
MINIMAL STATE VARIABLE SOLUTIONS TOMARKOV-SWITCHING RATIONAL EXPECTATIONS MODELSROGER E. A. FARMER DANIEL F. WAGGONER AND TAO ZHAAbstrat. We develop a new method for omputing minimal state variable so-lutions (MSV) to Markov swithing rational expetations models. We provide analgorithm to ompute an MSV solution and we show how to test a given solutionfor uniqueness and boundedness. We onstrut an example, alibrated to US data,and we show that the MSV solution in our example is unique. This solution anpotentially explain the observed redution in the variane of in�ation and the inter-est rate after 1980, in three di�erent ways. The poliy rule might have hanged, thevariane of the fundamental shoks might have fallen or the private setor equationsmight have been di�erent aross regimes. We ompare these three explanations forthe hange in variane and we show that any one of them an potentially aountfor the fats. Our paper provides the neessary tools for a future empirial studyof this issue. I. IntrodutionFollowing the introdution of vetor autoregressions (VARs) to maroeonomis byChristopher Sims (1980) it was quikly realized that it is di�ult to �nd maroe-onomi appliations for whih model parameters remain stable over long periodsof time. One approah to parameter instability, pursued by Rihard Clarida, JordiGalí and Mark Gertler (2000, CGG), and followed up by Thomas Lubik and FrankShorfheide (2004, LS), is to break the sample into sub-periods and to estimate regime-dependent strutural models in whih one or more of the model's parameters are dif-ferent aross regimes. This is not entirely satisfatory sine forward looking agentsliving in a world in whih parameters are known to hange oasionally would beexpeted to take possible parameter hange into aount when forming their expe-tations.An alternative approah to parameter instability, suggested by the work of JamesHamilton (1989) and pursued in a omplete maro model by Christopher Sims andTao Zha (2006), is to estimate a bakward-looking vetor autoregression (VAR) withregime dependent parameters. Their approah has its limitations sine it does notallow for the presene of forward-looking omponents that are present in a dynamistohasti general equilibrium (DSGE) model. To allow for hange in the struturalDate: Deember 22, 2009.Key words and phrases. Regime swithing, volatility, rational expetations.The views expressed herein do not neessarily re�et those of the Federal Reserve Bank of Atlantaor the Federal Reserve System. Farmer aknowledges the support of NSF award #SES 0418074.1



SWITCHING RATIONAL EXPECTATIONS 2parameters of a model of this kind, we need a method for solving rational expetationsmodels that inorporates regime hange. This paper provides suh a method.Our approah is to expand the state spae of a Markov swithing rational expe-tations model (MSRE) and to write an equivalent model in this expanded spae thathas state-invariant parameters. We de�ne a lass of minimal state variable solutions(MCallum 1983, MSV) to the expanded model and we prove that any MSV solutionis also a solution to the MSRE. We provide a set of neessary and su�ient ondi-tions for the MSV solution to be unique and we show that MSV solutions an beharaterized as a vetor-autoregression with regime swithing, of the kind studiedby Hamilton (1989) and Sims and Zha (2006).The lass of solutions we identify is large, but it is not exhaustive. In a relatedpaper (Farmer, Waggoner, and Zha 2006) we provide an example of a model witha unique MSV solution and we provide onditions under whih this example alsohas a ontinuum of non MSV sunspot solutions.1 In this paper, however, we studyonly the MSV solutions. The MSV solution is arguably the most interesting lass tostudy sine it is often stable under real time learning (Evans and Honkapohja 2001),(MCallum 2003).In the seond part of our paper, we provide an additional reason to be interestedin MSV solutions to MSRE models. Clarida et al have argued that in�ation, interestrates and output were all more volatile in the period before 1980 than after. FollowingCGG, it has beome ommon to argue that the hange in volatility observed at thistime ourred beause the Fed under Arthur Burns and William Miller followed apassive monetary poliy that permitted the existene of sunspot equilibria. Aordingto this interpretation of the data, the drop in volatility was a onsequene of theremoval of an additional variane term that, under Burns-Miller, was ontributed bysunspots.In Setion XV, we present a alibrated New-Keynesian model of the kind estimatedby Lubik and Shorfheide (2004) over two separate poliy regimes. Unlike LS, we �xall of the parameters of the model exept for the in�ation oe�ient on the Taylor ruleand we show that this model possesses a unique MSV solution. Under our alibration,the move from a passive to an ative regime leads to a redution in the variane ofoutput, in�ation and the interest rate, of the same magnitude as observed in the dataeven when the standard deviation of all of the shoks is the same aross regimes,as onjetured by Beyer-Farmer (2003). In ontrast, Stok and Watson (2003) andSims Zha (2006) studied a bakward-looking Markov swithing model and found noevidene in favor of hanges in monetary poliy. Instead, they attributed the hange1A sunspot solution is one where the state variables are funtions of an extraneous random variable(Cass and Shell 1983). In Farmer, Waggoner, and Zha (2006), urrent state variables depend onexpetations of future variables, but not on lagged state variables, and we show that there alwaysexists a sunspot solution to the MSRE model when the parameters of the model in at least one regimewould lead to indeterminay if that regime were an absorbing state. This ontradits the results inDavig and Leeper (2005) who laim that determinay of equilibrium depends on the probabilitiesontained in the Markov transition matrix.



SWITCHING RATIONAL EXPECTATIONS 3in the time series behavior of the variables to time variation in shok varianes. Toexamine the plausibility of this explanation we ompare the poliy hange model withan alternative in whih there are hanges to the shok varianes of the forward lookingstrutural model.II. How our Method Differs from Previous ApproahesConsider a strutural linear rational expetations model with variables xt and on-stant parameters, where xt may inlude unobservable expetations onditional ondate t information. The solution to a model of this kind an be desribed as a VARin xt. Now onsider an extension that allows the strutural parameters to be fun-tions of a state ξt that is itself governed by a Markov hain. This is the model thatwe will study in this paper. Although our model is linear in xt, it is non-linear in theomplete set of state variables {xt, ξt} sine its parameters, whih are funtions of ξt,enter the model multipliatively with xt.Troy Davig and Eri Leeper (2005) and Davig, Leeper and Hess Chung (2003) haveprovided examples of models that are non-linear in both variables and parameters.The Davig-Leeper examples are more general than the linear-in-variables model thatwe onsider here and, in ertain speial ases, they an be solved expliitly. However,the Davig-Leeper approah relies on speial assumptions that annot easily be gen-eralized and even if their solution algorithm ould be extended to a general lass ofnon-linear variable-parameter rational expetations models, their method still doesnot provide a way of establishing that a proposed solution is unique or even that itis bounded and hene onsistent with the transversality onditions of the struturalmodel (Farmer, Waggoner, and Zha 2006).Lars Svensson and Noah Williams (2005, SW) have developed an algorithm toompute a solution to a large lass of linear-in-variables regime-swithing models thatis losely related to the lass that we disuss in this paper. However, the SW solutionmethod also laks a diagnosti to inform the experimenter when the solution is uniqueand their algorithmmay onverge to a unique solution, to one of a set of indeterminatesolutions, or to an unbounded stohasti di�erene equation that violates appropriatetransversality onditions. In ontrast, the method we desribe in this paper omputesa solution to a large lass of variable-parameter linear rational expetations modelsand, within this lass, it identi�es whether the solution is unique, indeterminate orunstable. In this latter ase, equilibrium (de�ned as a bounded stohasti proess)fails to exist.2Our approah builds on unpublished notes by Roger Farmer, Eri Leeper and TroyDavig (FLD) that desribe a possible method for solving a linear rational expeta-tions model by expanding the state spae in a way that mimis existing tehniques for2Our method o-inides with the SW solution when the equilibrium is unique and has the addedadvantage of identifying the onditions for determinay, indeterminay and existene. In AppendixA, we show that the SW method will often onverge to indeterminate equilibria or to unboundedsolutions (non-existene).



SWITCHING RATIONAL EXPECTATIONS 4�nding a vetor autoregressive representation of a Markov hain. The FLD approah,although promising, failed to maintain the important property that expetationalerrors must be mean zero. This omission is fatal beause it gives inorret results;remedying this error has proved to be a hallenging task. This paper solves this prob-lem and provides a way of onverting a variable-parameter linear rational expetationsmodel into an equivalent onstant parameter model in a larger state spae.III. The Constant Parameter ModelWe introdue the following lass of linear models.
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(1)where xt is an n×1 set of endogenous variables, a1, a2, b1, b2, ψ, and π are onformableparameter matries, εt is a k × 1 vetor of i.i.d. random variables and ηt is an ℓ× 1vetor of endogenous shoks, de�ned by the seond ℓ rows of this system.As an example, onsider the model
yt = aEt [yt+1|Ωt] + byt−1 + σεt, (2)with matries a1, b1, a2, b2,ψ and π de�ned as follows:
a1 =

[

1 −a
]

, b1 =
[

b 0
]

,

a2 =
[

1 0
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, b2 =
[

0 1
]

,

ψ = σ, π = 1,and
xt =

[

yt

Et [yt+1]

]

.The �rst n−ℓ equations of the model de�ne the evolution of xt as funtions of laggedvariables and fundamental shoks. The seond ℓ equations de�ne the endogenouserrors. We partition the parameter matries onformably and refer to the parametersof the �rst blok of n− ℓ equations with the subsript 1 and to the seond blok of ℓequations with the subsript 2.A solution to Equation (1) is a bounded stohasti proess {xt}. Chris Sims (2001)provides a solution algorithm and sets of onditions on the matries A,B,Ψ and Πunder whih there exists a unique solution, no solution or multiple solutions. Ex-istene of a solution requires that the endogenous shok ηt an be adjusted everyperiod to keep the system in a linear subspae for whih solutions remain boundedand it depends on the properties of the matries Ψ and Π and on the roots of theharateristi equation of the matrix penil |A− λB| = 0.3 When a unique solution3The roots of this harateristi equation are known as generalized eigenvalues of {A, B}. For ade�nition and disussion of the penil of a quadrati form see Gantmaher (2000, Volume 1, page310).



SWITCHING RATIONAL EXPECTATIONS 5exists it has a representation in the form
xt = Γ1xt−1 + Γ2εt. (3)Eonomi data often annot be desribed by onstant parameter models and JamesHamilton (1989) amongst others, has suggested that redued form models be de-sribed instead by VARs in whih the parameters hange oasionally. For example,the vetor xt might be desribed by the equation:

xt = Γ1 (ξt)xt−1 + Γ2 (ξt) εt, (4)where ξt follows a Markov hain. Models of this kind have proved quite suessful atdesribing the behavior of gdp and they have been applied by Sims and Zha (2002)to desribe the behavior of in�ation, interest rates and output. But how are reduedform Markov swithing models related to strutural rational expetations models? Itis this question to whih we now turn.IV. The Markov Chain as an AR ProessThe tehnique we will use to solve variable-parameter linear rational expetationsmodels is based on an extension of the method, desribed in Hamilton (1994, page679), by whih a Markov hain an be desribed by an autoregressive proess. In thissetion we explain this method and in Setion V we show how it an be generalizedto forward looking systems.Let ξt be a two-state Markov hain with transition matrix P and de�ne a pair ofvariables zi,t, i ∈ {1, 2} suh that zi,t = ξt if ξt = i and zero otherwise. Sine theolumns of P are onditional probability distributions the elements of P , denoted
[pij ] , satisfy the restrition

2
∑

i=1

pij = 1.Let vit be the di�erene between the realization of zit and its onditional mean andwrite zt as a vetor-valued proess:
zt = Pzt−1 + vt, (5)where the vetor vt, de�ned as,

vt = E (zt|Ωt−1) − zt, (6)has zero onditional mean. The onditional distribution of vt is hosen to ensure thatthe state variable zt satis�es the property,
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SWITCHING RATIONAL EXPECTATIONS 6To keep zt in the appropriate spae, the onditional distribution of vt must depend onthe regime swithing probabilities [pij ]. This distribution is given by the expression;
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]
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[
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=
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.The following setions show how to extend the idea that a Markov hain has anautoregressive representation to the general linear rational expetations model. In theextension we will exploit the fat that the autoregressive representation has onstantstate-independent parameters to �nd a solution method for regime swithing modelswith rational expetations.V. The Markov-Swithing ModelThis setion introdues a lass of Markov-swithing rational expetations modelsand in Setions VIII�XI we show how to ompute a minimal state variable solution tomodels in this lass by expanding the state spae. In Setion XII we present formalde�nitions and we prove that a solution to the expanded model is also a solution tothe original Markov swithing model. We disuss the properties of equilibrium andwe show that the onditions governing existene and uniqueness are more omplexthan in the ase of single regime models. We propose a lass of minimum statevariable solutions (MCallum 1983, MSV) and we demonstrate that when a uniqueequilibrium exists, it is in this lass. Our algorithm an also identify an MSV solutionto models with indeterminate equilibria (when one exists) and it produes a diagnostithat alerts the researher to the presene of multipliity or to the non-existene of abounded solution.



SWITCHING RATIONAL EXPECTATIONS 7Consider the following generalization of Equation (1),
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x0 = x̄0, (9)where ξt follows an h−state Markov hain, h ∈ H ≡ {1, ...h} , with stationary tran-sition matrix P and ηt is a mean zero endogenous proess. The matrix Π (ξt) isassumed to have full rank, and thus without loss of generality we take π1 (ξt) = 0,
π2 (ξt) = Iℓ, ψ1 (ξt) = ψ (ξt), and ψ1 (ξt) = 0, where Iℓ is the ℓ× ℓ identity matrix. Inmost appliations it will be the ase that xt is partitioned as

xt =





yt

zt

Etyt+1



 , (10)where yt is of dimension ℓ and the seond blok of Equation (8) is of the form yt =

Et−1yt + ηt. Though we do not impose this restrition in this paper, it is useful tokeep this example in mind when interpreting our results.VI. Minimum State Variable SolutionsIn the onstant parameter ase, solutions of Equation (1) are obtained by restritingthe solution xt to lie in some linear subspae of R
n. The potential subspaes aredetermined by the generalized eigenvalue-eigenvetor deomposition of A and B.4 Forinstane, if the solution is restrited to the subspae is spanned by the eigenvetorsassoiated with the eigenvalues that are less than one in absolute value, then oneobtains the stable manifold. This is the largest subspae that supports boundedsolutions, assuming, of ourse, that bounded solutions exist. If one onsiders thepartition of xt given by Equation (10), then restriting the solution to lie in somelinear subspae fores linear relations among Etyt+1, yt and zt. A MSV solution isone in whih enough restritions have been imposed so that Etyt+1 is ompletelydetermined and so there an be no sunspot shoks, but not so many restritionsthat yt and zt are onstrained. We do not want to onstrain yt and zt beause wewould like the solution to exist for any initial onditions of yt and zt. In the onstantparameter ase this means that the potential subspaes are generated by any set of

n− ℓ eigenvetors whose eigenvalues are all less than one in absolute value.4If xt is a solution of Equation (1) and the span of the support of xt over all t is the linear subspae
V̂ , then it must be the ase that V̂ is generated by some subset of the generalized eigenvetorsof A and B. However, it is not neessarily the ase any subspae generated by a subset of thegeneralized eigenvetors of A and B will support a solution of Equation (1). It is in this sense thatthe eigenvetors only generate potential subspaes that support solutions. Existene onditions mustalways be on�rmed.



SWITCHING RATIONAL EXPECTATIONS 8These ideas an be generalized to the time varying parameter ase. De�ne 1{st=i}to be indiator funtion whih is one if st = i and zero otherwise and de�ne the spanof xt, onditional on st = i, to be the linear span of the support xt1{st=i} over all
t. Again, onsidering the partition of xt given by Equation (10), we want to imposeenough restritions so that Etyt+1 is ompletely determined and so there an be nosunspot shoks, but not so many that yt and zt are onstrained. This implies thatthe dimension of eah onditional span must be n−s. Unlike the onstant parameterase, there is not an easy to apply eigenvalue ondition that allows us to identifyall potential andidates for the onditional spans and so we must resort to iterativetehniques to �nd MSV solutions. However, we do have the following haraterizationof any MSV solution.Theorem 1. If {xt, ηt}

∞
t=1 is a MSV solution of Equation (8), then

xt = Vξt
F 1

ξt
xt−1 + Vξt

G1
ξt
εt, (11)

ηt = −
(
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]
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(

h
∑

j=1

pi,jF
2
j

)

Vi = 0ℓ,n−ℓ. (15)This theorem is proved in the appendix, but it is worth noting that Conditions (13)and (14) ensure that {xt, ηt}
∞
t=1 given by Equations (11) and (12) satisfy Equation(8), while Condition (15) ensures that Et−1ηt = 0. This theorem will form the basisfor the iterative tehniques onsidered in this paper.VII. Newton's MethodIn this setion, we show how Newton's Method, or any other root �nding algorithm,an be used to �nd MSV solutions of Equation (8). To make the analysis moretransparent, we assume that A(j) is invertible. In the appendix, we show how torelax that ondition. To �nd a MSV solution, we must �nd matries Vj suh that
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A(j)Vj Π
] is invertible and Equation (15) holds where F 2

j is de�ned via Equation(13). Sine Π′ = [0ℓ,n−ℓ Iℓ], and Vj is only de�ned up to right multipliation by aninvertible matrix, we an assume that
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] (16)



SWITCHING RATIONAL EXPECTATIONS 9for some ℓ× (n− ℓ) matrix Xj . Sine
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= 0ℓ,n−ℓ. (17)So, if we de�ne fi to be the funtion from R
hℓ(n−ℓ) to R

ℓ(n−ℓ) given by
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] (18)and f to be the funtion from R
hℓ(n−ℓ) to R

hℓ(n−ℓ) given by
f (X1, · · · , Xh) = (f1 (X1, · · · , Xh) , · · · , fh (X1, · · · , Xh)) , (19)�nding MSV solutions is equivalent to �nding the roots of f (X1, · · · , Xh). This anbe aomplished using any root �nding tehnique. In the appendix, we give the detailsfor applying Newton's method to �nd the roots of this equation. In the next severalsetions, we outline a di�erent iterative tehnique for �nding MSV solutions.VIII. Expanding the State SpaeIn Setions VIII, IX, and X we assume the existene of an MSV solution to Equation(8) and we show how to write an equivalent model that is linear in variables andhas onstant parameters. Setion XI shows the relationship between the equivalentmodel and the original MSRE model. In these setions we make the additional mildassumption that A2(j) and B2(j) in Equation (8) do not depend on j. In almost alleonomi appliations, this will be the ase.First, we write Equation (8) as follows,

A (ξt)xt = B (ξt) xt−1 + Ψ (ξt) εt + Π (ξt) ηt, (20)where
A (i) =

[

a1 (i)
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] , B (i) =
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] , (21)
Ψ (i) =

[

ψ (i)

0

] and Π (i) =

[

0

π

]

. (22)We now show how to de�ne an expanded state state vetor Xt and onstant parametermatries A,B,Ψ and Π suh that system (20) an be written as follows,
AXt = BXt−1 + Ψut + Πηt. (23)We are interested in the existene and uniqueness of an MSV solution to (20) andfor this purpose Equation (23) is a useful way of representing the model beause ithas onstant parameter matries, A,B,Ψ and Π and beause the shok vetors ut and
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ηt have zero means. These properties allow us to use known tehniques to ompute asolution. IX. Definitions of the Parameter MatriesWe begin by assuming the existene of a family of matries {φi}

h

i=1 where eah
φi has dimension ℓ × n and has full row rank. Later, we will show how to express
{φ1, φ2, ...φh} as the �xed point of a system of nonlinear equations. De�ne the matrix
Φ as follows,
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′
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, (24)and let the matries A, B, and Π be given by the expressions,
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Π
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 . (27)X. Definitions of the ShoksWe now introdue de�nitions of the shoks ut and ηt. Let In denote the n × nidentity matrix, let ei denote the ith olumn of Ih, and let 1h be the h-dimensionalolumn vetor of ones. Let Xt ∈ Rnh be an arbitrary vetor of dimension nh× 1.Next de�ne h matries Si for i ∈ {1, ...h} as follows
Si

(n−ℓ)h×nh

= (diag [b1 (1) , · · · , b1 (h)]) × [(ei1
′
h − P ) ⊗ In] , (28)Equation (28) generates a matrix of dimension (n− ℓ)h×nh where b1 (i) has dimen-sion (n− ℓ)× n and P is h× h. Si onsists of h2 bloks eah of whih is (n− ℓ)× n.For j 6= i the j′th row-blok of Si ontain terms of the form −pjkb1 (j) . The i′throw-blok ontains terms of the form (1 − pik) b1 (i) .Using this notation, we de�ne the vetor of error terms
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0 0

0 0
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SWITCHING RATIONAL EXPECTATIONS 11The error term ut ontains two kinds of shoks that we refer to as swithing shoksand normal shoks. The swithing shoks, represented by the terms
Sξt
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)

, (31)turn on or o� the appropriate bloks of the model to represent the Markov dynamis.The normal shoks, represented by the terms
eξt

⊗ εt, (32)arry the fundamental errors that hit the strutural equations, distributed to theappropriate blok of the expanded system.It is important for our solution tehnique that the errors have mean zero. Sine
ξt is unorrelated with εt, and sine εt has mean zero, the normal shoks satisfy thisproperty. Note also that
Et−1
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)

= 0,where the equality follows from the fat that
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] =







p1i...
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= Peξt−1

.Hene, Et−1 [ut] = 0.XI. The Relationship between the Expanded and the MSRE FormSuppose now that Xt−1 has the additional struture, Xt−1 = eξt−1
⊗ xt−1 andpartition X ′

t as X ′
t =

[

x′1,t, · · · , x
′
h,t

]

. Now partition Equation (23) into three bloksorresponding to the �rst (n− ℓ) h rows the next ℓh rows and the last (ℓ− 1)h rows.This partition orresponds to the three row bloks in Equations (25), (26) and (27).Using the de�nitions of A,B,Ψ,Π, ut and ηt, the �rst blok of Equation (23) reduesto the expression
a1 (i) xi,t =

{

0 for i 6= ξt
b1 (i) xt−1 + ψ (i) εt for i = ξt

, (34)the seond blok redues to
a2

h
∑

i=1

xi,t = b2xt−1 + πηt, (35)and the third blok gives us the equation,
φixi,t = 0 for 1 < i ≤ h. (36)It follows that, when Xt has this additional struture, Equations (34) and (35) re-produe Equation (20) hene, if {Xt, ηt}

∞
t=1 is onsistent with Equation (23) then

{xt, ηt}
∞
t=1 must be onsistent with the original system. The remaining question is



SWITCHING RATIONAL EXPECTATIONS 12onerned with whether the sequene {xt} is bounded and here, we will need to bemore preise about the role of the matries φi in the expanded system.XII. Definitions and TheoremsWe begin by de�ning formally what it means for a stohasti proess to be a solutionto a Markov rational expetations model. We de�ne a stohasti proess {xt, ηt} tobe a solution to the model if it satis�es Equation (20) and if, in addition, the solutionremains bounded in expetation.De�nition 1 (Solution). A solution to Equation (20) is a stohasti proess {xt, ηt}
∞
t=1suh that:(1) The endogenous stohasti proess {ηt} satis�es the property, Et−1 [ηt] = 0.(2) xt is bounded in expetation in the sense that ‖Et [xt+s]‖ < Mt for all s > 0.(3) {xt, ηt}

∞
t=1 jointly satisfy Equation (20).The omplete lass of solutions to an MSRE model is very rih and our omputa-tional experiments with these models suggests that sunspot solutions are pervasive.In this paper we will onentrate on a lass of minimal state variable solutions whihwe de�ne as follows.De�nition 2 (MSV Solution). Let {xt, ηt}

∞
t=1 be a solution to Equation (20). {xt, ηt}

∞
t=1is a minimum state variable solution if and only if:(1) There exist minimal state matries χi for 1 ≤ i ≤ h suh that χξt

xt = 0 for all
t ≥ 0.(2) If {x̃t, η̃t}

∞
t=1 is any solution to Equation (20) suh that χ̃ξt

xt = 0 for all t ≥ 0and the row spae of χ̃i ontains the row spae of χi, then the row spae of χ̃i equalsthe row spae of χi.Our de�nition is onsistent with standard usage, for example, Evans and Honkapo-hja de�ne a minimal state variable solution of a linear di�erene equation to be onewhih �depends linearly on a set of variables...suh that there does not exist a solutionwhih depends linearly on a smaller set of variables� (Evans and Honkapohja 2001,page 176). Condition (2) states that the minimal states matries are as large as pos-sible and hene the variables are restrited to subspae whose dimension is as smallas possible.Our �rst theorem onerns the relationship between MSV solutions to the expandedmodel and MSV solutions to the original model. Note that our de�nition of a minimalstate variable solution applies when h = 1 and hene the MSV solution to Equation(23) is well de�ned.Theorem 2. Suppose {xt, ηt}
∞
t=1 is a minimum state variable solution of Equation (20)and let χi, for 1 ≤ i ≤ h, be the assoiated minimal state matries. Suppose furtherthat χi is of dimension qi × n, and ∑h

i=1 qi ≥ ℓ (h− 1). For 1 ≤ i ≤ h, let φi be any



SWITCHING RATIONAL EXPECTATIONS 13
qi × n submatrix of χi suh that ∑h

i=1 qi = ℓ (h− 1). If
Φ =







e1 ⊗ φ1...
eh ⊗ φh






,then Xt = eξt

⊗ xt is a solution of Equation (23).Proof. See Appendix. �If we know the matries χi assoiated with an MSV solution to Equation (20) thenTheorem 2 tells us that there will typially be many ways to pik the matrix Φ thatis needed to de�ne A in Equation (23). For example, if qi = ℓ for all i ∈ H thenone possible hoie for Φ is to set φ1 to the empty matrix and hoose φi = χi for
i = 2, ...h. This would be onsistent with the de�nition of Φ given in Equation (24).More generally, this de�nition implies that there are other ways of de�ning Φ that donot onform to the struture of Equation (24).So far we have said nothing about how to �nd the matrixΦ. The following de�nitionof the unstable omponent of {A,B} is designed to lead up to a theorem that enablesus to ompute Φ.De�nition 3. Let QSZ = A and QTZ = B be the QZ−deomposition of {A,B},where the upper triangular matries S = (si,j) and T = (ti,j) have been arranged sothat ti,i/si,i is in are in inreasing order.5 Let q ∈ {1, 2..., h} be the integer suh that
ti,i/si,i < 1 if i ≤ q and ti,i/si,i > 1 if i > q. Let Zu, partitioned as Zu = [z1, · · · , zh] ,be the last nk − q rows of Z. We refer to Zu as the unstable omponent of {A,B}.Theorem 3. If [ a′1 (i) z′i

] has rank n for 1 ≤ i ≤ h and the row spae of zi is equalto the row spae of φi for 2 ≤ i ≤ h, then any solution {Xt, ηt}
∞
t=1 of Equation (23)with X0 = eξ0 ⊗ x0 will be of the form Xt = eξt

⊗ xt for all t, where {xt, ηt}
∞
t=1 is asolution of Equation (20).Proof. See Appendix. �Theorem 2 asserts an equivalene between an MSV solution to the original modeland an MSV solution to Equation (23), but sine {χi}

h

i=1 and Φ are both unknownthis theorem is not of muh help in omputing a solution. In ontrast, Theorem 3suggests a way to ompute Φ. For given Φ, we an de�ne A and given {A,B} wean ompute Zu = [z1, · · · , zh]. In general the row spae of zi, omputed in thisway, will not be equal to the row spae of φi. However, in pratie it is possible tode�ne {φi} as a �xed point of a partiular nonlinear map and to ompute this �xedpoint iteratively. Theorem 3 gives onditions whih ensure that a solution of theexpanded system is a solution of the original system. The next two theorems givesome properties of the solutions obtained from the expanded system.5The reader is referred to Gene Golub and Charles Van Loan (1996, page 375) for a disussionof the QZ deomposition and to Sims (2001) for the appliation of the QZ method to solve linearrational expetations models.



SWITCHING RATIONAL EXPECTATIONS 14Theorem 4. Suppose [ a′1 (i) z′i
] has rank n for 1 ≤ i ≤ h and the row spae of zi isequal to the row spae of φi for 2 ≤ i ≤ h. If there exists an ℓ×k matrix Λ suh that

Z2 (Ψ + ΠΛ) = 0, then there exists a solution to Equation (20) and this is the onlysolution of Equation (20) that satis�es the linear restrition φξt
xt = 0 for all t > 0.Proof. See Appendix. �Reall that the de�nition of a solution inludes the restrition of boundedness. It iseasy to �nd arbitrary mean zero sequenes {ηt}

∞
t=1 that generate a stohasti proess

{xt}
∞
1 , onsistent with Equation (20). But these sequenes will not in general bebounded in expetation. Theorem 4, based on Lemma 1 from Lubik and Shorfheide(2003)[page 277℄, provides a ondition under whih one an �nd a sequene {ηt}

∞
t=1whih ensures that ‖Et [xt+s]‖ is bounded.When a bounded solution exists, the matrix Λ de�nes the relationship between thefundamental shoks εt and the endogenous errors ηt. These shoks are related to eahother by the equation

ηt = Λεt. (37)The �nal theorem in this setion provides an answer to the question: How areredued form Markov swithing models related to MSRE models?Theorem 5. Suppose that {Xt, ηt}
∞
t=1 is a solution of Equation (23) and Xt = eξt

⊗xtfor all t ≥ 0. Then
xt = g1 (ξt)xt−1 + g2 (ξt) εt.Proof. See Appendix. �XIII. How to Compute an MSV Solution and Chek if it is UniqueTheorems 3, 4 and 5 work together in the following way. Let the supersript

n on a variable denotes the n′th step of an iterative proedure. Beginning with aset of matries {φ0
i }

h

i=2, de�ne Φ0 using Equation (24) and generate the assoiatedmatrix A0. Next, alulate Z0
u by omputing the QZ deomposition of {A0, B} andset φ1

i = z1
i . This leads to a new matrix A1 and a new set of values for φ1

i . repeatthis proedure and, if it onverges, Theorem 3 implies that Equation (23) generatessequenes {xt, ηt}
∞
t=1 that are onsistent with Equation (20). To hek that {xt}

∞
t=1 isbounded in expetation apply the proedure desribed by Sims (2001) or Harald Uhlig(1999) to hek for existene and or uniqueness of a solution to Equation (23). If aunique solution exists, Sim's proedure generates the matrix Λ from Theorem 4 andTheorem 5 implies that the solution an be written as a VAR with time dependentoe�ients.We end with a word of warning. Although our method identi�es the unique MSVsolution, if one exists, MSRE models often have many other solutions. In Farmeret al (2006) we onstrut an example of a purely forward looking model and weparameterize it in two ways. The �rst leads to the existene of a unique solution andthe seond to multiple indeterminate solutions. We then onsider an MSRE model



SWITCHING RATIONAL EXPECTATIONS 15with an arbitrary transition matrix that swithes between the two forward lookingmodels. In this environment we prove that the MSRE model always has a ontinuumof sunspot equilibria whatever values we hoose for the transition probabilities. Sineour example ontains a unique MSV solution we onlude that uniqueness of the MSVsolution does not imply uniqueness in a larger lass of solutions.XIV. An Illustrative ExampleTo illustrate how to use our method, onsider the following simple dynami equi-librium model
yt = a (ξt)Etyt+1 + b (ξt) yt−1 + ǫt, (38)where ξt ∈ {1, 2} and ǫt is normally distributed with mean zero and variane σ2(ξt).Here m = 2, n = 2 and l = 1. If the MSV solution to (38) exists, it will have theform

yt = g1(ξt)yt−1 + g2(ξt)ǫt. (39)To obtain the solution (39), we propose to write the original model (38) in the fol-lowing expanded form,
AXt = BXt−1 + Ψut + Πηt, (40)where ηt = yt − Et−1yt.To onstrut A, B, Ψ, and ut, we de�ne the matries A1 and B1 as

A1 =

[

1 −a (1) 0 0

0 0 1 −a (2)

]

,

B1 =

[

p11b (1) 0 p12b (1) 0

p21b (2) 0 p22b (2) 0

]

,and the state, Xt, by
Xt =









x11,t

x12,t

x21,t

x22,t









≡









ι(ξt=1)yt

ι(ξt=1)Etyt+1

ι(ξt=2)yt

ι(ξt=2)Etyt+1









.Let
xi,t =

[

xi1,t

xi2,t

]

,for i = 1, 2. If ξt−1 = 1, then x2,t−1 = 0; if ξt−1 = 2, x1,t−1 = 0. It follows thateither the �rst or the third olumn of B1 will be zeroed out by Xt−1. If ξt−1 = j,the nonzero element is p1jb(1) in the �rst row and p2jb(2) in the seond row. Theoe�ient matries A and B are onstruted as
A2 =

[

1 0 1 0

0 0 φ1 φ2

]

, B2 =

[

0 1 0 1

0 0 0 0

]

,

A =

[

A1

A2

]

, B =

[

B1

B2

]

.



SWITCHING RATIONAL EXPECTATIONS 16We now show how to onstrut the vetor of fundamental shoks ut and the matrix
Ψ in suh a way that one of the �rst two rows is always zeroed out (by the shok) andthe remaining row is set equal to b (i) when ξt = i. Using the notation introdued inSetion X, we have

Sξt

2×4

= diag([b(1) 0], : [b(2) 0]) [(eξt
⊗ 1

′
2 − P ) ⊗ I2] ,

=

[

(ι(ξt=1) − p11) b(1) 0 (ι(ξt=1) − p12) b(1) 0

(ι(ξt=2) − p21) b(2) 0 (ι(ξt=2) − p22) b(2) 0

]

,

ut
6×1

=













Sξt

2×40
2×4



 Xt−1
4×1eξt

⊗ ǫt









, Ψ
4×6

=





I
2×2

0
2×2

I
2×20

2×2
0

2×2
0

2×2



 , Π =









0

0

1

0









.The last equation in the expanded system (40) takes are of the zero restritionsin regime 1, but we also need to make sure that when regime 2 ours, x11,t and
x12,t are set to zero. To aomplish this, our method onstrains the the solution Xtto lie in the stable linear subspae. This onstraint is imposed by de�ning a vetor
Z = [z1 z2 z3 z4]

′ suh that
Z ′Xt = 0. (41)Let φ1 = z3 and φ2 = z4. When regime 2 ours at date t, Equation (41) restritsthe vetor {yt, Etyt+1} and, in onjuntion with the last equation of (40), it ensuresthat a linear ombination of x11,t and x12,t is equated to zero:

[

z1 z2
]

[

x11,t

x12,t

]

= 0.A seond linear ombination of these variables is set to to zero by the �rst twoequations in (40). Hene, our method swithes o� the variables assoiated with theregime that does not our and it swithes on the appropriate equations that governthe evolution of yt and Etyt+1 in the regime that does our.Theorem 3 ensures that the solution to (40) is also the solution to the originalswithing model (38). Consider an example in whih a(1) = 0.3, a(2) = 0.7, b(1) =

0.2, and b(2) = 0.5. If only one regime were to exist, the �rst hoie of parametervalues would ause this regime to be determinate and the seond would ause it tobe indeterminate. If the transition matrix is
P =

[

0.9 0.2

0.1 0.8

]

,our method indiates that there is no MSV solution to (40). If the transition matrixis
P =

[

0.9 0.4

0.1 0.6

]

,there exists a unique MSV solution for whih g1(1) = 0.2187, g1(2) = 0.8757, g2(1) =

1.0933, and g2(2) = 1.7513. In summary, this example shows that the existene and



SWITCHING RATIONAL EXPECTATIONS 17uniqueness of an MSV solution to (40) depends, in general, on the values of the modelparameters in eah regime and on the transition matrix P .XV. An Appliation to A Monetary Poliy ModelIn this setion we present simulation results based on a alibrated version of theNew-Keynesian model and we use it to study hanges in output, in�ation, and thenominal interest rate. Clarida, Galí, and Gertler (2000) and Lubik and Shorfheide(2004) argue that the large �utuations in output, in�ation, and interest rates areaused by indeterminay led by passive monetary poliy. Sims and Zha (2006), onthe other hand, �nd no evidene in favor of indeterminay when they allow monetarypoliy to swith regimes stohastially. Furthermore, they �nd that one the modelpermits time variation in disturbane varianes, there is no evidene in favor of poliyhanges at all (see also Cogley and Sargent (2005), Giorgio Primieri (2005) and Uhlig(1997)).One it is known that poliy hanges might our, a rational agent should treatthese hanges probabilistially and the probability of a future poliy hange shouldenter into his urrent deisions. Previous work in this area has negleted these e�etsand all of the studies ited above study regime swithes in a purely redued formmodel. We show in this setion how to use the MSV solution to a MSRE model tostudy the e�ets of regime hange that is rationally antiipated to our. We usesimulation results to show that the persistene and volatility in in�ation and theinterest rate an be the result of (1) poliy hanges, (2) hanges in shok varianes,or (3) hanges in private setor parameters. Hene, our method provides a tool forempirial work, in whih a more formal analysis of the data an be used to disriminatebetween these ompeting explanations.Our regime-swithing poliy model, based on Lubik and Shorfheide (2004), hasthe following three strutural equations:
xt = Etxt+1 − τ(ξt)(Rt − Etπt+1) + zD,t, (42)

πt = β(ξt)Etπt+1 + κ(ξt)xt + zS,t, (43)
Rt = ρR(ξt)Rt−1 + (1 − ρR(ξt)) [γ1(ξt)πt + γ2(ξt)xt] + ǫR,t, (44)where xt is the output gap at time t, πt is the in�ation rate and Rt is the nom-inal interest rate. Both πt and Rt are measured in terms of deviations from theregime-dependent state. The oe�ient τ measures the intertemporal elastiity ofsubstitution; β is the household's disount fator and the parameter κ re�ets therigidity or stikiness of pries.The shoks to the onsumer and �rm's setors, zD,t and zS,t, are assumed to evolveaording to an AR(1) proess:
[

zD,t

zS,t

]

=

[

ρD(ξt) 0

0 ρS(ξt)

] [

zD,t−1

zS,t−1

]

+

[

ǫD,t

ǫS,t

]

,



SWITCHING RATIONAL EXPECTATIONS 18where ǫD,t is the innovation to a demand shok, ǫS,t is an innovation to the supplyshok, and ǫR,t is a disturbane to the poliy rule. All these strutural shoks arei.i.d. and independent of one another. The standard deviations for these shoks are
σD(ξt), σS(ξt), and σR(ξt).Lubik and Shorfheide (2004) estimate a onstant-parameter version of this modelfor the two subsamples: 1960:I-1979:II and 1979:III-1997:IV. In our alibration weonsider two regimes. The parameters in the �rst regime orrespond to their estimatesfor the period 1979:III-1997:IV and the parameters in the seond regime orrespondto those for 1960:I-1979:II. The alibrated values are reported in Tables 1 and 2. Thetransition matrix is alulated by mathing the average duration of the �rst regime tothe length of the �rst subsample and by assuming that the seond regime is absorbingto aommodate the belief that the pre-Volker regime will never return:6

P =

[

0.9872 0

0.0128 1

]

.A simple alulation veri�es that, if only one regime were allowed to exist (in thesense that a rational agent was ertain that no other poliy would ever be followed)the �rst regime would be indeterminate and the seond would be determinate. Whena rational agent forms expetations by taking aount of regime hanges, we need toknow if there exists a unique MSV solution. To address this question, we stak thevariables into the following 14-element vetor, where ι(ξt=1) is the indiator funtion,
ι = 1 if ξt = i and 0 otherwise;

X1,t =























ι(ξt=1)























xt

Etxt+1

πt

Etπt+1

Rt

zD,t

zS,t













































, X2,t =























ι(ξt=2)























xt

Etxt+1

πt

Etπt+1

Rt

zD,t

zS,t













































,

Xt =

[

X1,t

X2,t

]

.The vetor of the three i.i.d. fundamental shoks is
ǫt ≡





ǫD,t

ǫS,t

ǫR,t



 .Following the proedure illustrated in Setion XIV, we write this regime-swithingmodel as an expanded linear system:
AXt = BXt−1 + Ψut + Πηt.6One ould also math the average duration of the seond regime to the length of the seondsubsample, whih give p22 = 0.9865. The unique solution exists for this situation as well and the�ndings presented in this setion are unhanged.



SWITCHING RATIONAL EXPECTATIONS 19In our omputations we applied our method to this system, and in eah parameteri-zation that we report below, we obtained a unique MSV solution.This kind of forward-looking model provides a natural laboratory to experimentwith di�erent senarios in light of the reent debate on hanges in poliy or hangesin shok varianes. The estimates provided by Lubik and Shorfheide (2004) andreported in Tables 1 and 2 mix hanges in oe�ients related to monetary poliywith hanges in other parameters in the model sine LS do not aount for the e�etof the probability of regime hange on the urrent behavior. One variation in thestrutural parameter values is to let the oe�ient on the in�ation variable in thepoliy equation (44) hange while holding all the other parameters �xed aross the tworegimes. Tables 3 and 4 report the parameter values orresponding to this senario,in whih all the other parameters take the average of the values in Tables 1 and 2over the two regimes. We all this senario �poliy hange only�.In a seond senario, �variane hange only�, we keep the value of the poliy oe�-ient γ1 at 2.19 for both regimes while letting the standard deviation σD in the �rstregime be �ve times larger than that in the seond regime and keeping the value of
σS at 0.3712 for both regimes.7 The parameter values for this senario are reportedin Tables 5 and 6.The last senario we onsider allows only the parameters in the private setor tohange. We all it �private-setor hange only�. The idea is to study whether thepersistene and volatility in in�ation an be generated by hanges in the privatesetor in a forward-looking model. We let the oe�ient τ be 0.06137 in the �rstregime and 0.6137 in the seond regime.8 Tables 7 and 8 report the values of all theparameters for this senario. Similar results an be ahieved if one lets the value of
κ in the �rst regime be muh smaller than that in the seond regime.Using the method disussed in Setion XIII, we obtain a unique MSV solutionthat haraterizes eah of our four senarios. Figures 1-3 display simulated paths ofthe interest rate, in�ation, and output gap under eah of them. With the originalestimates reported in Lubik and Shorfheide (2004), both in�ation and the interestrate in the �rst regime display persistent and large �utuations relative to their pathsin the seond regime. When we restrit hanges to the poliy oe�ient γ1 only, theresults are similar. We �nd that smaller values of γ1(1), ause larger values for thepersistene and volatility of Rt, πt, and xt.When we allow only the variane to hange, one again, all three variables havelarger volatility in the �rst regime than the seond (third panels in Figures 1-3). Thedegree of persistene and volatility in these variables in the �rst regime inreases with7Sims and Zha (2006) �nd that di�erenes in the shok standard deviation aross regimes an beon the sale of as high as 10 − 12 times. One ould also derease the di�erene in σD and inreasethe di�erene in σS or experiment with di�erent ombinations. Our result that hanges in varianesmatter a great deal will hold.8It is not unlikely that the maximum likelihood estimate of τ is lose to zero or even has a wrongsign. The Bayesian prior that puts almost zero probability on the region of τ near zero, as typiallydone in the existing literature, is unreasonable. See Fuka and Pagan (2006).



SWITCHING RATIONAL EXPECTATIONS 20persistene of the shok zD,t or zS,t and with the size of shok variane σD,t or σSt
. Inour �nal senario, we show that even if there is no hange in the strutural varianes,in�ation and the interest rate an have muh larger �utuations in the �rst regimethan in the seond regime when the parameters of the private setor equations areallowed to hange aross regimes. The bottom panels of Figures 1 - 3 illustrate thisase.These examples teah us that the sharply di�erent dynamis in in�ation, the inter-est rate, and output observed before and after 1980 ould potentially be attributed todi�erent soures. The methods we have developed here give researhers the tools toaddress this and other issues in a regime-swithing forward looking model in whih arational agent takes into aount the probability of regime hange when forming hisexpetations. XVI. ConlusionIn related work, Farmer et. al., (2006), we showed that indeterminay is pervasive ina simple example of an MSRE model with no lagged state variables. Sine there is noreason to think that the purely forward looking example is speial in any essential way,there is an urgent need to re�ne the solution onept used in MSRE models, beyondthat of a bounded sequene that satis�es a given funtional equation. Arguably,the MSV solution, introdued by MCallum, is the most natural andidate. MSVsolutions are typially stable under real time learning and, as we demonstrated inSetion XV, they are rih enough to explain heteroskedastiity aross poliy regimeswithin a model in whih all of the private setor equations are invariant aross regimes.Our paper ontains two main parts. First, we provided a method to write a vari-able parameter rational expetations model in expanded form with state invariantparameters and we found onditions under whih a solution to the expanded modelis also a solution to the original one. We showed how to ompute an MSV solutionto the expanded model and to hek to see if this solution is unique and bounded. Inthe seond part of the paper, we applied our methods to the New Keynesian modeland showed that the MSV solution provides a natural way to ompare alternativeparsimonious explanations of observed US data.



SWITCHING RATIONAL EXPECTATIONS 21Table 1. Model oe�ients (original)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.69 0.77 0.997 0.77 0.17Seond regime 0.54 0.58 0.993 2.19 0.30Table 2. Shok varianes (original)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.68 0.82 0.60 0.27 0.87 0.23Seond regime 0.83 0.85 0.84 0.18 0.37 0.18Table 3. Model oe�ients (poliy hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 0.77 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 4. Shok varianes (poliy hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Seond regime 0.755 0.835 0.72 0.225 0.6206 0.205



SWITCHING RATIONAL EXPECTATIONS 22Table 5. Model oe�ients (variane hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 2.19 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 6. Shok varianes (variane hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.3712 0.205Seond regime 0.755 0.835 0.72 1.125 0.3712 0.205Table 7. Model oe�ients (private setor hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.0614 0.6750 0.9949 2.19 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 8. Shok varianes (private setor hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Seond regime 0.755 0.835 0.72 0.225 0.6206 0.205



SWITCHING RATIONAL EXPECTATIONS 23
0 50 100 150 200 250 300

−10

−5

0

5

10

R

Original

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Policy change only

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Variance change only

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Private sector change onlyFigure 1. Simulated interest rate paths from our regime-swithingforward looking model. The shaded area represents the �rst regime.
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SWITCHING RATIONAL EXPECTATIONS 26Appendix A. Proof of TheoremsA.1. Proof of Theorem 1. Let {xt, ηt}
∞
t=1 be a MSV solution of Equation (8).Denote the span of this solution, onditional on ξt = j, by V̂j and let Vj be any

n × (n − ℓ) matrix whose olumns span V̂j. Applying the Et−1 [·|ξt = j] operator toEquation (8) gives
A(j)Et−1 [xt|ξt = j] = B(j)xt−1 + ΠEt−1 [ηt|ξt = j] . (A1)This implies that every element of B(j)Vi is a linear ombination of the olumns ofthe matrix [A(j)Vj Π

]. Thus there exist (n−ℓ)×(n−ℓ) matries F 1
i,j and ℓ×(n−ℓ)matries F 2

i,j suh that
[

A(j)Vj Π
]

[

F 1
i,j

F 2
i,j

]

= B(j)Vi.Furthermore, sine
h
∑

j=1

pξt−1,jA(j)Et−1 [xt|ξt = j] =

h
∑

j=1

pξt−1,j (B(j)xt−1 + ΠEt−1 [ηt|ξt = j])

=

h
∑

j=1

pξt−1,jB(j)xt−1and Π is of full olumn rank, we an hoose the F 1
i,j and F 2

i,j so that
h
∑

j=1

pi,jF
2
i,j = 0ℓ,n−ℓ.Subtrating Equation (A1) from Equation (8) gives

A(j) (xt −Et−1 [xt|ξt = j]) = Ψ(j)εt + Π (ηt − Et−1 [ηt|ξt = j]) .This implies that there exist (n− ℓ)× k matries G1
j and ℓ× k matries G2

j suh that
[

A(j)Vj Π
]

[

G1
j

G2
j

]

= Ψ(j).Let V ∗
j denote the generalized inverse of Vj and de�ne

x̂t = Vξt
F 1

ξt−1,ξt
V ∗

ξt−1
x̂t−1 + Vξt

G1
ξt
εt−1,

η̂t = −
(

F 2
ξt−1,ξt

V ∗
ξt−1

x̂t−1 +G2
ξt
εt−1

)

.This will also be a solution of Equation (8) whose span, onditional on ξt = j, is V̂j.Sine {xt, ηt}
∞
t=1 is a MSV solution, it must be the ase that x̂t = xt and η̂t = ηt.Finally, [A(j)Vj Π

] must be invertible beause otherwise the G1
j and G2

j wouldnot be unique. So, de�ne
[

F 1
j

F 2
j

]

=
[

A(j)Vj Π
]−1

B(j).
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j Vi = F 1

i,j = F 1
i,jV

∗
i Vi and F 2

j Vi = F 2
i,j = F 2

i,jV
∗
i Vi. Thus

(

h
∑

j=1

pi,jF
2
j

)

Vi = 0ℓ,n−ℓ,and
xt = Vξt

F 1
ξt
xt−1 + Vξt

G1
ξt
εt−1,

ηt = −
(

F 2
ξt
xt−1 +G2

ξt
εt−1

)

.A.2. Newton's Method. Newton's method is an iterative tehnique for �ndingroots. It has exellent loal onvergene properties and, while global onvergene isnot guaranteed, in pratie it global onvergene properties are good. If (X(i)
1 , · · · , X

(i)
h

)is the ith iteration, then the (i+ 1)th iteration is given by
vec
(

X
(i+1)
1 , · · · , X

(i+1)
h

)

= vec
(

X
(i)
1 , · · · , X

(i)
h

)

− f ′
(

X
(i)
1 , · · · , X

(i)
h

)−1

vec
(

f
(

X
(i+1)
1 , · · · , X

(i+1)
h

))

,where
f ′ (X1, · · · , Xh) =







f ′
1 (X1, · · · , Xh)...
f ′

h (X1, · · · , Xh)






,and

f ′
i (X1, · · · , Xh) =

(

∂fi

∂X1

(X1, · · · , Xh) , · · · ,
∂fi

∂Xh

(X1, · · · , Xh)

)

.A straight forward alulation shows
∂fi

∂Xj

(X1, · · · , Xh) = pi,j

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)A(j)−1

[

In−ℓ

−Xi

])′

⊗ Iℓif i 6= j and
∂fi

∂Xi

(X1, · · · , Xh) = pi,i

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)A(j)−1

[

In−ℓ

−Xi

])′

⊗ Iℓ

+ In−ℓ ⊗

(

h
∑

k=1

pi,k

[

Xk Iℓ
]

B(k)

)

A(i)−1

[

0n−ℓ,ℓ

−Iℓ

]if i = j. To be ompleted is the ase that Aj is singular.A.3. Proof of Theorem 2. Beause {xt, ηt}
∞
t=1 satis�es Equation (23), {Xt, ηt}

∞
t=1will satisfy the �rst two bloks of Equation (23). Beause the row spae of φi isontained in the row spae of χi, {Xt, ηt}

∞
t=1 will satisfy the last blok of Equation(23). Beause of the Kroneker produt struture of Xt, Et [Xt+s] will be bounded ifand only if Et [xt+s] is bounded. Finally, Et−1 [ηt] beause {xt, ηt}

∞
t=1 is a solution ofEquation (23). Thus {Xt, ηt}

∞
t=1 is a solution of Equation (23).



SWITCHING RATIONAL EXPECTATIONS 28A.4. Proof of Theorem 3. The rux of the proof will be to show that any solution
{Xt, ηt}

∞
t=1 of Equation (23) with X0 = eξ0 ⊗x0 must be of the form Xt = eξt

⊗xt forall t. Beause Equation is a linear system, it follows easily from Sims (2001) thatany solution of Equation (23) must satisfy ZuXt = 0 for all 0 ≤ t. This togetherwith the fats that (e′i ⊗ φi)Xt = 0 and that the row spae of zi is equal to the rowspae of φi for all 0 < t and 2 ≤ i ≤ m, imply that (e′i ⊗ zi)Xt = 0 for all 0 < t and
1 ≤ i ≤ m.We show thatXt = eξt

⊗xt, by indution on t. By assumption, X0 = eξ0⊗x0. Nowassume that Xt−1 = eξt−1
⊗ xt−1. Let X ′

t = [x′1, · · · , x
′
h], where xi is a n dimensionalolumn vetor. From Equation (23), it is easy to see that

[

a1 (i)

zi

]

xi = 0for i 6= ξt. Sine [ a′1 (i) z′i
] has rank n, this implies that xi = 0 for i 6= ξt. Thus

Xt has the required Kroneker produt struture.All that remains to be shown is that {xt, ηt}
∞
t=1 is a solution of Equation (20).The �rst two bloks of equations in (23) together with the de�nition of ut and Siand the Kroneker produt struture of Xt, imply that xt and ηt satisfy Equation(20). Beause {Xt, ηt}

∞
t=1 is a solution of Equation (23), Et−1 [ηt] = 0. Given theKroneker produt struture of Xt, it is lear that Et [Xt+s] will be bounded if andonly if Et [xt+s] is bounded. Thus all the onditions for {xt, ηt}

∞
t=1 to be a solutionof Equation (20) are satis�ed.A.5. Proof of Theorem 4. From Sims (2001), a solution of Equation (23) willexist if and only if there exists a matrix Λ suh that Z2 (Ψ + ΠΛ) = 0. So, if

Z2 (Ψ + ΠΛ) = 0, then a solution of Equation exists and from Theorem (3), thissolution is of the form Xt = eξt
⊗ xt where xt is a solution of Equation (20). FromLubik and Shorfheide (2003)[page 277℄, we know that any solution of linear systemgiven by Equation (23) will be of the form (Xt, ηt) where

Xt = G1Xt−1 +G2ut +G3γtThe term G3γt will be present only if the solution of Equation (23) is not unique. Inthis ase, the random variable γt an be any mean zero proess. Suppose that thesolution were not unique. Sine γt an be any mean zero proess, it an be takento be identially zero. In this ase, Xt would be equal to G1Xt−1 + G2ut. Sine Xtmust have a Kroneker produt form, this implies that G1Xt−1 + G2ut must have aKroneker produt form. This, in turn, implies that G3γt must have a Kronekerprodut form for all mean zero proess γt. But this an happen only if G3 is zero.This implies that Xt is a unique solution of Equation (23). If xt is any solution ofEquation (20) satisfying φξt
xt = 0 for all t > 0, then Xt = eξt

⊗ xt will be a solutionof Equation 23. Sine these solutions are unique, so must be solutions of Equation(20) satisfying φξt
xt = 0 for all t > 0.A.6. Proof of Theorem 5. To be added.
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