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The purpose of the paper
The purpose: Test the Smets and Wouters’ (2007) model
(SW model hereafter) with a classical statistic method
called indirect inference.

The general idea of indirect inference is to estimate or test
a structural model by comparing it with an auxiliary model.
Here, the auxiliary model is taken as the (nonstructural)
VAR model.

In the literature of the Bayesian approach to the DSGE
models, Schorfheide (2000) compared DSGE and VAR
models. and VAR models did much better. Smets and
Wouter (2007) also compared DSGE and VAR models, and
their DSGE model did very well compared with the VAR
models both in terms of marginal likelihood and prediction.

Given the importance of the SW model, it is interesting and
important to compare their DSGE model with VAR models
with classical statistical methods.



How the authors implement their idea.

After reading their paper, I am not sure how they implemented
their idea, but here is what I think they did for Table 2.

Step 1: They applied the Bayesian method to compute the
posterior means of the VAR coefficients implied by the SW
model evaluated at the posterior means of the model
parameters. The called these posterior means of the VAR
coefficients aT .

Step 2: They used the SW model evaluated at the posterior
means of the model parameters to compute residuals.

Step 3: They resampled the residuals to create N bootstrap
samples of the data generated from the SW model.



Step 4: They computed OLS estimates of the VAR coefficients
of each of the N bootstrap sample.

Step 5: They used the empirical distribution in Step 4 to
compute the average of the VAR estimates, and called them
αS(θ).

Step 6: They computed test statistics to compare aT and αS(θ)
using the empirical distributions in Step 4.



Shortcomings of their method (as I understood it)

One shortcoming is that the sampling error of aT is ignored. I
do not think that this is important because I am interested in the
performance of the SW model evaluated at the posterior means
of the model parameters.

A serious shortcoming is that their bootstrap method is not
proved to work. I think that it is very likely that this bootstrap
method does not have an asymptotic justification.



The Bootstrap

To start from a simple case, suppose that we have the data
X1, X2, ..., XN with the sample size of N for an i.i.d. random
variable Xi with cumulative distribution function (CDF), F0.

Let QN(X1, ..., XN) be the statistic of our interest. Let
GN(q, F0) = Pr(QN < q) be the exact, finite sample CDF of QN .
The basic idea of the bootstrap is to replace F with a known
estimator, FN .



Depending on whether FN is nonparametric or parametric, we
have the nonparametric bootstrap or the parametric bootstrap.

For the nonparametric bootstrap, we attach the probability 1/N
to each data point Xt .

For the parametric bootstrap, we use a parametric estimator as
FN . For example, Xt is assumed to be normally distributed with
mean µ and variance σ and their consistent estimates are used.



A Monte Carlo simulation is usually used to evaluate GN(q, FN).
The procedure is as follows:

Step 1: Generate a bootstrap sample of size N, X ∗
t : t = 1, ..., N

by sampling the distribution corresponding to FN randomly. For
the nonparametric bootstrap, sample the data with
replacement. For the parametric bootstrap, use a random
number generator to randomly sample from the estimated
distribution.

Step 2: Compute Q∗
N = QN(X ∗

1 , ..., X ∗
N).

Step 3: Repeat steps 1 and 2 n times to obtain n observations
of Q∗

N .

Step 4: Compute the distribution of Q∗
N by putting mass 1/n at

each observation of Q∗
N .



For the bootstrap to work, GN(·, FN) should be close to
GN(·, F0) for large N. The concept of consistency of the
bootstrap formalizes this idea.

The consistency of the bootstrap means that the bootstrap gets
the statistic’s asymptotic distribution right when the sample size
is large.

The conditions for consistency of the bootstrap are given in
Section 2.1 of Horowitz (2001). Roughly speaking, the
conditions require that FN is a consistent estimator for F0 and
GN(·, F ) is continuous for F in an appropriate sense.

These conditions are mild, but can be violated in some time
series applications especially when autoregressive roots are
one or near one.



Even for confidence interval estimation of a simple AR(1)
model, Basawa, Mallik, McCormick, Reeves, and Taylor (1991,
Annals of Statistics) show that the standard Bootstrap method
does not yield appropriate confidence intervals when the
autoregressive root is near one.

Bruce Hansen (1999) proposes Grip Bootstrap methods to
overcome this difficulty for AR(1). Unfortunately, this method
does not easily generalizes to VAR models.

I conclude that the Bootstrap method is NOT reliable for the
application of the authors.



Their empirical results

For Table 2, the authors report that the SW model do not
produce VAR variances for nominal variables (the interest rate
and the nominal interest rate) that are consistent with the data.

The idea of comparing the implied variance of a shock with the
data variance is interesting.

However, I believe that these are variances of the reduced form
equations.

Reduced form errors are considered a linear combination of
structural errors.

It seems more meaningful to compare the variances of
structural shocks implied by the model and those in the data.



What may be done

For this application, if autoregressive roots are one or close to
one, then the bootstrap method is not reliable.

So it will be better to avoid the linear trend filter. I recommend
the first difference filter.

It will be good to do Monte Carlo (with each Monte Carlo
simulation including Bootstrap simulations) to see if the method
is working.

Another method to consider is the two step minimum distance
method of Christiano, Eichenbaum, and Evans (2005, CEE).
Indirect inference is closely related with the minimum distance
method. Instead of comparing the impulse responses, one can
compare all or part of the VAR estimates if we want. The two
step minimum distance method has an advantage of avoiding
bootstrap (This is an advantage given the problem of the
bootstrap for this type of applications mentioned above).



Comparing the variance of structural shocks implied by the
model and those in the data may be interesting.

One method is to modify the SW model to make it to be
recursive as in the recursive version of the Christiano,
Eichenbaum, and Vigfusson’s (2006) model. Then the usual
recursive identifying restrictions can be used to compare the
variance of the structural shocks.

Given that I recommended the two step minimum distance
method, I would like to note that there can be serious weak
identification problem with the method. See Magnusson and
Mavroeidis (forthcomimg, JMCB).


