
MINIMAL STATE VARIABLE SOLUTIONS TOMARKOV-SWITCHING RATIONAL EXPECTATIONS MODELSROGER E. A. FARMER DANIEL F. WAGGONER AND TAO ZHAAbstra
t. We develop a new method for 
omputing minimal state variable so-lutions (MSV) to Markov swit
hing rational expe
tations models. We provide analgorithm to 
ompute an MSV solution and we show how to test a given solutionfor uniqueness and boundedness. We 
onstru
t an example, 
alibrated to US data,and we show that the MSV solution in our example is unique. This solution 
anpotentially explain the observed redu
tion in the varian
e of in�ation and the inter-est rate after 1980, in three di�erent ways. The poli
y rule might have 
hanged, thevarian
e of the fundamental sho
ks might have fallen or the private se
tor equationsmight have been di�erent a
ross regimes. We 
ompare these three explanations forthe 
hange in varian
e and we show that any one of them 
an potentially a

ountfor the fa
ts. Our paper provides the ne
essary tools for a future empiri
al studyof this issue. I. Introdu
tionFollowing the introdu
tion of ve
tor autoregressions (VARs) to ma
roe
onomi
s byChristopher Sims (1980) it was qui
kly realized that it is di�
ult to �nd ma
roe-
onomi
 appli
ations for whi
h model parameters remain stable over long periodsof time. One approa
h to parameter instability, pursued by Ri
hard Clarida, JordiGalí and Mark Gertler (2000, CGG), and followed up by Thomas Lubik and FrankS
horfheide (2004, LS), is to break the sample into sub-periods and to estimate regime-dependent stru
tural models in whi
h one or more of the model's parameters are dif-ferent a
ross regimes. This is not entirely satisfa
tory sin
e forward looking agentsliving in a world in whi
h parameters are known to 
hange o

asionally would beexpe
ted to take possible parameter 
hange into a

ount when forming their expe
-tations.An alternative approa
h to parameter instability, suggested by the work of JamesHamilton (1989) and pursued in a 
omplete ma
ro model by Christopher Sims andTao Zha (2006), is to estimate a ba
kward-looking ve
tor autoregression (VAR) withregime dependent parameters. Their approa
h has its limitations sin
e it does notallow for the presen
e of forward-looking 
omponents that are present in a dynami
sto
hasti
 general equilibrium (DSGE) model. To allow for 
hange in the stru
turalDate: De
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hing, volatility, rational expe
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essarily re�e
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SWITCHING RATIONAL EXPECTATIONS 2parameters of a model of this kind, we need a method for solving rational expe
tationsmodels that in
orporates regime 
hange. This paper provides su
h a method.Our approa
h is to expand the state spa
e of a Markov swit
hing rational expe
-tations model (MSRE) and to write an equivalent model in this expanded spa
e thathas state-invariant parameters. We de�ne a 
lass of minimal state variable solutions(M
Callum 1983, MSV) to the expanded model and we prove that any MSV solutionis also a solution to the MSRE. We provide a set of ne
essary and su�
ient 
ondi-tions for the MSV solution to be unique and we show that MSV solutions 
an be
hara
terized as a ve
tor-autoregression with regime swit
hing, of the kind studiedby Hamilton (1989) and Sims and Zha (2006).The 
lass of solutions we identify is large, but it is not exhaustive. In a relatedpaper (Farmer, Waggoner, and Zha 2006) we provide an example of a model witha unique MSV solution and we provide 
onditions under whi
h this example alsohas a 
ontinuum of non MSV sunspot solutions.1 In this paper, however, we studyonly the MSV solutions. The MSV solution is arguably the most interesting 
lass tostudy sin
e it is often stable under real time learning (Evans and Honkapohja 2001),(M
Callum 2003).In the se
ond part of our paper, we provide an additional reason to be interestedin MSV solutions to MSRE models. Clarida et al have argued that in�ation, interestrates and output were all more volatile in the period before 1980 than after. FollowingCGG, it has be
ome 
ommon to argue that the 
hange in volatility observed at thistime o

urred be
ause the Fed under Arthur Burns and William Miller followed apassive monetary poli
y that permitted the existen
e of sunspot equilibria. A

ordingto this interpretation of the data, the drop in volatility was a 
onsequen
e of theremoval of an additional varian
e term that, under Burns-Miller, was 
ontributed bysunspots.In Se
tion XV, we present a 
alibrated New-Keynesian model of the kind estimatedby Lubik and S
horfheide (2004) over two separate poli
y regimes. Unlike LS, we �xall of the parameters of the model ex
ept for the in�ation 
oe�
ient on the Taylor ruleand we show that this model possesses a unique MSV solution. Under our 
alibration,the move from a passive to an a
tive regime leads to a redu
tion in the varian
e ofoutput, in�ation and the interest rate, of the same magnitude as observed in the dataeven when the standard deviation of all of the sho
ks is the same a
ross regimes,as 
onje
tured by Beyer-Farmer (2003). In 
ontrast, Sto
k and Watson (2003) andSims Zha (2006) studied a ba
kward-looking Markov swit
hing model and found noeviden
e in favor of 
hanges in monetary poli
y. Instead, they attributed the 
hange1A sunspot solution is one where the state variables are fun
tions of an extraneous random variable(Cass and Shell 1983). In Farmer, Waggoner, and Zha (2006), 
urrent state variables depend onexpe
tations of future variables, but not on lagged state variables, and we show that there alwaysexists a sunspot solution to the MSRE model when the parameters of the model in at least one regimewould lead to indetermina
y if that regime were an absorbing state. This 
ontradi
ts the results inDavig and Leeper (2005) who 
laim that determina
y of equilibrium depends on the probabilities
ontained in the Markov transition matrix.



SWITCHING RATIONAL EXPECTATIONS 3in the time series behavior of the variables to time variation in sho
k varian
es. Toexamine the plausibility of this explanation we 
ompare the poli
y 
hange model withan alternative in whi
h there are 
hanges to the sho
k varian
es of the forward lookingstru
tural model.II. How our Method Differs from Previous Approa
hesConsider a stru
tural linear rational expe
tations model with variables xt and 
on-stant parameters, where xt may in
lude unobservable expe
tations 
onditional ondate t information. The solution to a model of this kind 
an be des
ribed as a VARin xt. Now 
onsider an extension that allows the stru
tural parameters to be fun
-tions of a state ξt that is itself governed by a Markov 
hain. This is the model thatwe will study in this paper. Although our model is linear in xt, it is non-linear in the
omplete set of state variables {xt, ξt} sin
e its parameters, whi
h are fun
tions of ξt,enter the model multipli
atively with xt.Troy Davig and Eri
 Leeper (2005) and Davig, Leeper and Hess Chung (2003) haveprovided examples of models that are non-linear in both variables and parameters.The Davig-Leeper examples are more general than the linear-in-variables model thatwe 
onsider here and, in 
ertain spe
ial 
ases, they 
an be solved expli
itly. However,the Davig-Leeper approa
h relies on spe
ial assumptions that 
annot easily be gen-eralized and even if their solution algorithm 
ould be extended to a general 
lass ofnon-linear variable-parameter rational expe
tations models, their method still doesnot provide a way of establishing that a proposed solution is unique or even that itis bounded and hen
e 
onsistent with the transversality 
onditions of the stru
turalmodel (Farmer, Waggoner, and Zha 2006).Lars Svensson and Noah Williams (2005, SW) have developed an algorithm to
ompute a solution to a large 
lass of linear-in-variables regime-swit
hing models thatis 
losely related to the 
lass that we dis
uss in this paper. However, the SW solutionmethod also la
ks a diagnosti
 to inform the experimenter when the solution is uniqueand their algorithmmay 
onverge to a unique solution, to one of a set of indeterminatesolutions, or to an unbounded sto
hasti
 di�eren
e equation that violates appropriatetransversality 
onditions. In 
ontrast, the method we des
ribe in this paper 
omputesa solution to a large 
lass of variable-parameter linear rational expe
tations modelsand, within this 
lass, it identi�es whether the solution is unique, indeterminate orunstable. In this latter 
ase, equilibrium (de�ned as a bounded sto
hasti
 pro
ess)fails to exist.2Our approa
h builds on unpublished notes by Roger Farmer, Eri
 Leeper and TroyDavig (FLD) that des
ribe a possible method for solving a linear rational expe
ta-tions model by expanding the state spa
e in a way that mimi
s existing te
hniques for2Our method 
o-in
ides with the SW solution when the equilibrium is unique and has the addedadvantage of identifying the 
onditions for determina
y, indetermina
y and existen
e. In AppendixA, we show that the SW method will often 
onverge to indeterminate equilibria or to unboundedsolutions (non-existen
e).



SWITCHING RATIONAL EXPECTATIONS 4�nding a ve
tor autoregressive representation of a Markov 
hain. The FLD approa
h,although promising, failed to maintain the important property that expe
tationalerrors must be mean zero. This omission is fatal be
ause it gives in
orre
t results;remedying this error has proved to be a 
hallenging task. This paper solves this prob-lem and provides a way of 
onverting a variable-parameter linear rational expe
tationsmodel into an equivalent 
onstant parameter model in a larger state spa
e.III. The Constant Parameter ModelWe introdu
e the following 
lass of linear models.
A





a1
(n−ℓ)×n

a2
ℓ×n



 xt
n×1

=

B




b1
(n−ℓ)×n

b2
ℓ×n



xt−1
n×1

+

Ψ




ψ
(n−ℓ)×k

0
ℓ×k



 εt
k×1

+

Π




0
(n−ℓ)×ℓ

π
ℓ×ℓ



 ηt
ℓ×1

(1)where xt is an n×1 set of endogenous variables, a1, a2, b1, b2, ψ, and π are 
onformableparameter matri
es, εt is a k × 1 ve
tor of i.i.d. random variables and ηt is an ℓ× 1ve
tor of endogenous sho
ks, de�ned by the se
ond ℓ rows of this system.As an example, 
onsider the model
yt = aEt [yt+1|Ωt] + byt−1 + σεt, (2)with matri
es a1, b1, a2, b2,ψ and π de�ned as follows:
a1 =

[

1 −a
]

, b1 =
[

b 0
]

,

a2 =
[

1 0
]

, b2 =
[

0 1
]

,

ψ = σ, π = 1,and
xt =

[

yt

Et [yt+1]

]

.The �rst n−ℓ equations of the model de�ne the evolution of xt as fun
tions of laggedvariables and fundamental sho
ks. The se
ond ℓ equations de�ne the endogenouserrors. We partition the parameter matri
es 
onformably and refer to the parametersof the �rst blo
k of n− ℓ equations with the subs
ript 1 and to the se
ond blo
k of ℓequations with the subs
ript 2.A solution to Equation (1) is a bounded sto
hasti
 pro
ess {xt}. Chris Sims (2001)provides a solution algorithm and sets of 
onditions on the matri
es A,B,Ψ and Πunder whi
h there exists a unique solution, no solution or multiple solutions. Ex-isten
e of a solution requires that the endogenous sho
k ηt 
an be adjusted everyperiod to keep the system in a linear subspa
e for whi
h solutions remain boundedand it depends on the properties of the matri
es Ψ and Π and on the roots of the
hara
teristi
 equation of the matrix pen
il |A− λB| = 0.3 When a unique solution3The roots of this 
hara
teristi
 equation are known as generalized eigenvalues of {A, B}. For ade�nition and dis
ussion of the pen
il of a quadrati
 form see Gantma
her (2000, Volume 1, page310).



SWITCHING RATIONAL EXPECTATIONS 5exists it has a representation in the form
xt = Γ1xt−1 + Γ2εt. (3)E
onomi
 data often 
annot be des
ribed by 
onstant parameter models and JamesHamilton (1989) amongst others, has suggested that redu
ed form models be de-s
ribed instead by VARs in whi
h the parameters 
hange o

asionally. For example,the ve
tor xt might be des
ribed by the equation:

xt = Γ1 (ξt)xt−1 + Γ2 (ξt) εt, (4)where ξt follows a Markov 
hain. Models of this kind have proved quite su

essful atdes
ribing the behavior of gdp and they have been applied by Sims and Zha (2002)to des
ribe the behavior of in�ation, interest rates and output. But how are redu
edform Markov swit
hing models related to stru
tural rational expe
tations models? Itis this question to whi
h we now turn.IV. The Markov Chain as an AR Pro
essThe te
hnique we will use to solve variable-parameter linear rational expe
tationsmodels is based on an extension of the method, des
ribed in Hamilton (1994, page679), by whi
h a Markov 
hain 
an be des
ribed by an autoregressive pro
ess. In thisse
tion we explain this method and in Se
tion V we show how it 
an be generalizedto forward looking systems.Let ξt be a two-state Markov 
hain with transition matrix P and de�ne a pair ofvariables zi,t, i ∈ {1, 2} su
h that zi,t = ξt if ξt = i and zero otherwise. Sin
e the
olumns of P are 
onditional probability distributions the elements of P , denoted
[pij ] , satisfy the restri
tion

2
∑

i=1

pij = 1.Let vit be the di�eren
e between the realization of zit and its 
onditional mean andwrite zt as a ve
tor-valued pro
ess:
zt = Pzt−1 + vt, (5)where the ve
tor vt, de�ned as,

vt = E (zt|Ωt−1) − zt, (6)has zero 
onditional mean. The 
onditional distribution of vt is 
hosen to ensure thatthe state variable zt satis�es the property,
zit =























[

1

0

] if ξt = 1

[

0

1

] if ξt = 2

, for all t. (7)



SWITCHING RATIONAL EXPECTATIONS 6To keep zt in the appropriate spa
e, the 
onditional distribution of vt must depend onthe regime swit
hing probabilities [pij ]. This distribution is given by the expression;
[

v1t (ξt−1 = 1)

v2t (ξt−1 = 1)

]

=























[

1 − p11

−p21

] if ξt = 1,

[

−p11

1 − p21

] if ξt = 2,

[

v1t (ξt−1 = 2)

v2t (ξt−1 = 2)

]

=























[

1 − p12

−p22

] if ξt = 1,

[

−p12

1 − p22

] if ξt = 2.The sho
k ve
tor vt has zero 
onditional mean sin
e
Et−1 [vt|ξt−1 = i] = p1i

[

1 − p1i

−p2i

]

+ p2i

[

−p1i

1 − p2i

]

,

= p1i

[

1 − p1i

− (1 − p1i)

]

+ (1 − p1i)

[

−p1i

p1i

]

,

=

[

0

0

]

.The following se
tions show how to extend the idea that a Markov 
hain has anautoregressive representation to the general linear rational expe
tations model. In theextension we will exploit the fa
t that the autoregressive representation has 
onstantstate-independent parameters to �nd a solution method for regime swit
hing modelswith rational expe
tations.V. The Markov-Swit
hing ModelThis se
tion introdu
es a 
lass of Markov-swit
hing rational expe
tations modelsand in Se
tions VIII�XI we show how to 
ompute a minimal state variable solution tomodels in this 
lass by expanding the state spa
e. In Se
tion XII we present formalde�nitions and we prove that a solution to the expanded model is also a solution tothe original Markov swit
hing model. We dis
uss the properties of equilibrium andwe show that the 
onditions governing existen
e and uniqueness are more 
omplexthan in the 
ase of single regime models. We propose a 
lass of minimum statevariable solutions (M
Callum 1983, MSV) and we demonstrate that when a uniqueequilibrium exists, it is in this 
lass. Our algorithm 
an also identify an MSV solutionto models with indeterminate equilibria (when one exists) and it produ
es a diagnosti
that alerts the resear
her to the presen
e of multipli
ity or to the non-existen
e of abounded solution.



SWITCHING RATIONAL EXPECTATIONS 7Consider the following generalization of Equation (1),
A(ξt)







a1 (ξt)
(n−ℓ)×n

a2 (ξt)
ℓ×n






xt

n×1
=

B(ξt)






b1 (ξt)
(n−ℓ)×n

b2 (ξt)
ℓ×n






xt−1
n×1

+

Ψ(ξt)






ψ1 (ξt)
(n−ℓ)×k

ψ2 (ξt)
ℓ×k






εt

k×1
+

Π(ξt)






π2 (ξt)
(n−ℓ)×ℓ

π2 (ξt)
ℓ×ℓ






ηt
ℓ×1
, (8)

x0 = x̄0, (9)where ξt follows an h−state Markov 
hain, h ∈ H ≡ {1, ...h} , with stationary tran-sition matrix P and ηt is a mean zero endogenous pro
ess. The matrix Π (ξt) isassumed to have full rank, and thus without loss of generality we take π1 (ξt) = 0,
π2 (ξt) = Iℓ, ψ1 (ξt) = ψ (ξt), and ψ1 (ξt) = 0, where Iℓ is the ℓ× ℓ identity matrix. Inmost appli
ations it will be the 
ase that xt is partitioned as

xt =





yt

zt

Etyt+1



 , (10)where yt is of dimension ℓ and the se
ond blo
k of Equation (8) is of the form yt =

Et−1yt + ηt. Though we do not impose this restri
tion in this paper, it is useful tokeep this example in mind when interpreting our results.VI. Minimum State Variable SolutionsIn the 
onstant parameter 
ase, solutions of Equation (1) are obtained by restri
tingthe solution xt to lie in some linear subspa
e of R
n. The potential subspa
es aredetermined by the generalized eigenvalue-eigenve
tor de
omposition of A and B.4 Forinstan
e, if the solution is restri
ted to the subspa
e is spanned by the eigenve
torsasso
iated with the eigenvalues that are less than one in absolute value, then oneobtains the stable manifold. This is the largest subspa
e that supports boundedsolutions, assuming, of 
ourse, that bounded solutions exist. If one 
onsiders thepartition of xt given by Equation (10), then restri
ting the solution to lie in somelinear subspa
e for
es linear relations among Etyt+1, yt and zt. A MSV solution isone in whi
h enough restri
tions have been imposed so that Etyt+1 is 
ompletelydetermined and so there 
an be no sunspot sho
ks, but not so many restri
tionsthat yt and zt are 
onstrained. We do not want to 
onstrain yt and zt be
ause wewould like the solution to exist for any initial 
onditions of yt and zt. In the 
onstantparameter 
ase this means that the potential subspa
es are generated by any set of

n− ℓ eigenve
tors whose eigenvalues are all less than one in absolute value.4If xt is a solution of Equation (1) and the span of the support of xt over all t is the linear subspa
e
V̂ , then it must be the 
ase that V̂ is generated by some subset of the generalized eigenve
torsof A and B. However, it is not ne
essarily the 
ase any subspa
e generated by a subset of thegeneralized eigenve
tors of A and B will support a solution of Equation (1). It is in this sense thatthe eigenve
tors only generate potential subspa
es that support solutions. Existen
e 
onditions mustalways be 
on�rmed.



SWITCHING RATIONAL EXPECTATIONS 8These ideas 
an be generalized to the time varying parameter 
ase. De�ne 1{st=i}to be indi
ator fun
tion whi
h is one if st = i and zero otherwise and de�ne the spanof xt, 
onditional on st = i, to be the linear span of the support xt1{st=i} over all
t. Again, 
onsidering the partition of xt given by Equation (10), we want to imposeenough restri
tions so that Etyt+1 is 
ompletely determined and so there 
an be nosunspot sho
ks, but not so many that yt and zt are 
onstrained. This implies thatthe dimension of ea
h 
onditional span must be n−s. Unlike the 
onstant parameter
ase, there is not an easy to apply eigenvalue 
ondition that allows us to identifyall potential 
andidates for the 
onditional spans and so we must resort to iterativete
hniques to �nd MSV solutions. However, we do have the following 
hara
terizationof any MSV solution.Theorem 1. If {xt, ηt}

∞
t=1 is a MSV solution of Equation (8), then

xt = Vξt
F 1

ξt
xt−1 + Vξt

G1
ξt
εt, (11)

ηt = −
(

F 2
ξt
xt−1 +G2

ξt
εt

)

, (12)where Vj is n × (n − ℓ), F 1
j is (n − ℓ) × n, F 2

j is ℓ× n, G1
j is (n − ℓ) × k, and G2

j is
ℓ× k. Furthermore, [A(j)Vj Π

] is invertible and
[

A(j)Vj Π
]

[

F 1
j

F 2
j

]

= B(j), (13)
[

A(j)Vj Π
]

[

G1
j

G2
j

]

= Ψ(j), (14)
(

h
∑

j=1

pi,jF
2
j

)

Vi = 0ℓ,n−ℓ. (15)This theorem is proved in the appendix, but it is worth noting that Conditions (13)and (14) ensure that {xt, ηt}
∞
t=1 given by Equations (11) and (12) satisfy Equation(8), while Condition (15) ensures that Et−1ηt = 0. This theorem will form the basisfor the iterative te
hniques 
onsidered in this paper.VII. Newton's MethodIn this se
tion, we show how Newton's Method, or any other root �nding algorithm,
an be used to �nd MSV solutions of Equation (8). To make the analysis moretransparent, we assume that A(j) is invertible. In the appendix, we show how torelax that 
ondition. To �nd a MSV solution, we must �nd matri
es Vj su
h that

[

A(j)Vj Π
] is invertible and Equation (15) holds where F 2

j is de�ned via Equation(13). Sin
e Π′ = [0ℓ,n−ℓ Iℓ], and Vj is only de�ned up to right multipli
ation by aninvertible matrix, we 
an assume that
A(j)Vj =

[

In−ℓ

−Xj

] (16)



SWITCHING RATIONAL EXPECTATIONS 9for some ℓ× (n− ℓ) matrix Xj . Sin
e
F 2

j =
[

0ℓ,n−ℓ Iℓ
] [

A(j)Vj Π
]

B(j)

=
[

Xj Iℓ
]

B(j),Equation (15) be
omes
h
∑

j=1

pi,j

[

Xj Iℓ
]

B(j)A(i)−1

[

In−ℓ

−Xi

]

= 0ℓ,n−ℓ. (17)So, if we de�ne fi to be the fun
tion from R
hℓ(n−ℓ) to R

ℓ(n−ℓ) given by
fi (X1, · · · , Xh) =

h
∑

j=1

pi,j

[

Xj Iℓ
]

B(j)A(j)−1

[

In−ℓ

−Xj

] (18)and f to be the fun
tion from R
hℓ(n−ℓ) to R

hℓ(n−ℓ) given by
f (X1, · · · , Xh) = (f1 (X1, · · · , Xh) , · · · , fh (X1, · · · , Xh)) , (19)�nding MSV solutions is equivalent to �nding the roots of f (X1, · · · , Xh). This 
anbe a

omplished using any root �nding te
hnique. In the appendix, we give the detailsfor applying Newton's method to �nd the roots of this equation. In the next severalse
tions, we outline a di�erent iterative te
hnique for �nding MSV solutions.VIII. Expanding the State Spa
eIn Se
tions VIII, IX, and X we assume the existen
e of an MSV solution to Equation(8) and we show how to write an equivalent model that is linear in variables andhas 
onstant parameters. Se
tion XI shows the relationship between the equivalentmodel and the original MSRE model. In these se
tions we make the additional mildassumption that A2(j) and B2(j) in Equation (8) do not depend on j. In almost alle
onomi
 appli
ations, this will be the 
ase.First, we write Equation (8) as follows,

A (ξt)xt = B (ξt) xt−1 + Ψ (ξt) εt + Π (ξt) ηt, (20)where
A (i) =

[

a1 (i)

a2

] , B (i) =

[

b1 (i)

b2

] , (21)
Ψ (i) =

[

ψ (i)

0

] and Π (i) =

[

0

π

]

. (22)We now show how to de�ne an expanded state state ve
tor Xt and 
onstant parametermatri
es A,B,Ψ and Π su
h that system (20) 
an be written as follows,
AXt = BXt−1 + Ψut + Πηt. (23)We are interested in the existen
e and uniqueness of an MSV solution to (20) andfor this purpose Equation (23) is a useful way of representing the model be
ause ithas 
onstant parameter matri
es, A,B,Ψ and Π and be
ause the sho
k ve
tors ut and
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ηt have zero means. These properties allow us to use known te
hniques to 
ompute asolution. IX. Definitions of the Parameter Matri
esWe begin by assuming the existen
e of a family of matri
es {φi}

h

i=1 where ea
h
φi has dimension ℓ × n and has full row rank. Later, we will show how to express
{φ1, φ2, ...φh} as the �xed point of a system of nonlinear equations. De�ne the matrix
Φ as follows,

Φ
(ℓ−1)h×nh

=







e
′
2 ⊗ φ2...

e
′
h ⊗ φh






, (24)and let the matri
es A, B, and Π be given by the expressions,

A
nh×nh

=





diag (a1 (1) , · · · , a1 (h))

a2 · · · a2

Φ



 , (25)
B

nh×nh
=





diag (b1 (1) , · · · , b1 (h)) (P ⊗ In)

b2 · · · b2
0



 , (26)
Π

nh×ℓ
=





0

π

0



 . (27)X. Definitions of the Sho
ksWe now introdu
e de�nitions of the sho
ks ut and ηt. Let In denote the n × nidentity matrix, let ei denote the ith 
olumn of Ih, and let 1h be the h-dimensional
olumn ve
tor of ones. Let Xt ∈ Rnh be an arbitrary ve
tor of dimension nh× 1.Next de�ne h matri
es Si for i ∈ {1, ...h} as follows
Si

(n−ℓ)h×nh

= (diag [b1 (1) , · · · , b1 (h)]) × [(ei1
′
h − P ) ⊗ In] , (28)Equation (28) generates a matrix of dimension (n− ℓ)h×nh where b1 (i) has dimen-sion (n− ℓ)× n and P is h× h. Si 
onsists of h2 blo
ks ea
h of whi
h is (n− ℓ)× n.For j 6= i the j′th row-blo
k of Si 
ontain terms of the form −pjkb1 (j) . The i′throw-blo
k 
ontains terms of the form (1 − pik) b1 (i) .Using this notation, we de�ne the ve
tor of error terms

ut =

[

Sξt

(

eξt−1
⊗ (1′

h ⊗ In)Xt−1

)

eξt
⊗ εt

]

, (29)and the matrix Ψ as follows
Ψ

nh×(k+n−ℓ)h
=





I(n−ℓ)h diag (ψ (1) , · · · , ψ (h))

0 0

0 0



 . (30)
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ontains two kinds of sho
ks that we refer to as swit
hing sho
ksand normal sho
ks. The swit
hing sho
ks, represented by the terms
Sξt

(

eξt−1
⊗ (1′

h ⊗ In)Xt−1

)

, (31)turn on or o� the appropriate blo
ks of the model to represent the Markov dynami
s.The normal sho
ks, represented by the terms
eξt

⊗ εt, (32)
arry the fundamental errors that hit the stru
tural equations, distributed to theappropriate blo
k of the expanded system.It is important for our solution te
hnique that the errors have mean zero. Sin
e
ξt is un
orrelated with εt, and sin
e εt has mean zero, the normal sho
ks satisfy thisproperty. Note also that
Et−1

[

Sξt

(

eξt−1
⊗ (1′

h ⊗ In)Xt−1

)] (33)
= diag (b1 (1) , · · · , b1 (h))

((

Et−1 [eξt
] − Peξt−1

)

⊗ (1′
h ⊗ In)Xt−1

)

= 0,where the equality follows from the fa
t that
Et−1 [eξt

] =







p1i...
phi






= Peξt−1

.Hen
e, Et−1 [ut] = 0.XI. The Relationship between the Expanded and the MSRE FormSuppose now that Xt−1 has the additional stru
ture, Xt−1 = eξt−1
⊗ xt−1 andpartition X ′

t as X ′
t =

[

x′1,t, · · · , x
′
h,t

]

. Now partition Equation (23) into three blo
ks
orresponding to the �rst (n− ℓ) h rows the next ℓh rows and the last (ℓ− 1)h rows.This partition 
orresponds to the three row blo
ks in Equations (25), (26) and (27).Using the de�nitions of A,B,Ψ,Π, ut and ηt, the �rst blo
k of Equation (23) redu
esto the expression
a1 (i) xi,t =

{

0 for i 6= ξt
b1 (i) xt−1 + ψ (i) εt for i = ξt

, (34)the se
ond blo
k redu
es to
a2

h
∑

i=1

xi,t = b2xt−1 + πηt, (35)and the third blo
k gives us the equation,
φixi,t = 0 for 1 < i ≤ h. (36)It follows that, when Xt has this additional stru
ture, Equations (34) and (35) re-produ
e Equation (20) hen
e, if {Xt, ηt}

∞
t=1 is 
onsistent with Equation (23) then

{xt, ηt}
∞
t=1 must be 
onsistent with the original system. The remaining question is
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on
erned with whether the sequen
e {xt} is bounded and here, we will need to bemore pre
ise about the role of the matri
es φi in the expanded system.XII. Definitions and TheoremsWe begin by de�ning formally what it means for a sto
hasti
 pro
ess to be a solutionto a Markov rational expe
tations model. We de�ne a sto
hasti
 pro
ess {xt, ηt} tobe a solution to the model if it satis�es Equation (20) and if, in addition, the solutionremains bounded in expe
tation.De�nition 1 (Solution). A solution to Equation (20) is a sto
hasti
 pro
ess {xt, ηt}
∞
t=1su
h that:(1) The endogenous sto
hasti
 pro
ess {ηt} satis�es the property, Et−1 [ηt] = 0.(2) xt is bounded in expe
tation in the sense that ‖Et [xt+s]‖ < Mt for all s > 0.(3) {xt, ηt}

∞
t=1 jointly satisfy Equation (20).The 
omplete 
lass of solutions to an MSRE model is very ri
h and our 
omputa-tional experiments with these models suggests that sunspot solutions are pervasive.In this paper we will 
on
entrate on a 
lass of minimal state variable solutions whi
hwe de�ne as follows.De�nition 2 (MSV Solution). Let {xt, ηt}

∞
t=1 be a solution to Equation (20). {xt, ηt}

∞
t=1is a minimum state variable solution if and only if:(1) There exist minimal state matri
es χi for 1 ≤ i ≤ h su
h that χξt

xt = 0 for all
t ≥ 0.(2) If {x̃t, η̃t}

∞
t=1 is any solution to Equation (20) su
h that χ̃ξt

xt = 0 for all t ≥ 0and the row spa
e of χ̃i 
ontains the row spa
e of χi, then the row spa
e of χ̃i equalsthe row spa
e of χi.Our de�nition is 
onsistent with standard usage, for example, Evans and Honkapo-hja de�ne a minimal state variable solution of a linear di�eren
e equation to be onewhi
h �depends linearly on a set of variables...su
h that there does not exist a solutionwhi
h depends linearly on a smaller set of variables� (Evans and Honkapohja 2001,page 176). Condition (2) states that the minimal states matri
es are as large as pos-sible and hen
e the variables are restri
ted to subspa
e whose dimension is as smallas possible.Our �rst theorem 
on
erns the relationship between MSV solutions to the expandedmodel and MSV solutions to the original model. Note that our de�nition of a minimalstate variable solution applies when h = 1 and hen
e the MSV solution to Equation(23) is well de�ned.Theorem 2. Suppose {xt, ηt}
∞
t=1 is a minimum state variable solution of Equation (20)and let χi, for 1 ≤ i ≤ h, be the asso
iated minimal state matri
es. Suppose furtherthat χi is of dimension qi × n, and ∑h

i=1 qi ≥ ℓ (h− 1). For 1 ≤ i ≤ h, let φi be any
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qi × n submatrix of χi su
h that ∑h

i=1 qi = ℓ (h− 1). If
Φ =







e1 ⊗ φ1...
eh ⊗ φh






,then Xt = eξt

⊗ xt is a solution of Equation (23).Proof. See Appendix. �If we know the matri
es χi asso
iated with an MSV solution to Equation (20) thenTheorem 2 tells us that there will typi
ally be many ways to pi
k the matrix Φ thatis needed to de�ne A in Equation (23). For example, if qi = ℓ for all i ∈ H thenone possible 
hoi
e for Φ is to set φ1 to the empty matrix and 
hoose φi = χi for
i = 2, ...h. This would be 
onsistent with the de�nition of Φ given in Equation (24).More generally, this de�nition implies that there are other ways of de�ning Φ that donot 
onform to the stru
ture of Equation (24).So far we have said nothing about how to �nd the matrixΦ. The following de�nitionof the unstable 
omponent of {A,B} is designed to lead up to a theorem that enablesus to 
ompute Φ.De�nition 3. Let QSZ = A and QTZ = B be the QZ−de
omposition of {A,B},where the upper triangular matri
es S = (si,j) and T = (ti,j) have been arranged sothat ti,i/si,i is in are in in
reasing order.5 Let q ∈ {1, 2..., h} be the integer su
h that
ti,i/si,i < 1 if i ≤ q and ti,i/si,i > 1 if i > q. Let Zu, partitioned as Zu = [z1, · · · , zh] ,be the last nk − q rows of Z. We refer to Zu as the unstable 
omponent of {A,B}.Theorem 3. If [ a′1 (i) z′i

] has rank n for 1 ≤ i ≤ h and the row spa
e of zi is equalto the row spa
e of φi for 2 ≤ i ≤ h, then any solution {Xt, ηt}
∞
t=1 of Equation (23)with X0 = eξ0 ⊗ x0 will be of the form Xt = eξt

⊗ xt for all t, where {xt, ηt}
∞
t=1 is asolution of Equation (20).Proof. See Appendix. �Theorem 2 asserts an equivalen
e between an MSV solution to the original modeland an MSV solution to Equation (23), but sin
e {χi}

h

i=1 and Φ are both unknownthis theorem is not of mu
h help in 
omputing a solution. In 
ontrast, Theorem 3suggests a way to 
ompute Φ. For given Φ, we 
an de�ne A and given {A,B} we
an 
ompute Zu = [z1, · · · , zh]. In general the row spa
e of zi, 
omputed in thisway, will not be equal to the row spa
e of φi. However, in pra
ti
e it is possible tode�ne {φi} as a �xed point of a parti
ular nonlinear map and to 
ompute this �xedpoint iteratively. Theorem 3 gives 
onditions whi
h ensure that a solution of theexpanded system is a solution of the original system. The next two theorems givesome properties of the solutions obtained from the expanded system.5The reader is referred to Gene Golub and Charles Van Loan (1996, page 375) for a dis
ussionof the QZ de
omposition and to Sims (2001) for the appli
ation of the QZ method to solve linearrational expe
tations models.
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] has rank n for 1 ≤ i ≤ h and the row spa
e of zi isequal to the row spa
e of φi for 2 ≤ i ≤ h. If there exists an ℓ×k matrix Λ su
h that

Z2 (Ψ + ΠΛ) = 0, then there exists a solution to Equation (20) and this is the onlysolution of Equation (20) that satis�es the linear restri
tion φξt
xt = 0 for all t > 0.Proof. See Appendix. �Re
all that the de�nition of a solution in
ludes the restri
tion of boundedness. It iseasy to �nd arbitrary mean zero sequen
es {ηt}

∞
t=1 that generate a sto
hasti
 pro
ess

{xt}
∞
1 , 
onsistent with Equation (20). But these sequen
es will not in general bebounded in expe
tation. Theorem 4, based on Lemma 1 from Lubik and S
horfheide(2003)[page 277℄, provides a 
ondition under whi
h one 
an �nd a sequen
e {ηt}

∞
t=1whi
h ensures that ‖Et [xt+s]‖ is bounded.When a bounded solution exists, the matrix Λ de�nes the relationship between thefundamental sho
ks εt and the endogenous errors ηt. These sho
ks are related to ea
hother by the equation

ηt = Λεt. (37)The �nal theorem in this se
tion provides an answer to the question: How areredu
ed form Markov swit
hing models related to MSRE models?Theorem 5. Suppose that {Xt, ηt}
∞
t=1 is a solution of Equation (23) and Xt = eξt

⊗xtfor all t ≥ 0. Then
xt = g1 (ξt)xt−1 + g2 (ξt) εt.Proof. See Appendix. �XIII. How to Compute an MSV Solution and Che
k if it is UniqueTheorems 3, 4 and 5 work together in the following way. Let the supers
ript

n on a variable denotes the n′th step of an iterative pro
edure. Beginning with aset of matri
es {φ0
i }

h

i=2, de�ne Φ0 using Equation (24) and generate the asso
iatedmatrix A0. Next, 
al
ulate Z0
u by 
omputing the QZ de
omposition of {A0, B} andset φ1

i = z1
i . This leads to a new matrix A1 and a new set of values for φ1

i . repeatthis pro
edure and, if it 
onverges, Theorem 3 implies that Equation (23) generatessequen
es {xt, ηt}
∞
t=1 that are 
onsistent with Equation (20). To 
he
k that {xt}

∞
t=1 isbounded in expe
tation apply the pro
edure des
ribed by Sims (2001) or Harald Uhlig(1999) to 
he
k for existen
e and or uniqueness of a solution to Equation (23). If aunique solution exists, Sim's pro
edure generates the matrix Λ from Theorem 4 andTheorem 5 implies that the solution 
an be written as a VAR with time dependent
oe�
ients.We end with a word of warning. Although our method identi�es the unique MSVsolution, if one exists, MSRE models often have many other solutions. In Farmeret al (2006) we 
onstru
t an example of a purely forward looking model and weparameterize it in two ways. The �rst leads to the existen
e of a unique solution andthe se
ond to multiple indeterminate solutions. We then 
onsider an MSRE model



SWITCHING RATIONAL EXPECTATIONS 15with an arbitrary transition matrix that swit
hes between the two forward lookingmodels. In this environment we prove that the MSRE model always has a 
ontinuumof sunspot equilibria whatever values we 
hoose for the transition probabilities. Sin
eour example 
ontains a unique MSV solution we 
on
lude that uniqueness of the MSVsolution does not imply uniqueness in a larger 
lass of solutions.XIV. An Illustrative ExampleTo illustrate how to use our method, 
onsider the following simple dynami
 equi-librium model
yt = a (ξt)Etyt+1 + b (ξt) yt−1 + ǫt, (38)where ξt ∈ {1, 2} and ǫt is normally distributed with mean zero and varian
e σ2(ξt).Here m = 2, n = 2 and l = 1. If the MSV solution to (38) exists, it will have theform

yt = g1(ξt)yt−1 + g2(ξt)ǫt. (39)To obtain the solution (39), we propose to write the original model (38) in the fol-lowing expanded form,
AXt = BXt−1 + Ψut + Πηt, (40)where ηt = yt − Et−1yt.To 
onstru
t A, B, Ψ, and ut, we de�ne the matri
es A1 and B1 as

A1 =

[

1 −a (1) 0 0

0 0 1 −a (2)

]

,

B1 =

[

p11b (1) 0 p12b (1) 0

p21b (2) 0 p22b (2) 0

]

,and the state, Xt, by
Xt =









x11,t

x12,t

x21,t

x22,t









≡









ι(ξt=1)yt

ι(ξt=1)Etyt+1

ι(ξt=2)yt

ι(ξt=2)Etyt+1









.Let
xi,t =

[

xi1,t

xi2,t

]

,for i = 1, 2. If ξt−1 = 1, then x2,t−1 = 0; if ξt−1 = 2, x1,t−1 = 0. It follows thateither the �rst or the third 
olumn of B1 will be zeroed out by Xt−1. If ξt−1 = j,the nonzero element is p1jb(1) in the �rst row and p2jb(2) in the se
ond row. The
oe�
ient matri
es A and B are 
onstru
ted as
A2 =

[

1 0 1 0

0 0 φ1 φ2

]

, B2 =

[

0 1 0 1

0 0 0 0

]

,

A =

[

A1

A2

]

, B =

[

B1

B2

]

.
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onstru
t the ve
tor of fundamental sho
ks ut and the matrix
Ψ in su
h a way that one of the �rst two rows is always zeroed out (by the sho
k) andthe remaining row is set equal to b (i) when ξt = i. Using the notation introdu
ed inSe
tion X, we have

Sξt

2×4

= diag([b(1) 0], : [b(2) 0]) [(eξt
⊗ 1

′
2 − P ) ⊗ I2] ,

=

[

(ι(ξt=1) − p11) b(1) 0 (ι(ξt=1) − p12) b(1) 0

(ι(ξt=2) − p21) b(2) 0 (ι(ξt=2) − p22) b(2) 0

]

,

ut
6×1

=













Sξt

2×40
2×4



 Xt−1
4×1eξt

⊗ ǫt









, Ψ
4×6

=





I
2×2

0
2×2

I
2×20

2×2
0

2×2
0

2×2



 , Π =









0

0

1

0









.The last equation in the expanded system (40) takes 
are of the zero restri
tionsin regime 1, but we also need to make sure that when regime 2 o

urs, x11,t and
x12,t are set to zero. To a

omplish this, our method 
onstrains the the solution Xtto lie in the stable linear subspa
e. This 
onstraint is imposed by de�ning a ve
tor
Z = [z1 z2 z3 z4]

′ su
h that
Z ′Xt = 0. (41)Let φ1 = z3 and φ2 = z4. When regime 2 o

urs at date t, Equation (41) restri
tsthe ve
tor {yt, Etyt+1} and, in 
onjun
tion with the last equation of (40), it ensuresthat a linear 
ombination of x11,t and x12,t is equated to zero:

[

z1 z2
]

[

x11,t

x12,t

]

= 0.A se
ond linear 
ombination of these variables is set to to zero by the �rst twoequations in (40). Hen
e, our method swit
hes o� the variables asso
iated with theregime that does not o

ur and it swit
hes on the appropriate equations that governthe evolution of yt and Etyt+1 in the regime that does o

ur.Theorem 3 ensures that the solution to (40) is also the solution to the originalswit
hing model (38). Consider an example in whi
h a(1) = 0.3, a(2) = 0.7, b(1) =

0.2, and b(2) = 0.5. If only one regime were to exist, the �rst 
hoi
e of parametervalues would 
ause this regime to be determinate and the se
ond would 
ause it tobe indeterminate. If the transition matrix is
P =

[

0.9 0.2

0.1 0.8

]

,our method indi
ates that there is no MSV solution to (40). If the transition matrixis
P =

[

0.9 0.4

0.1 0.6

]

,there exists a unique MSV solution for whi
h g1(1) = 0.2187, g1(2) = 0.8757, g2(1) =

1.0933, and g2(2) = 1.7513. In summary, this example shows that the existen
e and



SWITCHING RATIONAL EXPECTATIONS 17uniqueness of an MSV solution to (40) depends, in general, on the values of the modelparameters in ea
h regime and on the transition matrix P .XV. An Appli
ation to A Monetary Poli
y ModelIn this se
tion we present simulation results based on a 
alibrated version of theNew-Keynesian model and we use it to study 
hanges in output, in�ation, and thenominal interest rate. Clarida, Galí, and Gertler (2000) and Lubik and S
horfheide(2004) argue that the large �u
tuations in output, in�ation, and interest rates are
aused by indetermina
y led by passive monetary poli
y. Sims and Zha (2006), onthe other hand, �nd no eviden
e in favor of indetermina
y when they allow monetarypoli
y to swit
h regimes sto
hasti
ally. Furthermore, they �nd that on
e the modelpermits time variation in disturban
e varian
es, there is no eviden
e in favor of poli
y
hanges at all (see also Cogley and Sargent (2005), Giorgio Primi
eri (2005) and Uhlig(1997)).On
e it is known that poli
y 
hanges might o

ur, a rational agent should treatthese 
hanges probabilisti
ally and the probability of a future poli
y 
hange shouldenter into his 
urrent de
isions. Previous work in this area has negle
ted these e�e
tsand all of the studies 
ited above study regime swit
hes in a purely redu
ed formmodel. We show in this se
tion how to use the MSV solution to a MSRE model tostudy the e�e
ts of regime 
hange that is rationally anti
ipated to o

ur. We usesimulation results to show that the persisten
e and volatility in in�ation and theinterest rate 
an be the result of (1) poli
y 
hanges, (2) 
hanges in sho
k varian
es,or (3) 
hanges in private se
tor parameters. Hen
e, our method provides a tool forempiri
al work, in whi
h a more formal analysis of the data 
an be used to dis
riminatebetween these 
ompeting explanations.Our regime-swit
hing poli
y model, based on Lubik and S
horfheide (2004), hasthe following three stru
tural equations:
xt = Etxt+1 − τ(ξt)(Rt − Etπt+1) + zD,t, (42)

πt = β(ξt)Etπt+1 + κ(ξt)xt + zS,t, (43)
Rt = ρR(ξt)Rt−1 + (1 − ρR(ξt)) [γ1(ξt)πt + γ2(ξt)xt] + ǫR,t, (44)where xt is the output gap at time t, πt is the in�ation rate and Rt is the nom-inal interest rate. Both πt and Rt are measured in terms of deviations from theregime-dependent state. The 
oe�
ient τ measures the intertemporal elasti
ity ofsubstitution; β is the household's dis
ount fa
tor and the parameter κ re�e
ts therigidity or sti
kiness of pri
es.The sho
ks to the 
onsumer and �rm's se
tors, zD,t and zS,t, are assumed to evolvea

ording to an AR(1) pro
ess:
[

zD,t

zS,t

]

=

[

ρD(ξt) 0

0 ρS(ξt)

] [

zD,t−1

zS,t−1

]

+

[

ǫD,t

ǫS,t

]

,



SWITCHING RATIONAL EXPECTATIONS 18where ǫD,t is the innovation to a demand sho
k, ǫS,t is an innovation to the supplysho
k, and ǫR,t is a disturban
e to the poli
y rule. All these stru
tural sho
ks arei.i.d. and independent of one another. The standard deviations for these sho
ks are
σD(ξt), σS(ξt), and σR(ξt).Lubik and S
horfheide (2004) estimate a 
onstant-parameter version of this modelfor the two subsamples: 1960:I-1979:II and 1979:III-1997:IV. In our 
alibration we
onsider two regimes. The parameters in the �rst regime 
orrespond to their estimatesfor the period 1979:III-1997:IV and the parameters in the se
ond regime 
orrespondto those for 1960:I-1979:II. The 
alibrated values are reported in Tables 1 and 2. Thetransition matrix is 
al
ulated by mat
hing the average duration of the �rst regime tothe length of the �rst subsample and by assuming that the se
ond regime is absorbingto a

ommodate the belief that the pre-Vol
ker regime will never return:6

P =

[

0.9872 0

0.0128 1

]

.A simple 
al
ulation veri�es that, if only one regime were allowed to exist (in thesense that a rational agent was 
ertain that no other poli
y would ever be followed)the �rst regime would be indeterminate and the se
ond would be determinate. Whena rational agent forms expe
tations by taking a

ount of regime 
hanges, we need toknow if there exists a unique MSV solution. To address this question, we sta
k thevariables into the following 14-element ve
tor, where ι(ξt=1) is the indi
ator fun
tion,
ι = 1 if ξt = i and 0 otherwise;

X1,t =























ι(ξt=1)























xt

Etxt+1

πt

Etπt+1

Rt

zD,t

zS,t













































, X2,t =























ι(ξt=2)























xt

Etxt+1

πt

Etπt+1

Rt

zD,t

zS,t













































,

Xt =

[

X1,t

X2,t

]

.The ve
tor of the three i.i.d. fundamental sho
ks is
ǫt ≡





ǫD,t

ǫS,t

ǫR,t



 .Following the pro
edure illustrated in Se
tion XIV, we write this regime-swit
hingmodel as an expanded linear system:
AXt = BXt−1 + Ψut + Πηt.6One 
ould also mat
h the average duration of the se
ond regime to the length of the se
ondsubsample, whi
h give p22 = 0.9865. The unique solution exists for this situation as well and the�ndings presented in this se
tion are un
hanged.
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omputations we applied our method to this system, and in ea
h parameteri-zation that we report below, we obtained a unique MSV solution.This kind of forward-looking model provides a natural laboratory to experimentwith di�erent s
enarios in light of the re
ent debate on 
hanges in poli
y or 
hangesin sho
k varian
es. The estimates provided by Lubik and S
horfheide (2004) andreported in Tables 1 and 2 mix 
hanges in 
oe�
ients related to monetary poli
ywith 
hanges in other parameters in the model sin
e LS do not a

ount for the e�e
tof the probability of regime 
hange on the 
urrent behavior. One variation in thestru
tural parameter values is to let the 
oe�
ient on the in�ation variable in thepoli
y equation (44) 
hange while holding all the other parameters �xed a
ross the tworegimes. Tables 3 and 4 report the parameter values 
orresponding to this s
enario,in whi
h all the other parameters take the average of the values in Tables 1 and 2over the two regimes. We 
all this s
enario �poli
y 
hange only�.In a se
ond s
enario, �varian
e 
hange only�, we keep the value of the poli
y 
oe�-
ient γ1 at 2.19 for both regimes while letting the standard deviation σD in the �rstregime be �ve times larger than that in the se
ond regime and keeping the value of
σS at 0.3712 for both regimes.7 The parameter values for this s
enario are reportedin Tables 5 and 6.The last s
enario we 
onsider allows only the parameters in the private se
tor to
hange. We 
all it �private-se
tor 
hange only�. The idea is to study whether thepersisten
e and volatility in in�ation 
an be generated by 
hanges in the privatese
tor in a forward-looking model. We let the 
oe�
ient τ be 0.06137 in the �rstregime and 0.6137 in the se
ond regime.8 Tables 7 and 8 report the values of all theparameters for this s
enario. Similar results 
an be a
hieved if one lets the value of
κ in the �rst regime be mu
h smaller than that in the se
ond regime.Using the method dis
ussed in Se
tion XIII, we obtain a unique MSV solutionthat 
hara
terizes ea
h of our four s
enarios. Figures 1-3 display simulated paths ofthe interest rate, in�ation, and output gap under ea
h of them. With the originalestimates reported in Lubik and S
horfheide (2004), both in�ation and the interestrate in the �rst regime display persistent and large �u
tuations relative to their pathsin the se
ond regime. When we restri
t 
hanges to the poli
y 
oe�
ient γ1 only, theresults are similar. We �nd that smaller values of γ1(1), 
ause larger values for thepersisten
e and volatility of Rt, πt, and xt.When we allow only the varian
e to 
hange, on
e again, all three variables havelarger volatility in the �rst regime than the se
ond (third panels in Figures 1-3). Thedegree of persisten
e and volatility in these variables in the �rst regime in
reases with7Sims and Zha (2006) �nd that di�eren
es in the sho
k standard deviation a
ross regimes 
an beon the s
ale of as high as 10 − 12 times. One 
ould also de
rease the di�eren
e in σD and in
reasethe di�eren
e in σS or experiment with di�erent 
ombinations. Our result that 
hanges in varian
esmatter a great deal will hold.8It is not unlikely that the maximum likelihood estimate of τ is 
lose to zero or even has a wrongsign. The Bayesian prior that puts almost zero probability on the region of τ near zero, as typi
allydone in the existing literature, is unreasonable. See Fuka
 and Pagan (2006).
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e of the sho
k zD,t or zS,t and with the size of sho
k varian
e σD,t or σSt
. Inour �nal s
enario, we show that even if there is no 
hange in the stru
tural varian
es,in�ation and the interest rate 
an have mu
h larger �u
tuations in the �rst regimethan in the se
ond regime when the parameters of the private se
tor equations areallowed to 
hange a
ross regimes. The bottom panels of Figures 1 - 3 illustrate this
ase.These examples tea
h us that the sharply di�erent dynami
s in in�ation, the inter-est rate, and output observed before and after 1980 
ould potentially be attributed todi�erent sour
es. The methods we have developed here give resear
hers the tools toaddress this and other issues in a regime-swit
hing forward looking model in whi
h arational agent takes into a

ount the probability of regime 
hange when forming hisexpe
tations. XVI. Con
lusionIn related work, Farmer et. al., (2006), we showed that indetermina
y is pervasive ina simple example of an MSRE model with no lagged state variables. Sin
e there is noreason to think that the purely forward looking example is spe
ial in any essential way,there is an urgent need to re�ne the solution 
on
ept used in MSRE models, beyondthat of a bounded sequen
e that satis�es a given fun
tional equation. Arguably,the MSV solution, introdu
ed by M
Callum, is the most natural 
andidate. MSVsolutions are typi
ally stable under real time learning and, as we demonstrated inSe
tion XV, they are ri
h enough to explain heteroskedasti
ity a
ross poli
y regimeswithin a model in whi
h all of the private se
tor equations are invariant a
ross regimes.Our paper 
ontains two main parts. First, we provided a method to write a vari-able parameter rational expe
tations model in expanded form with state invariantparameters and we found 
onditions under whi
h a solution to the expanded modelis also a solution to the original one. We showed how to 
ompute an MSV solutionto the expanded model and to 
he
k to see if this solution is unique and bounded. Inthe se
ond part of the paper, we applied our methods to the New Keynesian modeland showed that the MSV solution provides a natural way to 
ompare alternativeparsimonious explanations of observed US data.
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oe�
ients (original)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.69 0.77 0.997 0.77 0.17Se
ond regime 0.54 0.58 0.993 2.19 0.30Table 2. Sho
k varian
es (original)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.68 0.82 0.60 0.27 0.87 0.23Se
ond regime 0.83 0.85 0.84 0.18 0.37 0.18Table 3. Model 
oe�
ients (poli
y 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 0.77 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 4. Sho
k varian
es (poli
y 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Se
ond regime 0.755 0.835 0.72 0.225 0.6206 0.205
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oe�
ients (varian
e 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 2.19 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 6. Sho
k varian
es (varian
e 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.3712 0.205Se
ond regime 0.755 0.835 0.72 1.125 0.3712 0.205Table 7. Model 
oe�
ients (private se
tor 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.0614 0.6750 0.9949 2.19 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 8. Sho
k varian
es (private se
tor 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Se
ond regime 0.755 0.835 0.72 0.225 0.6206 0.205



SWITCHING RATIONAL EXPECTATIONS 23
0 50 100 150 200 250 300

−10

−5

0

5

10

R

Original

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Policy change only

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Variance change only

0 50 100 150 200 250 300
−10

−5

0

5

10

R

Private sector change onlyFigure 1. Simulated interest rate paths from our regime-swit
hingforward looking model. The shaded area represents the �rst regime.
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SWITCHING RATIONAL EXPECTATIONS 26Appendix A. Proof of TheoremsA.1. Proof of Theorem 1. Let {xt, ηt}
∞
t=1 be a MSV solution of Equation (8).Denote the span of this solution, 
onditional on ξt = j, by V̂j and let Vj be any

n × (n − ℓ) matrix whose 
olumns span V̂j. Applying the Et−1 [·|ξt = j] operator toEquation (8) gives
A(j)Et−1 [xt|ξt = j] = B(j)xt−1 + ΠEt−1 [ηt|ξt = j] . (A1)This implies that every element of B(j)Vi is a linear 
ombination of the 
olumns ofthe matrix [A(j)Vj Π

]. Thus there exist (n−ℓ)×(n−ℓ) matri
es F 1
i,j and ℓ×(n−ℓ)matri
es F 2

i,j su
h that
[

A(j)Vj Π
]

[

F 1
i,j

F 2
i,j

]

= B(j)Vi.Furthermore, sin
e
h
∑

j=1

pξt−1,jA(j)Et−1 [xt|ξt = j] =

h
∑

j=1

pξt−1,j (B(j)xt−1 + ΠEt−1 [ηt|ξt = j])

=

h
∑

j=1

pξt−1,jB(j)xt−1and Π is of full 
olumn rank, we 
an 
hoose the F 1
i,j and F 2

i,j so that
h
∑

j=1

pi,jF
2
i,j = 0ℓ,n−ℓ.Subtra
ting Equation (A1) from Equation (8) gives

A(j) (xt −Et−1 [xt|ξt = j]) = Ψ(j)εt + Π (ηt − Et−1 [ηt|ξt = j]) .This implies that there exist (n− ℓ)× k matri
es G1
j and ℓ× k matri
es G2

j su
h that
[

A(j)Vj Π
]

[

G1
j

G2
j

]

= Ψ(j).Let V ∗
j denote the generalized inverse of Vj and de�ne

x̂t = Vξt
F 1

ξt−1,ξt
V ∗

ξt−1
x̂t−1 + Vξt

G1
ξt
εt−1,

η̂t = −
(

F 2
ξt−1,ξt

V ∗
ξt−1

x̂t−1 +G2
ξt
εt−1

)

.This will also be a solution of Equation (8) whose span, 
onditional on ξt = j, is V̂j.Sin
e {xt, ηt}
∞
t=1 is a MSV solution, it must be the 
ase that x̂t = xt and η̂t = ηt.Finally, [A(j)Vj Π

] must be invertible be
ause otherwise the G1
j and G2

j wouldnot be unique. So, de�ne
[

F 1
j

F 2
j

]

=
[

A(j)Vj Π
]−1

B(j).
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j Vi = F 1

i,j = F 1
i,jV

∗
i Vi and F 2

j Vi = F 2
i,j = F 2

i,jV
∗
i Vi. Thus

(

h
∑

j=1

pi,jF
2
j

)

Vi = 0ℓ,n−ℓ,and
xt = Vξt

F 1
ξt
xt−1 + Vξt

G1
ξt
εt−1,

ηt = −
(

F 2
ξt
xt−1 +G2

ξt
εt−1

)

.A.2. Newton's Method. Newton's method is an iterative te
hnique for �ndingroots. It has ex
ellent lo
al 
onvergen
e properties and, while global 
onvergen
e isnot guaranteed, in pra
ti
e it global 
onvergen
e properties are good. If (X(i)
1 , · · · , X

(i)
h

)is the ith iteration, then the (i+ 1)th iteration is given by
vec
(

X
(i+1)
1 , · · · , X

(i+1)
h

)

= vec
(

X
(i)
1 , · · · , X

(i)
h

)

− f ′
(

X
(i)
1 , · · · , X

(i)
h

)−1

vec
(

f
(

X
(i+1)
1 , · · · , X

(i+1)
h

))

,where
f ′ (X1, · · · , Xh) =







f ′
1 (X1, · · · , Xh)...
f ′

h (X1, · · · , Xh)






,and

f ′
i (X1, · · · , Xh) =

(

∂fi

∂X1

(X1, · · · , Xh) , · · · ,
∂fi

∂Xh

(X1, · · · , Xh)

)

.A straight forward 
al
ulation shows
∂fi

∂Xj

(X1, · · · , Xh) = pi,j

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)A(j)−1

[

In−ℓ

−Xi

])′

⊗ Iℓif i 6= j and
∂fi

∂Xi

(X1, · · · , Xh) = pi,i

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)A(j)−1

[

In−ℓ

−Xi

])′

⊗ Iℓ

+ In−ℓ ⊗

(

h
∑

k=1

pi,k

[

Xk Iℓ
]

B(k)

)

A(i)−1

[

0n−ℓ,ℓ

−Iℓ

]if i = j. To be 
ompleted is the 
ase that Aj is singular.A.3. Proof of Theorem 2. Be
ause {xt, ηt}
∞
t=1 satis�es Equation (23), {Xt, ηt}

∞
t=1will satisfy the �rst two blo
ks of Equation (23). Be
ause the row spa
e of φi is
ontained in the row spa
e of χi, {Xt, ηt}

∞
t=1 will satisfy the last blo
k of Equation(23). Be
ause of the Krone
ker produ
t stru
ture of Xt, Et [Xt+s] will be bounded ifand only if Et [xt+s] is bounded. Finally, Et−1 [ηt] be
ause {xt, ηt}

∞
t=1 is a solution ofEquation (23). Thus {Xt, ηt}

∞
t=1 is a solution of Equation (23).
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rux of the proof will be to show that any solution
{Xt, ηt}

∞
t=1 of Equation (23) with X0 = eξ0 ⊗x0 must be of the form Xt = eξt

⊗xt forall t. Be
ause Equation is a linear system, it follows easily from Sims (2001) thatany solution of Equation (23) must satisfy ZuXt = 0 for all 0 ≤ t. This togetherwith the fa
ts that (e′i ⊗ φi)Xt = 0 and that the row spa
e of zi is equal to the rowspa
e of φi for all 0 < t and 2 ≤ i ≤ m, imply that (e′i ⊗ zi)Xt = 0 for all 0 < t and
1 ≤ i ≤ m.We show thatXt = eξt

⊗xt, by indu
tion on t. By assumption, X0 = eξ0⊗x0. Nowassume that Xt−1 = eξt−1
⊗ xt−1. Let X ′

t = [x′1, · · · , x
′
h], where xi is a n dimensional
olumn ve
tor. From Equation (23), it is easy to see that

[

a1 (i)

zi

]

xi = 0for i 6= ξt. Sin
e [ a′1 (i) z′i
] has rank n, this implies that xi = 0 for i 6= ξt. Thus

Xt has the required Krone
ker produ
t stru
ture.All that remains to be shown is that {xt, ηt}
∞
t=1 is a solution of Equation (20).The �rst two blo
ks of equations in (23) together with the de�nition of ut and Siand the Krone
ker produ
t stru
ture of Xt, imply that xt and ηt satisfy Equation(20). Be
ause {Xt, ηt}

∞
t=1 is a solution of Equation (23), Et−1 [ηt] = 0. Given theKrone
ker produ
t stru
ture of Xt, it is 
lear that Et [Xt+s] will be bounded if andonly if Et [xt+s] is bounded. Thus all the 
onditions for {xt, ηt}

∞
t=1 to be a solutionof Equation (20) are satis�ed.A.5. Proof of Theorem 4. From Sims (2001), a solution of Equation (23) willexist if and only if there exists a matrix Λ su
h that Z2 (Ψ + ΠΛ) = 0. So, if

Z2 (Ψ + ΠΛ) = 0, then a solution of Equation exists and from Theorem (3), thissolution is of the form Xt = eξt
⊗ xt where xt is a solution of Equation (20). FromLubik and S
horfheide (2003)[page 277℄, we know that any solution of linear systemgiven by Equation (23) will be of the form (Xt, ηt) where

Xt = G1Xt−1 +G2ut +G3γtThe term G3γt will be present only if the solution of Equation (23) is not unique. Inthis 
ase, the random variable γt 
an be any mean zero pro
ess. Suppose that thesolution were not unique. Sin
e γt 
an be any mean zero pro
ess, it 
an be takento be identi
ally zero. In this 
ase, Xt would be equal to G1Xt−1 + G2ut. Sin
e Xtmust have a Krone
ker produ
t form, this implies that G1Xt−1 + G2ut must have aKrone
ker produ
t form. This, in turn, implies that G3γt must have a Krone
kerprodu
t form for all mean zero pro
ess γt. But this 
an happen only if G3 is zero.This implies that Xt is a unique solution of Equation (23). If xt is any solution ofEquation (20) satisfying φξt
xt = 0 for all t > 0, then Xt = eξt

⊗ xt will be a solutionof Equation 23. Sin
e these solutions are unique, so must be solutions of Equation(20) satisfying φξt
xt = 0 for all t > 0.A.6. Proof of Theorem 5. To be added.
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