MINIMAL STATE VARIABLE SOLUTIONS TO
MARKOV-SWITCHING RATIONAL EXPECTATIONS MODELS

ROGER E. A. FARMER DANIEL F. WAGGONER AND TAO ZHA

ABSTRACT. We develop a new method for computing minimal state variable so-
lutions (MSV) to Markov switching rational expectations models. We provide an
algorithm to compute an MSV solution and we show how to test a given solution
for uniqueness and boundedness. We construct an example, calibrated to US data,
and we show that the MSV solution in our example is unique. This solution can
potentially explain the observed reduction in the variance of inflation and the inter-
est rate after 1980, in three different ways. The policy rule might have changed, the
variance of the fundamental shocks might have fallen or the private sector equations
might have been different across regimes. We compare these three explanations for
the change in variance and we show that any one of them can potentially account
for the facts. Our paper provides the necessary tools for a future empirical study
of this issue.

I. INTRODUCTION

Following the introduction of vector autoregressions (VARS) to macroeconomics by
Christopher Sims (1980) it was quickly realized that it is difficult to find macroe-
conomic applications for which model parameters remain stable over long periods
of time. One approach to parameter instability, pursued by Richard Clarida, Jordi
Gali and Mark Gertler (2000, CGG), and followed up by Thomas Lubik and Frank
Schorfheide (2004, LS), is to break the sample into sub-periods and to estimate regime-
dependent structural models in which one or more of the model’s parameters are dif-
ferent across regimes. This is not entirely satisfactory since forward looking agents
living in a world in which parameters are known to change occasionally would be
expected to take possible parameter change into account when forming their expec-
tations.

An alternative approach to parameter instability, suggested by the work of James
Hamilton (1989) and pursued in a complete macro model by Christopher Sims and
Tao Zha (2006), is to estimate a backward-looking vector autoregression (VAR) with
regime dependent parameters. Their approach has its limitations since it does not
allow for the presence of forward-looking components that are present in a dynamic
stochastic general equilibrium (DSGE) model. To allow for change in the structural
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parameters of a model of this kind, we need a method for solving rational expectations
models that incorporates regime change. This paper provides such a method.

Our approach is to expand the state space of a Markov switching rational expec-
tations model (MSRE) and to write an equivalent model in this expanded space that
has state-invariant parameters. We define a class of minimal state variable solutions
(McCallum 1983, MSV) to the expanded model and we prove that any MSV solution
is also a solution to the MSRE. We provide a set of necessary and sufficient condi-
tions for the MSV solution to be unique and we show that MSV solutions can be
characterized as a vector-autoregression with regime switching, of the kind studied
by Hamilton (1989) and Sims and Zha (2006).

The class of solutions we identify is large, but it is not exhaustive. In a related
paper (Farmer, Waggoner, and Zha 2006) we provide an example of a model with
a unique MSV solution and we provide conditions under which this example also
has a continuum of non MSV sunspot solutions.! In this paper, however, we study
only the MSV solutions. The MSV solution is arguably the most interesting class to
study since it is often stable under real time learning (Evans and Honkapohja 2001),
(McCallum 2003).

In the second part of our paper, we provide an additional reason to be interested
in MSV solutions to MSRE models. Clarida et al have argued that inflation, interest
rates and output were all more volatile in the period before 1980 than after. Following
CGG, it has become common to argue that the change in volatility observed at this
time occurred because the Fed under Arthur Burns and William Miller followed a
passive monetary policy that permitted the existence of sunspot equilibria. According
to this interpretation of the data, the drop in volatility was a consequence of the
removal of an additional variance term that, under Burns-Miller, was contributed by
sunspots.

In Section XV, we present a calibrated New-Keynesian model of the kind estimated
by Lubik and Schorfheide (2004) over two separate policy regimes. Unlike LS, we fix
all of the parameters of the model except for the inflation coefficient on the Taylor rule
and we show that this model possesses a unique MSV solution. Under our calibration,
the move from a passive to an active regime leads to a reduction in the variance of
output, inflation and the interest rate, of the same magnitude as observed in the data
even when the standard deviation of all of the shocks is the same across regimes,
as conjectured by Beyer-Farmer (2003). In contrast, Stock and Watson (2003) and
Sims Zha (2006) studied a backward-looking Markov switching model and found no
evidence in favor of changes in monetary policy. Instead, they attributed the change

LA sunspot solution is one where the state variables are functions of an extraneous random variable
(Cass and Shell 1983). In Farmer, Waggoner, and Zha (2006), current state variables depend on
expectations of future variables, but not on lagged state variables, and we show that there always
exists a sunspot solution to the MSRE model when the parameters of the model in at least one regime
would lead to indeterminacy if that regime were an absorbing state. This contradicts the results in
Davig and Leeper (2005) who claim that determinacy of equilibrium depends on the probabilities
contained in the Markov transition matrix.



SWITCHING RATIONAL EXPECTATIONS 3

in the time series behavior of the variables to time variation in shock variances. To
examine the plausibility of this explanation we compare the policy change model with
an alternative in which there are changes to the shock variances of the forward looking
structural model.

II. How OUR METHOD DIFFERS FROM PREVIOUS APPROACHES

Consider a structural linear rational expectations model with variables x; and con-
stant parameters, where x; may include unobservable expectations conditional on
date t information. The solution to a model of this kind can be described as a VAR
in ;. Now consider an extension that allows the structural parameters to be func-
tions of a state & that is itself governed by a Markov chain. This is the model that
we will study in this paper. Although our model is linear in x;, it is non-linear in the
complete set of state variables {z;, &} since its parameters, which are functions of &,
enter the model multiplicatively with z;.

Troy Davig and Eric Leeper (2005) and Davig, Leeper and Hess Chung (2003) have
provided examples of models that are non-linear in both variables and parameters.
The Davig-Leeper examples are more general than the linear-in-variables model that
we consider here and, in certain special cases, they can be solved explicitly. However,
the Davig-Leeper approach relies on special assumptions that cannot easily be gen-
eralized and even if their solution algorithm could be extended to a general class of
non-linear variable-parameter rational expectations models, their method still does
not provide a way of establishing that a proposed solution is unique or even that it
is bounded and hence consistent with the transversality conditions of the structural
model (Farmer, Waggoner, and Zha 2006).

Lars Svensson and Noah Williams (2005, SW) have developed an algorithm to
compute a solution to a large class of linear-in-variables regime-switching models that
is closely related to the class that we discuss in this paper. However, the SW solution
method also lacks a diagnostic to inform the experimenter when the solution is unique
and their algorithm may converge to a unique solution, to one of a set of indeterminate
solutions, or to an unbounded stochastic difference equation that violates appropriate
transversality conditions. In contrast, the method we describe in this paper computes
a solution to a large class of variable-parameter linear rational expectations models
and, within this class, it identifies whether the solution is unique, indeterminate or
unstable. In this latter case, equilibrium (defined as a bounded stochastic process)
fails to exist.?

Our approach builds on unpublished notes by Roger Farmer, Eric Leeper and Troy
Davig (FLD) that describe a possible method for solving a linear rational expecta-
tions model by expanding the state space in a way that mimics existing techniques for

20ur method co-incides with the SW solution when the equilibrium is unique and has the added
advantage of identifying the conditions for determinacy, indeterminacy and existence. In Appendix
A, we show that the SW method will often converge to indeterminate equilibria or to unbounded
solutions (non-existence).
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finding a vector autoregressive representation of a Markov chain. The FLD approach,
although promising, failed to maintain the important property that expectational
errors must be mean zero. This omission is fatal because it gives incorrect results;
remedying this error has proved to be a challenging task. This paper solves this prob-
lem and provides a way of converting a variable-parameter linear rational expectations
model into an equivalent constant parameter model in a larger state space.

III. THE CONSTANT PARAMETER MODEL

We introduce the following class of linear models.

A B ' II
aq bl 'QZ) 0
—0)x —0)x — —L)xL
(n=ten gy = | o gy | Ok | | (70 Uz (1)
as nx1 bz nx1 0 kx1 T Ix1
Ixn Ixn Ixk Ixt

where x; is an n x 1 set of endogenous variables, ay, as, by, b2, 1, and 7 are conformable
parameter matrices, ¢; is a k x 1 vector of i.i.d. random variables and 7, is an ¢ x 1
vector of endogenous shocks, defined by the second ¢ rows of this system.

As an example, consider the model

Yr = ally [y | Q] + by + oey, (2)
with matrices aq, by, as, ba,1) and 7w defined as follows:
a=[1 —a], by=[b 0],

az=[1 0], bo=[0 1],
’lp:O-7 7T:]‘7

and

Ye
Ty = )
' [ By [Yi11] }
The first n—/¢ equations of the model define the evolution of x; as functions of lagged

variables and fundamental shocks. The second ¢ equations define the endogenous
errors. We partition the parameter matrices conformably and refer to the parameters
of the first block of n — ¢ equations with the subscript 1 and to the second block of ¢
equations with the subscript 2.

A solution to Equation (1) is a bounded stochastic process {x;}. Chris Sims (2001)
provides a solution algorithm and sets of conditions on the matrices A, B, ¥ and II
under which there exists a unique solution, no solution or multiple solutions. Ex-
istence of a solution requires that the endogenous shock 7, can be adjusted every
period to keep the system in a linear subspace for which solutions remain bounded
and it depends on the properties of the matrices ¥ and II and on the roots of the
characteristic equation of the matrix pencil |A — AB| = 0.> When a unique solution

3The roots of this characteristic equation are known as generalized eigenvalues of {4, B}. For a
definition and discussion of the pencil of a quadratic form see Gantmacher (2000, Volume 1, page
310).
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exists it has a representation in the form
Ty = Fll’tfl + Fggt. (3)

Economic data often cannot be described by constant parameter models and James
Hamilton (1989) amongst others, has suggested that reduced form models be de-
scribed instead by VARs in which the parameters change occasionally. For example,
the vector z; might be described by the equation:

xy =T (&) xem1 + T2 (&) &, (4)

where & follows a Markov chain. Models of this kind have proved quite successful at
describing the behavior of gdp and they have been applied by Sims and Zha (2002)
to describe the behavior of inflation, interest rates and output. But how are reduced
form Markov switching models related to structural rational expectations models? It
is this question to which we now turn.

IV. THE MARKOV CHAIN AS AN AR PROCESS

The technique we will use to solve variable-parameter linear rational expectations
models is based on an extension of the method, described in Hamilton (1994, page
679), by which a Markov chain can be described by an autoregressive process. In this
section we explain this method and in Section V we show how it can be generalized
to forward looking systems.

Let & be a two-state Markov chain with transition matrix P and define a pair of
variables z;;, i € {1,2} such that z;; = & if & = i and zero otherwise. Since the
columns of P are conditional probability distributions the elements of P, denoted
[pij], satisfy the restriction

2
> py=1
i=1

Let v;; be the difference between the realization of z; and its conditional mean and
write z; as a vector-valued process:

2t = Pz1 + vy, (5)
where the vector v;, defined as,
v = B (2|Q-1) — 2, (6)

has zero conditional mean. The conditional distribution of v, is chosen to ensure that
the state variable z; satisfies the property,

1 .
i 0 | lf gt =1
Zit = , forall ¢t (7)
0] .
i 1 | lf ét =2
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To keep z; in the appropriate space, the conditional distribution of v; must depend on
the regime switching probabilities [p;;]. This distribution is given by the expression;

PP g =,

(

[ V1t (ft—l = 1) ] . S
(7 (étfl = 1) B r .
—P11 . .
\ _1—p21_ e =2,
([ 1mre ] g
. I 27) ! ’
[ U1t (étfl = 2) ] _
(7 (étfl = 2) r .

—Pi12 .
if & = 2.
\ | 1 —pa i S

The shock vector v, has zero conditional mean since

, 1 —pu R
By [v|€—1 = 1] = ps { —p];l ] e { 1 _p7192i ] ’

[ e[ 2]

I — py D1i
. 0
i RE

The following sections show how to extend the idea that a Markov chain has an
autoregressive representation to the general linear rational expectations model. In the
extension we will exploit the fact that the autoregressive representation has constant
state-independent parameters to find a solution method for regime switching models
with rational expectations.

V. THE MARKOV-SWITCHING MODEL

This section introduces a class of Markov-switching rational expectations models
and in Sections VIII-XI we show how to compute a minimal state variable solution to
models in this class by expanding the state space. In Section XII we present formal
definitions and we prove that a solution to the expanded model is also a solution to
the original Markov switching model. We discuss the properties of equilibrium and
we show that the conditions governing existence and uniqueness are more complex
than in the case of single regime models. We propose a class of minimum state
variable solutions (McCallum 1983, MSV) and we demonstrate that when a unique
equilibrium exists, it is in this class. Our algorithm can also identify an MSV solution
to models with indeterminate equilibria (when one exists) and it produces a diagnostic
that alerts the researcher to the presence of multiplicity or to the non-existence of a
bounded solution.
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Consider the following generalization of Equation (1),

A(&e) B(&) W(&t) TI(&t)
AN ECANN AN
n—~0)xXn n—~—€)xn n—~0)xk n—~) x4
Ty = Tyo1 + g + Nt 8
ag (ft) n><t1 bz (ft) nt>< 11 'QZ)Q (ft) k><t1 o (ft) gxtl ( )
Ixn Ixn Ixk Ixt
To = Zo, (9)

where &, follows an h—state Markov chain, h € H = {1,...h}, with stationary tran-
sition matrix P and 7, is a mean zero endogenous process. The matrix IT (&) is
assumed to have full rank, and thus without loss of generality we take m (&) = 0,
o (&) = Ly, 1 (&) = ¥ (&), and ¢y (&) = 0, where I, is the ¢ x £ identity matrix. In
most applications it will be the case that z; is partitioned as

Yt
Ty = 2 ) (10)

Eyyi

where y; is of dimension ¢ and the second block of Equation (8) is of the form y, =
E;_1y; + ;. Though we do not impose this restriction in this paper, it is useful to
keep this example in mind when interpreting our results.

VI. MINIMUM STATE VARIABLE SOLUTIONS

In the constant parameter case, solutions of Equation (1) are obtained by restricting
the solution z; to lie in some linear subspace of R™. The potential subspaces are
determined by the generalized eigenvalue-eigenvector decomposition of A and B.* For
instance, if the solution is restricted to the subspace is spanned by the eigenvectors
associated with the eigenvalues that are less than one in absolute value, then one
obtains the stable manifold. This is the largest subspace that supports bounded
solutions, assuming, of course, that bounded solutions exist. If one considers the
partition of x; given by Equation (10), then restricting the solution to lie in some
linear subspace forces linear relations among F;y;.1, y; and z,. A MSV solution is
one in which enough restrictions have been imposed so that FE,y;.; is completely
determined and so there can be no sunspot shocks, but not so many restrictions
that y; and z; are constrained. We do not want to constrain gy, and z; because we
would like the solution to exist for any initial conditions of y; and z;. In the constant
parameter case this means that the potential subspaces are generated by any set of
n — { eigenvectors whose eigenvalues are all less than one in absolute value.

f 2, is a solution of Equation (1) and the span of the support of z; over all ¢ is the linear subspace
V, then it must be the case that V is generated by some subset of the generalized eigenvectors
of A and B. However, it is not necessarily the case any subspace generated by a subset of the
generalized eigenvectors of A and B will support a solution of Equation (1). It is in this sense that
the eigenvectors only generate potential subspaces that support solutions. Existence conditions must
always be confirmed.
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These ideas can be generalized to the time varying parameter case. Define 1¢,,_;
to be indicator function which is one if s; = i and zero otherwise and define the span
of x;, conditional on s; = ¢, to be the linear span of the support z;1(,,—;; over all
t. Again, considering the partition of x; given by Equation (10), we want to impose
enough restrictions so that F,y,;,; is completely determined and so there can be no
sunspot shocks, but not so many that y, and z; are constrained. This implies that
the dimension of each conditional span must be n — s. Unlike the constant parameter
case, there is not an easy to apply eigenvalue condition that allows us to identify
all potential candidates for the conditional spans and so we must resort to iterative
techniques to find MSV solutions. However, we do have the following characterization
of any MSV solution.

Theorem 1. If {x;,m:},-, is a MSV solution of Equation (8), then

Ty = ‘/fthlth't_l + ‘/&Gétgt’ (].].)
m == (Fgrea + Gge) (12)

where Vj is n x (n — (), F}' is (n — ) x n, F} is { x n, G} is (n — () x k, and G7 is
¢ x k. Furthermore, [A(j)V; II] is invertible and

o, 1) [ ] = B0) 13

A6, 1) || = i 14

J
h

(Z Pi,ij) Vi=0¢n—s. (15)
j=1

This theorem is proved in the appendix, but it is worth noting that Conditions (13)
and (14) ensure that {x;,7;},~, given by Equations (11) and (12) satisfy Equation
(8), while Condition (15) ensures that F; 11, = 0. This theorem will form the basis
for the iterative techniques considered in this paper.

VII. NEWTON’S METHOD

In this section, we show how Newton’s Method, or any other root finding algorithm,
can be used to find MSV solutions of Equation (8). To make the analysis more
transparent, we assume that A(j) is invertible. In the appendix, we show how to
relax that condition. To find a MSV solution, we must find matrices V; such that
[A(j)V; TI] is invertible and Equation (15) holds where F? is defined via Equation
(13). Since II" = [0gn—¢ 1], and Vj is only defined up to right multiplication by an
invertible matrix, we can assume that

a6 = | (16)
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for some ¢ x (n — ¢) matrix X;. Since
F? = [0pne L] [AG)V; 1] B())
Equation (15) becomes

> X 1) BOAG™ || =0 (1)

So, if we define f; to be the function from R*("=9 to RY"=9 given by

FX ) = Yom [ 1] BGAG | ] (18)

J
and f to be the function from RM(=0 to RM("=0) given by

f(Xla"' >Xh) = (fl (Xla"' >Xh)7"' afh(Xla"' 7Xh))> (19)

finding MSV solutions is equivalent to finding the roots of f (X, -+, X}). This can
be accomplished using any root finding technique. In the appendix, we give the details
for applying Newton’s method to find the roots of this equation. In the next several
sections, we outline a different iterative technique for finding MSV solutions.

VIII. EXPANDING THE STATE SPACE

In Sections VIII, IX, and X we assume the existence of an MSV solution to Equation
(8) and we show how to write an equivalent model that is linear in variables and
has constant parameters. Section XI shows the relationship between the equivalent
model and the original MSRE model. In these sections we make the additional mild
assumption that Ay(j) and Bsy(j) in Equation (8) do not depend on j. In almost all
economic applications, this will be the case.

First, we write Equation (8) as follows,

A&)xy = B (&) w1 + U (&) e + TL (&) m, (20)
where
Ao =] sa-| 0], 1)

\Il(i):[wéi)] andH(i):[O}. (22)

T

We now show how to define an expanded state state vector X; and constant parameter
matrices A, B, ¥ and II such that system (20) can be written as follows,

AXt = BXt—l + \I/ut + Hnt (23)

We are interested in the existence and uniqueness of an MSV solution to (20) and
for this purpose Equation (23) is a useful way of representing the model because it
has constant parameter matrices, A, B, ¥ and II and because the shock vectors u; and
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7; have zero means. These properties allow us to use known techniques to compute a
solution.

IX. DEFINITIONS OF THE PARAMETER MATRICES

We begin by assuming the existence of a family of matrices {gbi}?:l where each
¢; has dimension ¢ x n and has full row rank. Later, we will show how to express
{b1, P2, ...0n} as the fixed point of a system of nonlinear equations. Define the matrix
® as follows,

e) ® o
o = : : (24)
(6—1)hxnh )
€, @ ¢

and let the matrices A, B, and II be given by the expressions,
diag (ay (1),--- a1 (h))

nhxnh - @z (I) @z ’ (25)
nhénh - b2 o b2 ’ (26)
0
0

X. DEFINITIONS OF THE SHOCKS

We now introduce definitions of the shocks u; and 7. Let I, denote the n x n
identity matrix, let e; denote the i** column of I, and let 1 be the h-dimensional
column vector of ones. Let X, € R be an arbitrary vector of dimension nh x 1.

Next define i matrices S; for i € {1,...h} as follows

Si = (diag[by (1),--- by (R)]) x [(ei1}, — P) @ L], (28)
(n—0)hxnh
Equation (28) generates a matrix of dimension (n — £) h x nh where b (i) has dimen-
sion (n —£) x n and P is h x h. S; consists of h? blocks each of which is (n — ¢) x n.
For j # i the j'th row-block of S; contain terms of the form —p;;b (j). The i'th
row-block contains terms of the form (1 — p;z) by (7).
Using this notation, we define the vector of error terms

Sft (eft—l ® (1;1 ® In) Xt—l)

— 29
Uy eft ® £ ) ( )
and the matrix ¥ as follows
I(n,g)h d’la’g (¢ (1) y ,'QZ) (h))
. k\If o 0 0 (30)
nhXx(k+n—~¢) 0 0
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The error term u; contains two kinds of shocks that we refer to as switching shocks
and normal shocks. The switching shocks, represented by the terms

Sft (eft—l ® (1;1 ® In) Xt—l) s (31)

turn on or off the appropriate blocks of the model to represent the Markov dynamics.
The normal shocks, represented by the terms

€¢, X Et, (32)

carry the fundamental errors that hit the structural equations, distributed to the
appropriate block of the expanded system.

It is important for our solution technique that the errors have mean zero. Since
& is uncorrelated with ¢, and since €, has mean zero, the normal shocks satisfy this
property. Note also that

Etil I:Sgt (egt—l ® (1Ih ® In) thl):|
(33)
= dl(lg (bl (].) yre ,bl (h)) ((Et—l [eft] — Peft—l) ® (1;1 ® In) Xt_l) _ 0’

where the equality follows from the fact that

P1i

Eialegl=| ¢ | = Peg ;.

Phi

Hence, F;_4 [u] = 0.

XI. THE RELATIONSHIP BETWEEN THE EXPANDED AND THE MSRE FORM

Suppose now that X; ; has the additional structure, X, = e , ® ;-1 and
partition X/ as X] = |2, ,:c;m} . Now partition Equation (23) into three blocks
corresponding to the first (n — ¢) h rows the next ¢h rows and the last (¢ — 1) h rows.
This partition corresponds to the three row blocks in Equations (25), (26) and (27).
Using the definitions of A, B, W,I1, u; and 7, the first block of Equation (23) reduces
to the expression

. o 0 for 4 ;é é‘t
ar (1) @i = { b (i) a1 + 0 (i)e, fori=¢& (34)
the second block reduces to
h
sz Z Ty = baxy_q + ), (35)

i=1
and the third block gives us the equation,
(bixi,t =0forl<i < h. (36)

It follows that, when X, has this additional structure, Equations (34) and (35) re-
produce Equation (20) hence, if {X;,7;},~, is consistent with Equation (23) then
{xy,m};2, must be consistent with the original system. The remaining question is
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concerned with whether the sequence {x;} is bounded and here, we will need to be
more precise about the role of the matrices ¢; in the expanded system.

XII. DEFINITIONS AND THEOREMS

We begin by defining formally what it means for a stochastic process to be a solution
to a Markov rational expectations model. We define a stochastic process {z¢, 7;:} to
be a solution to the model if it satisfies Equation (20) and if, in addition, the solution
remains bounded in expectation.

Definition 1 (Solution). A solution to Equation (20) is a stochastic process {z¢, m:},-,
such that:

(1) The endogenous stochastic process {n;} satisfies the property, E; 1 [1;] = 0.

(2) x; is bounded in expectation in the sense that ||E; [x;1s]]| < M, for all s > 0.

(3) {xs, mi},o, jointly satisfy Equation (20).

The complete class of solutions to an MSRE model is very rich and our computa-
tional experiments with these models suggests that sunspot solutions are pervasive.
In this paper we will concentrate on a class of minimal state variable solutions which
we define as follows.

Definition 2 (MSV Solution). Let {x;, n;},-, be a solution to Equation (20). {x, n:},-,
is a minimum state variable solution if and only if:

(1) There exist minimal state matrices y; for 1 < i < h such that x¢,z; = 0 for all
t>0.

(2) If {@,7m:},-, is any solution to Equation (20) such that ygz; = 0 for all ¢ > 0
and the row space of x; contains the row space of x;, then the row space of x; equals
the row space of ;.

Our definition is consistent with standard usage, for example, Evans and Honkapo-
hja define a minimal state variable solution of a linear difference equation to be one
which “depends linearly on a set of variables...such that there does not exist a solution
which depends linearly on a smaller set of variables” (Evans and Honkapohja 2001,
page 176). Condition (2) states that the minimal states matrices are as large as pos-
sible and hence the variables are restricted to subspace whose dimension is as small
as possible.

Our first theorem concerns the relationship between MSV solutions to the expanded
model and MSV solutions to the original model. Note that our definition of a minimal
state variable solution applies when h = 1 and hence the MSV solution to Equation
(23) is well defined.

Theorem 2. Suppose {, n:},, is a minimum state variable solution of Equation (20)
and let y;, for 1 < i < h, be the associated minimal state matrices. Suppose further
that x; is of dimension ¢; x n, and 2?21 ¢ > C(h—1). For1l<i<h,let ¢; be any
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¢; X n submatrix of y; such that Z?Zl ¢g=0Mh-1). If

e ® ¢
¢ = :

en ® o
then X; = e, ® x; is a solution of Equation (23).

Proof. See Appendix. O

If we know the matrices x; associated with an MSV solution to Equation (20) then
Theorem 2 tells us that there will typically be many ways to pick the matrix & that
is needed to define A in Equation (23). For example, if ¢; = ¢ for all i € H then
one possible choice for ® is to set ¢; to the empty matrix and choose ¢; = x; for
i = 2,...h. This would be consistent with the definition of ® given in Equation (24).
More generally, this definition implies that there are other ways of defining ® that do
not conform to the structure of Equation (24).

So far we have said nothing about how to find the matrix ®. The following definition
of the unstable component of {A, B} is designed to lead up to a theorem that enables
us to compute P.

Definition 3. Let QSZ = A and QTZ = B be the QQZ—decomposition of {A, B},
where the upper triangular matrices S = (s; ;) and T' = (¢; ;) have been arranged so
that t;;/s;; is in are in increasing order.” Let ¢ € {1,2..., h} be the integer such that
tii/si; <lifi<gandt;;/s;; >1ifi>q. Let Z,, partitioned as Z, = [z1,-- - , 4],
be the last nk — ¢ rows of Z. We refer to Z, as the unstable component of {A, B}.

Theorem 3. If | a} (i) 2| ] has rank n for 1 <4 < h and the row space of z; is equal
to the row space of ¢; for 2 < i < h, then any solution {X;,n,},~, of Equation (23)
with Xy = eg, ® zo will be of the form X; = e;, ® x; for all ¢, where {z;, n:};-, is a
solution of Equation (20).

Proof. See Appendix. O

Theorem 2 asserts an equivalence between an MSV solution to the original model
and an MSV solution to Equation (23), but since {x;}I_, and ® are both unknown
this theorem is not of much help in computing a solution. In contrast, Theorem 3
suggests a way to compute ®. For given ®, we can define A and given {A, B} we
can compute Z, = [z1,---,2,]. In general the row space of z;, computed in this
way, will not be equal to the row space of ¢;. However, in practice it is possible to
define {¢;} as a fixed point of a particular nonlinear map and to compute this fixed
point iteratively. Theorem 3 gives conditions which ensure that a solution of the
expanded system is a solution of the original system. The next two theorems give
some properties of the solutions obtained from the expanded system.

The reader is referred to Gene Golub and Charles Van Loan (1996, page 375) for a discussion
of the QZ decomposition and to Sims (2001) for the application of the QZ method to solve linear
rational expectations models.
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Theorem 4. Suppose | @) (i) 2/ ] has rank n for 1 <4 < h and the row space of z; is
equal to the row space of ¢; for 2 < i < h. If there exists an ¢ x k matrix A such that
Zy (¥ +IIA) = 0, then there exists a solution to Equation (20) and this is the only
solution of Equation (20) that satisfies the linear restriction ¢¢,a; = 0 for all ¢ > 0.

Proof. See Appendix. O

Recall that the definition of a solution includes the restriction of boundedness. It is
easy to find arbitrary mean zero sequences {1 },-, that generate a stochastic process
{x:}{°, consistent with Equation (20). But these sequences will not in general be
bounded in expectation. Theorem 4, based on Lemma 1 from Lubik and Schorftheide
(2003)[page 277], provides a condition under which one can find a sequence {n;},-,
which ensures that ||E; [x4,4]|| is bounded.

When a bounded solution exists, the matrix A defines the relationship between the
fundamental shocks €; and the endogenous errors 7;. These shocks are related to each
other by the equation

Ny = Aey. (37)

The final theorem in this section provides an answer to the question: How are

reduced form Markov switching models related to MSRE models?

Theorem 5. Suppose that {X;, .}~ is a solution of Equation (23) and X; = e¢, ® x;
for all ¢ > 0. Then

= g1 (&) xe—1 + 92 (&) &
Proof. See Appendix. O

XIII. How 7O COMPUTE AN MSV SOLUTION AND CHECK IF IT IS UNIQUE

Theorems 3, 4 and 5 work together in the following way. Let the superscript
n on a variable denotes the n’th step of an iterative procedure. Beginning with a
set of matrices {(b?}?:Q, define ®° using Equation (24) and generate the associated
matrix A°. Next, calculate Z° by computing the QZ decomposition of {A° B} and
set ¢} = z!. This leads to a new matrix A' and a new set of values for ¢}. repeat
this procedure and, if it converges, Theorem 3 implies that Equation (23) generates
sequences {x;,n:},-, that are consistent with Equation (20). To check that {z,;},° is
bounded in expectation apply the procedure described by Sims (2001) or Harald Uhlig
(1999) to check for existence and or uniqueness of a solution to Equation (23). If a
unique solution exists, Sim’s procedure generates the matrix A from Theorem 4 and
Theorem 5 implies that the solution can be written as a VAR with time dependent
coefficients.

We end with a word of warning. Although our method identifies the unique MSV
solution, if one exists, MSRE models often have many other solutions. In Farmer
et al (2006) we construct an example of a purely forward looking model and we
parameterize it in two ways. The first leads to the existence of a unique solution and
the second to multiple indeterminate solutions. We then consider an MSRE model
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with an arbitrary transition matrix that switches between the two forward looking
models. In this environment we prove that the MSRE model always has a continuum
of sunspot equilibria whatever values we choose for the transition probabilities. Since
our example contains a unique MSV solution we conclude that uniqueness of the MSV
solution does not imply uniqueness in a larger class of solutions.

XIV. AN ILLUSTRATIVE EXAMPLE

To illustrate how to use our method, consider the following simple dynamic equi-
librium model

Yo = a (&) Eyerr +0(§e) Y1 + €, (38)
where & € {1,2} and ¢ is normally distributed with mean zero and variance ().

Here m = 2, n = 2 and [ = 1. If the MSV solution to (38) exists, it will have the
form

Yr = 91(§)ye—1 + ga(&r)er (39)

To obtain the solution (39), we propose to write the original model (38) in the fol-
lowing expanded form,
AXt = BXt,1 + \I['U/t —+ th (40)
where 1y =y — Ey 1y
To construct A, B, ¥, and u;, we define the matrices A; and B; as
1 —a(l) 0 0 }

Al:{o 0 1 —a(2)

Bl _ |: pllb(l) 0 plgb(l) 0 :|
pglb (2) 0 p22b (2) 0 ’
and the state, X;, by
T11¢ Lig,=1)Yt
X, = T12¢ — L(gt:1)Etyt+1
To1t Lig,=2)Yt
T22.¢ L(gt:Q)Etyt+1

Let

fori =1,2. If §_1 = 1, then 29,1 = 0; if {1 = 2, 141 = 0. It follows that
either the first or the third column of B; will be zeroed out by X; ;. If & 1 = 7,
the nonzero element is py;6(1) in the first row and py;b(2) in the second row. The
coefficient matrices A and B are constructed as

1 0 1 O 01 01
A = ,B — 3
? {0 0 ¢ ¢2} ? { }

el
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We now show how to construct the vector of fundamental shocks u; and the matrix
U in such a way that one of the first two rows is always zeroed out (by the shock) and
the remaining row is set equal to b (i) when & = 4. Using the notation introduced in
Section X, we have

S¢, = diag([b(1) 0], : [6(2) 0]) [(e¢, ® 15 — P) @ L],

2x4
_ -<L(5t=1) - pll) b<1> 0 (L(&:l) - p12) b<1> 0

[(t(g=2) = P21) b(2) O (eig=2) —p22)b(2) 0]’
% I 0 I !
Ue = 284 Xt—l U = 2x2  2X2 2x2 I = 0
61 oxa| |7 axe O 0 o}’ 1

- 2X2  2x2 2X2
€, ® € 0

The last equation in the expanded system (40) takes care of the zero restrictions
in regime 1, but we also need to make sure that when regime 2 occurs, z;;; and
x12, are set to zero. To accomplish this, our method constrains the the solution X,
to lie in the stable linear subspace. This constraint is imposed by defining a vector
Z = [z 23 23 z4)" such that

7'X; = 0. (41)

Let ¢ = z3 and ¢9 = z4. When regime 2 occurs at date ¢, Equation (41) restricts
the vector {y;, Eyy;41} and, in conjunction with the last equation of (40), it ensures
that a linear combination of z1;, and z2, is equated to zero:

[ Zz}[“u]:o.

T12¢

A second linear combination of these variables is set to to zero by the first two
equations in (40). Hence, our method switches off the variables associated with the
regime that does not occur and it switches on the appropriate equations that govern
the evolution of y; and E;y;,; in the regime that does occur.

Theorem 3 ensures that the solution to (40) is also the solution to the original
switching model (38). Consider an example in which a(1) = 0.3, a(2) = 0.7, b(1) =
0.2, and b(2) = 0.5. If only one regime were to exist, the first choice of parameter
values would cause this regime to be determinate and the second would cause it to
be indeterminate. If the transition matrix is

0.9 0.2
P= [0.1 0.8} ’
our method indicates that there is no MSV solution to (40). If the transition matrix

p_ [0.9 0.4] |

1S

0.1 0.6

there exists a unique MSV solution for which g;(1) = 0.2187, ¢;(2) = 0.8757, g2(1) =
1.0933, and ¢»(2) = 1.7513. In summary, this example shows that the existence and
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uniqueness of an MSV solution to (40) depends, in general, on the values of the model
parameters in each regime and on the transition matrix P.

XV. AN APPLICATION TO A MONETARY PoLICY MODEL

In this section we present simulation results based on a calibrated version of the
New-Keynesian model and we use it to study changes in output, inflation, and the
nominal interest rate. Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide
(2004) argue that the large fluctuations in output, inflation, and interest rates are
caused by indeterminacy led by passive monetary policy. Sims and Zha (2006), on
the other hand, find no evidence in favor of indeterminacy when they allow monetary
policy to switch regimes stochastically. Furthermore, they find that once the model
permits time variation in disturbance variances, there is no evidence in favor of policy
changes at all (see also Cogley and Sargent (2005), Giorgio Primiceri (2005) and Uhlig
(1997)).

Once it is known that policy changes might occur, a rational agent should treat
these changes probabilistically and the probability of a future policy change should
enter into his current decisions. Previous work in this area has neglected these effects
and all of the studies cited above study regime switches in a purely reduced form
model. We show in this section how to use the MSV solution to a MSRE model to
study the effects of regime change that is rationally anticipated to occur. We use
simulation results to show that the persistence and volatility in inflation and the
interest rate can be the result of (1) policy changes, (2) changes in shock variances,
or (3) changes in private sector parameters. Hence, our method provides a tool for
empirical work, in which a more formal analysis of the data can be used to discriminate
between these competing explanations.

Our regime-switching policy model, based on Lubik and Schorfheide (2004), has
the following three structural equations:

vy = By — 7(&)(Re — Evmsr) + 2pys (42)
m = B(&) Eympr + k(&) me + 25, (43)
Ry = pr(§)Ri—1 + (1 — pr(&)) (&) me + v2(&)we] + €ry, (44)

where z; is the output gap at time ¢, m,; is the inflation rate and R; is the nom-
inal interest rate. Both m; and R; are measured in terms of deviations from the
regime-dependent state. The coefficient 7 measures the intertemporal elasticity of
substitution; 3 is the household’s discount factor and the parameter  reflects the
rigidity or stickiness of prices.

The shocks to the consumer and firm’s sectors, zp; and zg;, are assumed to evolve
according to an AR(1) process:

[ ZDt ] _ [ PD(&) 0 ] l ZDt—1 ] + [ €Dt ]
St 0 ,OS(&) 28 t—1 €St ’
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where €p; is the innovation to a demand shock, €g; is an innovation to the supply
shock, and ep, is a disturbance to the policy rule. All these structural shocks are
i.i.d. and independent of one another. The standard deviations for these shocks are
op(&), 0s(&), and oR(&).

Lubik and Schorfheide (2004) estimate a constant-parameter version of this model
for the two subsamples: 1960:1-1979:1T and 1979:1TI-1997:1V. In our calibration we
consider two regimes. The parameters in the first regime correspond to their estimates
for the period 1979:111-1997:1V and the parameters in the second regime correspond
to those for 1960:1-1979:11. The calibrated values are reported in Tables 1 and 2. The
transition matrix is calculated by matching the average duration of the first regime to
the length of the first subsample and by assuming that the second regime is absorbing
to accommodate the belief that the pre-Volcker regime will never return:%

0.9872 0
P= l0.0128 1] '

A simple calculation verifies that, if only one regime were allowed to exist (in the
sense that a rational agent was certain that no other policy would ever be followed)
the first regime would be indeterminate and the second would be determinate. When
a rational agent forms expectations by taking account of regime changes, we need to
know if there exists a unique MSV solution. To address this question, we stack the
variables into the following 14-element vector, where ¢(¢,—1) is the indicator function,
t=1if & =i and 0 otherwise;

Ty Ty
Eixiqy Eivi
Uv Ty
X1t = |teg=1) | Eimg y Xog = |tg=2) | Eimiga ,
Ry Ry
ZDt ZDt
L ZSt ] L ZSit ]

X ]

The vector of the three i.i.d. fundamental shocks is

€Dt
€= | €sy
€Rt
Following the procedure illustrated in Section XIV, we write this regime-switching

model as an expanded linear system:
AXt = BXt—l + \I/ut + Hnt

60ne could also match the average duration of the second regime to the length of the second
subsample, which give pss = 0.9865. The unique solution exists for this situation as well and the
findings presented in this section are unchanged.
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In our computations we applied our method to this system, and in each parameteri-
zation that we report below, we obtained a unique MSV solution.

This kind of forward-looking model provides a natural laboratory to experiment
with different scenarios in light of the recent debate on changes in policy or changes
in shock variances. The estimates provided by Lubik and Schorfheide (2004) and
reported in Tables 1 and 2 mix changes in coefficients related to monetary policy
with changes in other parameters in the model since LS do not account for the effect
of the probability of regime change on the current behavior. One variation in the
structural parameter values is to let the coefficient on the inflation variable in the
policy equation (44) change while holding all the other parameters fixed across the two
regimes. Tables 3 and 4 report the parameter values corresponding to this scenario,
in which all the other parameters take the average of the values in Tables 1 and 2
over the two regimes. We call this scenario “policy change only”.

In a second scenario, “variance change only”, we keep the value of the policy coeffi-
cient v; at 2.19 for both regimes while letting the standard deviation op in the first
regime be five times larger than that in the second regime and keeping the value of
og at 0.3712 for both regimes.” The parameter values for this scenario are reported
in Tables 5 and 6.

The last scenario we consider allows only the parameters in the private sector to
change. We call it “private-sector change only”. The idea is to study whether the
persistence and volatility in inflation can be generated by changes in the private
sector in a forward-looking model. We let the coefficient 7 be 0.06137 in the first
regime and 0.6137 in the second regime.® Tables 7 and 8 report the values of all the
parameters for this scenario. Similar results can be achieved if one lets the value of
k in the first regime be much smaller than that in the second regime.

Using the method discussed in Section XIII, we obtain a unique MSV solution
that characterizes each of our four scenarios. Figures 1-3 display simulated paths of
the interest rate, inflation, and output gap under each of them. With the original
estimates reported in Lubik and Schorfheide (2004), both inflation and the interest
rate in the first regime display persistent and large fluctuations relative to their paths
in the second regime. When we restrict changes to the policy coefficient v, only, the
results are similar. We find that smaller values of v;(1), cause larger values for the
persistence and volatility of R;, m;, and x;.

When we allow only the variance to change, once again, all three variables have
larger volatility in the first regime than the second (third panels in Figures 1-3). The
degree of persistence and volatility in these variables in the first regime increases with

Sims and Zha (2006) find that differences in the shock standard deviation across regimes can be
on the scale of as high as 10 — 12 times. One could also decrease the difference in op and increase
the difference in og or experiment with different combinations. Our result that changes in variances
matter a great deal will hold.

81t is not unlikely that the maximum likelihood estimate of 7 is close to zero or even has a wrong
sign. The Bayesian prior that puts almost zero probability on the region of 7 near zero, as typically
done in the existing literature, is unreasonable. See Fukac and Pagan (2006).
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persistence of the shock zp; or zg; and with the size of shock variance op; or og,. In
our final scenario, we show that even if there is no change in the structural variances,
inflation and the interest rate can have much larger fluctuations in the first regime
than in the second regime when the parameters of the private sector equations are
allowed to change across regimes. The bottom panels of Figures 1 - 3 illustrate this
case.

These examples teach us that the sharply different dynamics in inflation, the inter-
est rate, and output observed before and after 1980 could potentially be attributed to
different sources. The methods we have developed here give researchers the tools to
address this and other issues in a regime-switching forward looking model in which a
rational agent takes into account the probability of regime change when forming his
expectations.

XVI. CONCLUSION

In related work, Farmer et. al., (2006), we showed that indeterminacy is pervasive in
a simple example of an MSRE model with no lagged state variables. Since there is no
reason to think that the purely forward looking example is special in any essential way,
there is an urgent need to refine the solution concept used in MSRE models, beyond
that of a bounded sequence that satisfies a given functional equation. Arguably,
the MSV solution, introduced by McCallum, is the most natural candidate. MSV
solutions are typically stable under real time learning and, as we demonstrated in
Section XV, they are rich enough to explain heteroskedasticity across policy regimes
within a model in which all of the private sector equations are invariant across regimes.

Our paper contains two main parts. First, we provided a method to write a vari-
able parameter rational expectations model in expanded form with state invariant
parameters and we found conditions under which a solution to the expanded model
is also a solution to the original one. We showed how to compute an MSV solution
to the expanded model and to check to see if this solution is unique and bounded. In
the second part of the paper, we applied our methods to the New Keynesian model
and showed that the MSV solution provides a natural way to compare alternative
parsimonious explanations of observed US data.
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TABLE 1. Model coefficients (original)

Structural Equations
Parameter T K I} Y1 Ve
First regime 0.69 0.77 0.997 0.77 0.17
Second regime | 0.54 0.58 0.993 2.19 0.30

TABLE 2. Shock variances (original)

Shock Processes

Parameter pPD  Ps PR Op Os OR
First regime 0.68 0.82 0.60 0.27 0.87 0.23
Second regime | 0.83 0.85 0.84 0.18 0.37 0.18

TABLE 3. Model coefficients (policy change only)

Structural Equations

Parameter T K I} Y1 Yo
First regime 0.6137 0.6750 0.9949 0.77 0.235
Second regime | 0.6137 0.6750 0.9949 2.19 0.235

TABLE 4. Shock variances (policy change only)

Shock Processes

Parameter PD ps PR OD g OR

First regime 0.755 0.835 0.72 0.225 0.6206 0.205

Second regime | 0.755 0.835 0.72 0.225 0.6206 0.205

21
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TABLE 5. Model coefficients (variance change only)

Structural Equations

Parameter

T K 54 Mo

First regime

0.6137 0.6750 0.9949 2.19 0.235

Second regime | 0.6137 0.6750 0.9949 2.19 0.235

TABLE 6. Shock variances (variance change only)

Shock Processes

Parameter

PD Ps PR  OD Os OR

First regime

0.755 0.835 0.72 0.225 0.3712 0.205

Second regime

0.755 0.835 0.72 1.125 0.3712 0.205

TABLE 7. Model coefficients (private sector change only)

Structural Equations

Parameter

T K B T e

First regime

0.0614 0.6750 0.9949 2.19 0.235

Second regime | 0.6137 0.6750 0.9949 2.19 0.235

TABLE 8. Shock variances (private sector change only)

Shock Processes

Parameter

PD pPs PR Op gs OR

First regime

0.755 0.835 0.72 0.225 0.6206 0.205

Second regime

0.755 0.835 0.72 0.225 0.6206 0.205

22
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FIGURE 1. Simulated interest rate paths from our regime-switching
forward looking model. The shaded area represents the first regime.
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FIGURE 2. Simulated inflation paths from our regime-switching for-

ward looking model. The shaded area represents the first regime.
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FIGURE 3. Simulated output gap paths from our regime-switching for-
ward looking model. The shaded area represents the first regime.
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APPENDIX A. PROOF OF THEOREMS

A.l. Proof of Theorem 1. Let {x;,7:},-, be a MSV solution of Equation (8).
Denote the span of this solution, conditional on & = j, by \7] and let V; be any
n x (n — £) matrix whose columns span V;. Applying the E;_; [-|§ = j] operator to
Equation (8) gives

A Er-1 [2]& = j] = B(j)ze-r + 1B & = J] - (A1)

This implies that every element of B(j)V; is a linear combination of the columns of
the matrix [A(j)V; II]. Thus there exist (n—¢) x (n—{) matrices F}}; and £ x (n—/)
matrices F}?; such that

1

Ay, 1 |7| =BG
Z?]
Furthermore, since

h h
> e G A B [wl& =31 = Y per (BU)weor + TE [ = j))
j=1 j=1

h
= > pe_iBU)Tia
j=1

and IT is of full column rank, we can choose the F}!; and F7; so that

h

F2 =0

pz,] i,j — Ytn—¢
Jj=1

Subtracting Equation (A1) from Equation (8) gives

A(G) (zr — By 2] = j]) = W (j)er + 1L (e — Eon [0l = J]) -

This implies that there exist (n — ) x k matrices G} and £ x k matrices G such that

. G} ‘
[0, 1 |g4| = w0,
J
Let V" denote the generalized inverse of V; and define
Ty = VitFé—l,Eth:q'%tfl + ‘/&G%t‘gt*b
M= — (Fé—l,ﬁtvgﬂi‘t_l + thet_l) :
This will also be a solution of Equation (8) whose span, conditional on & = j, is VJ
Since {z;, n:},-, is a MSV solution, it must be the case that &; = z; and 7 = n,.

Finally, [A(j)V; II] must be invertible because otherwise the G} and G? would
not be unique. So, define

-1

2| = Loy m7 B0
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It is easy to see that F|V; = F', = F;V*V; and F}V; = F?; = F2,V;*V;. Thus

h
<Z pz,ij) Vi=0¢n—r,
j=1

and
T = ‘/%tFéxt—l + ‘/&Gétc‘:t_l,
N = — (Féxt—l + thf‘:t—l) .

A.2. Newton’s Method. Newton’s method is an iterative technique for finding
roots. It has excellent local convergence properties and, while global convergence is

not guaranteed, in practice it global convergence properties are good. If <X 1@), e X f(f)>

is the ' iteration, then the (i + 1) iteration is given by
vec (Xl(iﬂ), e ,X}(fﬂ)) = vec (Xl(i), e ,X}(f)>

. i —1 i i
_ f’ (Xl(l)v"' ,X,g”) vec (f (Xl(Hl),"' ’Xlgwrl)))’

where
Ji(Xa, -, Xa)
fr(Xy,-- X)) = : ;
f;L (Xh c. ’Xh)
and
f{(le... 7Xh) = (88—)];1()(1’ 7Xh)7"' ’aa_)‘?h()(h... 7Xh)>-
A straight forward calculation shows

aa)]; (X1, Xp) = piy ([IM Onee] BU)AG)™ [in;D ol

if i # j and

g)ﬁ (X1, -, Xn) = pig ([In—ﬁ Ou-ce] BUAG)™ [i")‘(‘;D ol

Yl ® (szuk (X L] B “’)) Al [Oz_fi’z}

k=1

if ¢ = j. To be completed is the case that A, is singular.

A.3. Proof of Theorem 2. Because {z;,n;},-, satisfies Equation (23), {X¢, m},—,
will satisfy the first two blocks of Equation (23). Because the row space of ¢; is
contained in the row space of x;, {X;, m},-, will satisfy the last block of Equation
(23). Because of the Kronecker product structure of X, E; [X;,,] will be bounded if
and only if E; [x;,,] is bounded. Finally, E;_; [1:] because {x;,m;},~, is a solution of
Equation (23). Thus {X;,n:},~, is a solution of Equation (23).
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A.4. Proof of Theorem 3. The crux of the proof will be to show that any solution
{X¢, m}2, of Equation (23) with Xy = eg, ® xp must be of the form X; = e¢, ® x, for
all . Because Equation is a linear system, it follows easily from Sims (2001) that
any solution of Equation (23) must satisfy Z,X; = 0 for all 0 < ¢. This together
with the facts that (e} ® ¢;) X; = 0 and that the row space of z; is equal to the row
space of ¢; for all 0 < t and 2 < i < m, imply that (¢, ® z;) X; = 0 for all 0 < ¢ and
1< <m.

We show that X; = e¢, ®x¢, by induction on t. By assumption, Xy = eg, ®w9. Now
assume that X; 1 = e, , @ x4_y. Let X = [2],---, )], where z; is a n dimensional
column vector. From Equation (23), it is easy to see that

l alzgi) ] o

for i # &. Since [ a} (i) 2, | has rank n, this implies that z; = 0 for ¢ # &. Thus
X, has the required Kronecker product structure.

All that remains to be shown is that {z;,m},~, is a solution of Equation (20).
The first two blocks of equations in (23) together with the definition of w, and S;
and the Kronecker product structure of X;, imply that z; and 7, satisfy Equation
(20). Because {X;,n:};~, is a solution of Equation (23), E;_; ] = 0. Given the
Kronecker product structure of Xy, it is clear that F; [X;, ] will be bounded if and
only if E; [z4;,] is bounded. Thus all the conditions for {x;,m};~, to be a solution
of Equation (20) are satisfied.

A.5. Proof of Theorem 4. From Sims (2001), a solution of Equation (23) will
exist if and only if there exists a matrix A such that Z, (¥ +1IIA) = 0. So, if
Zy (¥ +1IIA) = 0, then a solution of Equation exists and from Theorem (3), this
solution is of the form X; = e;, ® x; where z; is a solution of Equation (20). From
Lubik and Schorfheide (2003)[page 277], we know that any solution of linear system
given by Equation (23) will be of the form (X, ;) where

X = G1Xi1 + Gauy + Gy,

The term G37; will be present only if the solution of Equation (23) is not unique. In
this case, the random variable 7; can be any mean zero process. Suppose that the
solution were not unique. Since 7; can be any mean zero process, it can be taken
to be identically zero. In this case, X; would be equal to G;X;_1 + Gou;. Since X,
must have a Kronecker product form, this implies that G1X;_; + Gou; must have a
Kronecker product form. This, in turn, implies that G37; must have a Kronecker
product form for all mean zero process ;. But this can happen only if G5 is zero.
This implies that X, is a unique solution of Equation (23). If x, is any solution of
Equation (20) satisfying ¢¢,x; = 0 for all ¢ > 0, then X; = e¢, ® z; will be a solution
of Equation 23. Since these solutions are unique, so must be solutions of Equation
(20) satisfying ¢¢,x; = 0 for all ¢ > 0.

A.6. Proof of Theorem 5. To be added.
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