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Modeling Regime Shifts

• Structural changes in consumers and firms’ behavior, in policy, or in
volatility are often modeled by discrete changes in the coefficients of
economic models.

• Backward looking Markov-switching models have been popular tools
since Hamilton (1989), but

• In an economy where past structural changes are observed and
future changes are likely, rational agents will form a probability
distribution over possible structural changes in the future when
forming expectations (Lucas 1976; Cooley, LeRoy, and Raymon
1984; Sims 1992).

• The Markov-switching approach has been extended to a rational
expectations framework (Leeper and Zha 2003; Svensson and
Williams 2005; Davig and Leeper 2006, 2007; Farmer, Waggoner
and Zha 2008; Liu, Waggoner and Zha 2008), but better solution
techniques are needed.



Our Contributions

1 We characterize the general solutions of linear rational expectations
model with exogenous Markov-switching of the parameters.

2 We extend the notion of the minimum state variable (MSV) solution
(MacCallum (1983)) to the Markov-switching case.

3 We derive an easy to use and efficient algorithm for obtaining MSV
solutions.



General Model

• The models we study are represented by the equation,

A1,st

[
zt

yt

]
= A2,st Etyt+1 + B1,st

[
zt−1

yt−1

]
+ Ψ1,stεt (1)

• The process st is Markov, taking values between 1 and h with
transition matrix P = [pij ]. The element pij represents the
probability that st = j given st−1 = i .

• yt is an n-dimensional vector of endogenous random variables

• zt is an m-dimensional vector of predetermined variables

• εt is an r -dimensional vector of exogenous shocks that are
independent of the Markov process st

• A1,j , B1,j - (m + n)× (m + n)
A2,j - (m + n)× n
Ψ1,j - (m + n)× r



General Model (continued)

These can be written in the expectational error form

Ast xt = Bst xt−1 + Ψstεt + Πηt , (2)

where

xt =

 zt

yt

Etyt+1

 Aj =

[
A1,j −A2,j[

0n,m In
]

0n,n

]

Bj =

[
B1,j 0n+m,n

0n,m+n In

]
Ψj =

[
Ψ1,j

0n,r

]
Π =

[
0n+k,n

In

]



MSV Solutions

• Where does the solution live - Conditional Span
The span of the solution, conditional on st = i , is the smallest linear
space that contains the support of xt1{st=i} for every t, where
1{st=i} is the indicator function that is 1 if st = i .

• If the conditional span is smaller than the entire space, then there is
a linear relation among zt , yt , and Etyt+1.

• The conditional span of a MSV solution is small enough so that
Etyt+1 is uniquely determined given zt and yt , but not so small that
zt and yt are constrained.

• This implies that the dimension of the conditional span is m + n.
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MSV Solutions (continued)

Theorem
The processes xt and ηt are a MSV solution of (2) if and only if they are
of the form

xt = Vst

(
F 1

st
xt−1 + G 1

st
εt
)

ηt = −
(
F 2

st
xt−1 + G 2

st
εt
)

where the column space of Vi is the span of the solution conditional on
st = i ,

[
AiVi Π

]
is invertible,

[
AiVi Π

] [F 1
i

F 2
i

]
= Bi ,

[
AiVi Π

] [G 1
i

G 2
i

]
= Φi ,

and

h∑
j=1

pi,jF
2
j Vi = 0 for 1 ≤ i ≤ h. (3)



Finding MSV solutions

• Given the representation of MSV solutions, we could use the method
of undetermined coefficients to iteratively find MSV solutions. This
is essentially the method devised by Svensson and Williams (2005).

• Use an iteratively defined constant parameter stacked system to find
both the conditional span and solution using Sims (2001). This
technique was proposed in an earlier version of this paper.

• Solve equation (3) to find the conditional span of an MSV solution.



Newton’s Method

• Since
[
AiVi Π

]
is invertible and Vi is only defined up to right

multiplication by an invertible matrix, we may assume that AiVi is
of the form

AiVi =

[
Im+n

Xi

]
where Xi is a n × (m + n) matrix of free parameters.

• If Ai is invertible, then (3) becomes

h∑
j=1

pi,j

[
Xj In

]
B(j)A(i)−1

[
Im+n

−Xi

]
= 0n,m+n.

• This is a quadratic system of hn(m + n) equations in hn(m + n)
unknowns and can be quickly solved using your favorite root finding
algorithm, such as Newton’s method.



Stable Solutions

• When is a process of the form

xt = Vst F
1
st
xt−1 + Vst G

1
st
εt

stable?

• It follows from Costa, Fragoso, and Marques (2004) that this system
will be mean square stable if and only if all the eigenvalues ofp1,1V1F

1
1 ⊗ V1F

1
1 · · · ph,1VhF

h
1 ⊗ VhF

1
h

...
. . .

...
p1,hV1F

1
1 ⊗ V1F

1
1 · · · ph,hVhF

h
1 ⊗ VhF

1
h


are inside the unit circle.

• In the case that there are multiple MSV solutions, choosing the one
with smaller eigenvalues will result in a solution with smaller
variance.



Example

Consider the regime-switching policy model, based on Lubik and
Schorfheide (2004).

xt = Etxt+1 − τ(st)(Rt − Etπt+1) + zD,t ,

πt = β(st)Etπt+1 + κ(st)xt + zS,t ,

Rt = ρR(st)Rt−1 + (1− ρR(st)) [γ1(st)πt + γ2(st)xt ] + εR,t ,

where xt is the output gap t, πt is the inflation rate and Rt is the
nominal interest rate with both πt and Rt are measured in terms of
deviations from the regime-dependent state. The shocks to the consumer
and firm’s sectors evolve as[

zD,t

zS,t

]
=

[
ρD(st) 0

0 ρS(st)

] [
zD,t−1

zS,t−1

]
+

[
εD,t

εS,t

]
,



Example (continued)

Lubik and Schorfheide estimated the model assuming that the agents
behaved as if each regime were to last indefinitely. The parameter
estimates are given below:

Structural Equations
Parameter τ κ β γ1 γ2

First regime 0.69 0.77 0.997 0.77 0.17
Second regime 0.54 0.58 0.993 2.19 0.30

Shock Processes
Parameter ρD ρS ρR σD σS σR

First regime 0.68 0.82 0.60 0.27 0.87 0.23
Second regime 0.83 0.85 0.84 0.18 0.37 0.18



Example (continued)

• Considering each regime in isolation, the first regime would be
indeterminate while the second regime is determinate.

• Given the above calibration, on could compute the MSV solution,
which would be different from the solutions obtained by considering
each regime in isolation.

• Given any parameterization, one can find MSV solutions of the
model (assuming that any exist), and could use the solution to
approximate the likelihood.

• These techniques could thus be used to estimate the model taking
into account that agents know that the regimes could switch.



Conclusions

• We extend the notion of the MSV solution (MacCallum (1983)) to
Markov-switching rational expectations models.

• We characterize both the general and MSV solutions of linear
rational expectations model with Markov-switching parameters.

• We derive an easy to use and efficient algorithm for obtaining MSV
solutions.


