095 0.83386
ACI 0.01957 −0.00749 0.03827 0.27887
AII 1.02924 0.89898 1.04153 1.49582
σ2Y 18.32858 9.69749 61.85333 −0.61346
σ2R 0.65276 0.29191 0.76451 1.58414
σ2π 0.44451 0.43895 0.89102 −1.65685
σ2C 10.3888 7.30487 72.01693 −0.99793
σ2I 71.79914 61.41478 301.772 −1.17817

Wald stat 100 Mah. Distance (Normalised) 2.8

Table 6: VAR Parameters, data variances and Model Bootstrap Bounds of the Weighted Model with Esti-
mated Coefficients

Shocks Govt. Pref Inv Mon Prod Price Wage Labour Total
Spending mark-up mark-up supply

Y 2.6796 0.9823 1.9547 0.6995 48.2598 0.5086 0.00003 44.9154 100
R 11.8312 16.2245 17.4343 2.2156 15.3872 3.5352 0.000695 33.3713 100
π 2.0282 7.0541 3.7657 33.3303 17.6394 4.9596 0.000769 31.2218 100
C 5.0587 1.0009 1.7749 0.6429 34.3637 0.34915 0.00004 56.8097 100
I 11.298 0.0508 28.0270 0.1305 32.6701 0.2853 0.00001 27.5383 100

Table 7: Variance Decompositions of the weighted Model with estimated rhos
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and productivity shocks. The main differences from the data are in the long-run responses of interest and
inflation rates to the shocks; also the response of consumption is much more aggressive in the data than in
the model. Nonetheless, these responses lie only just outside the 95% bounds. We can therefore say that
the performance of the hybrid model, based on the IRFs, is relatively good compared to the NK and NC
models.

The cross-correlations are accepted in a number of cases. The actual autocorrelations and cross-correlations
of the variables lie within the model’s bounds, though the correlation of investment with future output lies
outside the bound. The performance of the cross-correlations among the nominal variables is, however,
poor. The autocorrelations of interest and inflation rates are underpredicted by the model, even though the
differences are much smaller than those for the NK and NC models. These failures are consistent with the
overall rejection of the hybrid model.

We now consider the model’s performance for particular aspects of the data, using the Directed Wald test.
Our method is to focus first on individual variables and then in groups by estimating the best ARMA(i,j)
in the case of a single variable and a VAR(1) for a group of variables. We then apply the Directed Wald test.
To assess the individual shocks we take the IRFs (we use the IRF average) of the shock for the variables
where they have a major impact and generate the model-implied joint distribution of these IRFs, computing
the Wald statistic for the joint values in the data. We also look at the joint distribution of the variances to
confirm our earlier judgement from the individual variances.

Table 8 below reports these Wald statistics. First, the model does fit the data variances jointly but only
at the 99% level. Second, the real variables fit the data taken as a group, though again only at the 99%
level, as do nominal variables taken as a group. When, however, nominal and real variables are combined the
dynamic fit deteriorates sharply and the model is rejected at the 99% level; only if we restrict ourselves to
output and inflation does the model pass this Wald test at the 99% level. This is mirrored in the individual
shocks; the responses to both productivity and labour supply, the two key shocks in this model, are borderline
rejected at 99%.

For individual variables, the responses of all are accepted at the 99% level; inflation is accepted at the
95% level. As observed earlier, many of the VAR coefficients involving interest rates are rejected individually.
It therefore seems clear that this is the area to look for better specification of the model.

Variable combinations Direct Wald
Y,C, INV 98.3

Y,C, INV,R 99.0
Y,C, INV, π 100

Y,R, π 99.4
Y, π 97.6
R,π 96.2

Y (AR (3)) 96.2
R (ARMA (1, 1)) 98.4

π (AR (3)) 90.3
C (AR (3)) 98.8

INV (AR (2)) 95.2

Table 8: Directed Wald statistics BY VARIABLE COMBINATIONS

Shocks Variables Directed Wald
Prod Y,R, π,C, INV 98.2

LabSup Y,R, π,C, INV 99.1

Variances Directed Wald
σ2Y , σ

2
R, σ

2
π, σ

2
C , σ

2
I 97

Table 9: Directed Wald statistics
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Figure 3: Investment Shock
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Figure 4: Productivity Shock
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Figure 5: Labour Supply Shock
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Figure 6: Cross-Correlations for Weighted Model (with estimated coefficients)

5 Regime change as a possible source of mis-specification

In view of the apparently crucial role of interest rates in the hybrid model, the implication is that the problem
could lie in the specification of monetary policy, and in particular the use of one monetary regime for the
whole sample from 1950s to the 2000s. We therefore tested for structural change during this period following
the procedure of Perron and Wu (2007) designed to test for multiple breaks in VAR parameters; we found
evidence of parameter breaks in two places: 1965 and 1984.

These are natural places to find such breaks due to changes that occurred in the monetary regime. The
earler break is associated with the emergence of serious inflation for the first time; the later break is associated
with the shift towards interest rate setting that followed from the adoption of (implicit) inflation targeting.

In moving to three sub-periods we tripled the size of our testing problem. Furthermore linear detrending
no longer proved sufficient to make the data stationary; we therefore used a Hodrick-Prescott filter. So far

The estimated breaks are: 1965.02 1984.02
The 95% C.I. for the 1st break is (1964.04;1965.04)
The 95% C.I. for the 2nd break is (1983.02-1985.02)

Table 10: Perron-Wu Multivariate Structural Break Test
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Actual Lower Upper State
AYY 0.92801 0.61496 0.94141 TRUE

ARY 0.06743 −0.04377 0.04308 FALSE

AπY 0.05812 −0.03036 0.06507 TRUE

AYR −0.47031 −0.91141 0.53397 TRUE

ARR 0.75002 0.51648 0.87073 TRUE

AπR 0.09010 −0.06550 0.38117 TRUE

AYπ 0.13438 −1.06434 0.62982 TRUE

ARπ 0.12020 −0.17840 0.29051 TRUE

Aππ 0.00798 −0.12482 0.35663 TRUE

V ar(Y ) 0.91360 0.54450 2.08374 TRUE

V ar(R) 0.06939 0.03334 0.11078 TRUE

V ar(π) 0.03058 0.02884 0.05445 TRUE

Wald 96.8 M-distance (Normalised) 1.9

Table 11: VAR coefficients and variances

Direct Walds
Y (AR (3)) 54.7
R(AR(1)) 97.2
R (AR (2)) 100
π (AR (1)) 69.6

Y, π 88.5
Y,R, π 96.6

var(Y ), var(R), var(π) 60.5

Table 12: Direct Walds for different combinations of output, inflation and interest rate

we have been unable to locate acceptable versions of the model for the first two sub-periods. However for
the third and latest sub-period (1984.03-2004.02), we found good results when we shifted the weights in the
hybrid model greatly towards the New Keynesian end of the spectrum (0.8, 0.8). It may well be that in the
’great moderation’ price-setting was far less disturbed by shocks to the state and was dominated instead by
time dependence.

The model is still rejected on the full VAR with a Wald of 100 but its Mahalanobis Distance is the lowest
to this point, at 4.2 (similar to the full sample weighted model of 3.9 on H-P-filtered data). While it is also
rejected for interest rates alone for its best AR(2) representation, for the combined variable set of output,
inflation and interest rates it is now jointly accepted at the 99% level and nearly accepted at the 95% level.
For just output and inflation it is easily accepted at the 95% level (88.5). Significantly, this is the first time
that any model we have examined over the full data period has passed the test embracing real GDP and
both nominal variables.

6 Conclusion

We have used the method of indirect inference to test a well-known DSGE model of the New Keynesian
type on its dynamic performance for US post-war data. We compared this model with a flexible wage/price
version with a short information lag (New Classical) and found that if we use the structural errors jointly
implied by each model and the data, then neither model can fit the data variances. The NK produces too
little variation in interest rates and the NC model generates an excessive variation in inflation rates. But
when the two models are combined in a weighted combination to give a hybrid model which is a mixture
of imperfectly competitive and flexible-price markets, then with 90% flexibility in the product market and
80% in the labour market the hybrid model comes much closer to matching the data, even though it too
is rejected as mis-specified especially in respect of interest rate behaviour. One possible reason is monetary
regime change, for which there is evidence in the mid-1960s and the mid-1980s. When we examined the
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period since 1984 we found that in respect of output and nominal variables the data did not reject a model
with quite a high degree of nominal rigidity (around 90% in both goods and labour markets). This suggests
that the situation with regard to price or wage rigidity in the US economy may have changed over time;
during most of the period state dependence in pricing could have dominated time dependence due to the
economy’s large fluctuations, but, during the later period, the ’great moderation’, time dependence seems
to have dominated.
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Appendix A Listing of models – SWNK and SWNC

SWNKMODEL
Consumption Euler equation

ct =
0.71
1.0043

1 + 0.71
1.0043

ct−1+
1

1 + 0.71
1.0043

Etct+1+
(1.3952− 1) 0.83192(
1 + 0.71

1.0043

)
1.38

(lt −Etlt+1)−

(
1− 0.71

1.0043(
1 + 0.71

1.0043

)
1.38

)
(rt −Etpt+1)+ebt

(1)
Investment Euler equation

innt =
1

1 + 0.99(1.0043)
innt−1 +

0.99(1.0043)

1 + 0.99(1.0043)
Etinnt+1 +

1

(1 + 0.99(1.0043)) (1.00432) 5.74
qqt + einnt

(2)
Tobin Q equation

qqt =
1− 0.025

1− 0.025 + 0.032649
Etqqt+1 +

0.032649

1− 0.025 + 0.032649
Etrkt+1 − (rt −Etpt+1) +

1
1− 0.71

1.0043

(1+ 0.71
1.0043 )1.38

ebt (3)

Capital Accumulation equation

kt =

(
1−

0.025

1.0043

)
kt−1 +

0.025

1.0043
innt +

(
1−

0.025

1.0043

)
(1 + 1.0043 (0.99))

(
1.00432

)
(5.74) (ennt) (4)

Price Setting equation

pt =




0.99x1.0043
1+0.99x1.0043×0.24Etpt+1 +

0.24
1+0.99×1.0043x0.24pt−1 −

(
1

1+0.99x1.0043×0.24

)
(
(1−0.99(1.0043)(0.66))(1−0.66)

0.66((1.6−1)(10)+1)

)
(0.19rkt + (1− 0.19)wt − eat)


+ ept (5)

Wage Setting equation

wt =




0.99x1.0043
1+0.99x1.0043Etwt+1 +

1
1+0.99x1.0043wt−1 +

0.99x1.0043
1+0.99x1.0043Etpt+1 −

1+0.99x1.0043×0.58
1+0.99x1.0043 pt

+ 0.58
1+0.99x1.0043pt−1 −

1
1+0.99x1.0043

(
(1−0.99x1.0043x0.7)(1−0.7)

(1+(10)(1.5−1))0.7

)
(
wt − 1.83lt −

(
1

1− 0.71
1.0043

)(
ct −

0.71
1.0043ct−1

))


+ ewt (6)

Labour demand

lt = −wt +

(
1 +

1− 0.54

0.54

)
rkt + kt−1 (7)

Market Clearing condition in goods market

yt = 0.64ct + 0.17innt + 0.19
1− 0.54

0.54
rkt + egt (8)

Aggregate Production equation

rkt =
1

1.6 (0.19) 1−0.540.54

(yt − 1.6 (0.19) kt−1 − 1.6 (1− 0.19) lt − 1.6eat) (9)

Taylor Rule

rt = 0.81rt−1 + (1− 0.81)
(
2.03pt + 0.08

(
yt − y

f
t

))
+ 0.22

((
yt − y

f
t

)
−
(
yt−1 − y

f
t−1

))
+ ert (10)
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SWNC MODEL

Consumption Euler equation

ct =
0.71
1.0043

1 + 0.71
1.0043

ct−1+
1

1 + 0.71
1.0043

Etct+1+
(1.3952− 1) 0.83192(
1 + 0.71

1.0043

)
1.3952

(lt −Etlt+1)−

(
1− 0.71

1.0043(
1 + 0.71

1.0043

)
1.3952

)
(rt)+ebt

(11)
Investment Euler equation

innt =
1

1 + 0.99(1.0043)
innt−1 +

0.99(1.0043)

1 + 0.99(1.0043)
Etinnt+1 +

1

(1 + 0.99(1.0043)) (1.00432) 5.74
qqt + einnt

(12)
Tobin Q equation

qqt =
1− 0.025

1− 0.025 + 0.032649
Etqqt+1 +

0.032649

1− 0.025 + 0.032649
Etrkt+1 − (rt) +

1
1− 0.71

1.0043

(1+ 0.71
1.0043)1.3952

ebt (13)

Capital accumulation equation

kt =

(
1−

0.025

1.0043

)
kt−1 +

0.025

1.0043
innt +

(
1−

0.025

1.0043

)
(1 + 1.0043 (0.99))

(
1.00432

)
(5.74) (ennt) (14)

Marginal Product of Labour

0.19rkt + (1− 0.19)wt = eat (15)

Labour supply

wt = 1.83lt +
(

1
1− 0.71

1.0043

)(
ct −

0.71
1.0043ct−1

)
− (πt −Et−1πt) (16)

Labour Demand

lt = −wt +

(
1 +

1− 0.54

0.54

)
rkt + kt−1 (17)

Market clearing condition

yt = 0.64ct + 0.17innt + 0.19
1− 0.54

0.54
rkt + egt (18)

Production function

rkt =
1

1.6 (0.19) 1−0.540.54

(yt − 1.6 (0.19) kt−1 − 1.6 (1− 0.19) lt − 1.6eat) (19)

Taylor Rule

rt = 0.81rt−1 + (1− 0.81) (2.03pt + 0.08yt) + 0.22 (yt − yt−1) + ert (20)
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