Structural Econometrics in Industrial Organization: Demand

Marc Rysman

Boston University

February 13, 2009

What is a structural model?

Definition 1

A structural model estimates the parameters in a theoretical model.

Definition 2

A structural model estimates the parameters in the objection function of agents.

Consider a theoretical model with 2 equilibria, where equ. 1 is selected with prob. θ . Estimating θ is structural under Def. 1 but not Def. 2.

Why estimate a structural model

- Construct counterfactuals
- Provides a disciplined method for handling complex situations
- But usually requires many assumptions
- and can be numerically demanding.

Why do we estimate demand?

- Learn price elasticities
- Learn elasticities to other product characteristics
- Learn value of new goods
 - construct price indices

Why estimate with aggregate data?

Disaggregate data

- Observe actual prices, outside options
- Account for interaction of household and product characteristics explicitly
- Panel data allows for rich models of learning, stockpiling, switching, etc.
- Aggregate data
 - Often all that is available
 - Necessary for accurate market share data, which is important for oligopoly analysis

Standard Approach

Or at least, standard at one time

Let indirect utility over *J* products be:

$$ln(V) = \sum_{j=1}^{J} \beta_j \ln(P_j) + \sum_{j=1}^{J} \sum_{k=1}^{J} \frac{\beta_{jk}}{2} \ln(P_j) \ln(P_k)$$

Roy's Identity: $\partial \ln(V) / \partial \ln(P_j) = X_j \Rightarrow$

$$X_j = \beta_j + \beta_{jj} \ln(P_j) + \sum_{k \neq j}^J \frac{1}{2} \beta_{jk} \ln(P_k)$$

Read elasticities right off of regression

Problems

- 1. Problems with many products
 - $J \times J + 1$ parameters
- 2. Doesn't handle entry and exit well
 - What does it mean to drop a product? p = ∞? p =choke value?
- 3. Doesn't look like a discrete choice model

Discrete Choice Model

Can solve all 3

- Think of goods as a collection of characteristics.
 - We can project lots of goods onto a space of only a few chars.
- Model: Utility to *i* from product *j* is:

$$u_{ij} = u_j + \epsilon_{ij}$$

- Consumer picks *j* s.t. $u_{ij} \ge u_{ik} \forall k$
- *u_j* is a function of observable variables. In disaggregate data, it could vary by *i*.

Logit model

- Assume $\epsilon_{ij} \sim$ Extreme Value
- ► CDF for Extreme Value distribution with mean α and variance $\pi^2 \mu^2/6$ is:

$$F(\epsilon) = e^{-e^{-\left(rac{\epsilon-lpha}{\mu}+\gamma
ight)}}$$

where γ is euler's constant.

- Has bell shape with fat tails
- Logit magic: probability that i picks j:

$$\mathsf{P}_{j} = rac{oldsymbol{e}^{u_{j}/\mu}}{\sum_{k} oldsymbol{e}^{u_{k}/\mu}}$$

Proof: Chapter 2, Anderson, De Palma and Thisse

Welfare

More logit magic!

• Indirect utility to *i* is $V + \epsilon'_i$ where:

$$V = \mu \ln \left(\sum_{j=1}^{J} e^{u_j/\mu} \right)$$

and ε_i is distributed EV with variance parameter μ
Note similarity to CES utility function:

$$e^{V} = \sum_{j=1}^{J} \left((e^{u_1})^{1/\mu} + (e^{u_1})^{1/\mu} + \ldots \right)^{\mu}$$

Entry and exit handled naturally.

Application to aggregate data

Let utility to consumer *i* from product *j* be:

$$u_{ij} = \underbrace{\mathbf{x}_{j\beta} - \alpha \mathbf{p}_{j} + \xi_{j}}_{\delta_{j}} + \epsilon_{ij}$$

- ► Assume our population contains a continuum of consumers with e_{ij} ~ EV.
- Market shares:

$$s_j = rac{\exp(\delta_j)}{1 + \sum_{k=1}^J \exp(\delta_j)}$$

Berry (RAND, 1994)

$$s_{j} = \frac{\exp(\delta_{j})}{1 + \sum_{k=1}^{J} \exp(\delta_{j})} \quad s_{0} = \frac{1}{1 + \sum_{k=1}^{J} \exp(\delta_{j})}$$
$$\Rightarrow \frac{s_{j}}{s_{0}} = \delta_{j}$$
$$\Rightarrow \ln(s_{j}) - \ln(s_{0}) = x_{j}\beta - \alpha p_{j} + \xi_{j}$$

 Note that there is a general principal at work – inverting market shares to get mean utilities.

What's not to like about Logit?

Relative market shares do not depend on characteristics or presence of other goods

Independence of Irrelevant Alternatives (IIA)

$$\frac{s_j}{s_k} = \frac{e^{u_j}}{e^{u_k}}$$
$$\frac{\partial s_j}{\partial p_k} = -s_j s_k \beta_p$$

Random Coefficient model

$$u_{ij} = x_j \beta_i - \alpha_i p_j + \xi_j + \epsilon_{ij}$$
$$u_{ij} = \underbrace{x_j \beta - \alpha p_j + \xi_j}_{\delta_j} + \underbrace{\sum_{l=1}^{L} \sigma_l x_{jl} \nu_{il}}_{\mu(x_j, \sigma, \nu_i)} + \epsilon_{ij}$$

- Dimensionality of x_j is L.
- ► $\nu_i \sim \mathbb{N}(0, 1).$

Market shares

$$s_{ij} = \frac{\exp\left(\delta_j + \mu(x_j, \sigma, \nu_i)\right)}{1 = \sum_{k=1}^{J} \exp\left(\delta_k + \mu(x_k, \sigma, \nu_i)\right)}$$
$$s_j = \int s_{ij}\left(\overrightarrow{\delta}, \mu_i\right) f(\nu_i) d\nu_i$$

With logit:

- s_j had a closed form solution as function of $\overrightarrow{\delta}$
- AND the function could be inverted.

Solutions

- 1. Numerically integrate:
 - Draw ns values of v_i
 - Compute:

$$s_j = \frac{1}{ns} \sum_{i=1}^{ns} \frac{\exp\left(\delta_j + \mu(x_j, \sigma, \nu_i)\right)}{1 + \sum_{k=1}^{J} \exp\left(\delta_k + \mu(x_k, \sigma, \nu_i)\right)}$$

2. Invert via a fixed point equation:

$$\delta'_{j} = \delta_{j} + \underbrace{\ln(s_{j})}_{data} - \underbrace{\ln(\hat{s}_{j}(\overrightarrow{\delta}, \sigma))}_{model}$$

Full Algorithm

- 1. Draw a set of ν_i
- 2. Pick parameters β , α , σ
- 3. Guess $\overrightarrow{\delta}$
- 4. Compute $\delta' = \delta + \ln(s_j) \ln(\hat{s}_j(\vec{\delta}, \sigma))$
- 5. If $d(\overrightarrow{\delta}', \overrightarrow{\delta}) > \text{cutoff}$, go to 3.
- 6. Compute $\xi_j = \delta_j x_j \beta + \alpha p_j$
- 7. Compute $m = z'\xi$ and obj = m'wm
- 8. Find β , α , σ that minimizes obj, go to 2.

Instruments

- Cost shifters don't provide enough variation across products.
- but remember: P = MC + Mark up
- Use instruments that shift the mark-up.
- Measures of competition in product space.
- Requires assumption that characteristics are exogenous Controversial!

Supply Side

- Older research used accounting data to measure cost but the modern view is that accounting data is unreliable.
- Instead, we estimate marginal cost.
- We can use the demand system and an assumption about equilibrium play (i.e. Bertrand Nash) to compute marginal revenue and assume it is equal to marginal cost.
- Firm *f* that sells all products $j \in \mathfrak{F}_f$ solves:

$$\max_{p_j,j\in\mathfrak{F}_f}\sum_{j\in\mathfrak{F}_f}(p_j-mc_j)Ms_j(\overrightarrow{p})$$

$$\Rightarrow \boldsymbol{s}_j + \sum_{k \in \mathfrak{F}_f} (\boldsymbol{p}_k - \boldsymbol{m} \boldsymbol{c}_k) \frac{\partial \boldsymbol{s}_k}{\partial \boldsymbol{p}_j} = \boldsymbol{0}$$

Estimate marginal cost

In matrix notation:

$$\vec{s} + \Delta(\vec{p} - \vec{mc}) = 0$$

$$\vec{p} + \Delta^{-1}\vec{s} = \vec{mc}$$

$$\ln\left(\vec{p} + \Delta^{-1}\vec{s}\right) = w\gamma + \omega$$

Now moments are:

$$m = \begin{bmatrix} z'\xi & z'\omega \end{bmatrix}$$

 Some papers add moment from dissagregate data sets at this stage, for instance, the average income conditional on purchase (Petrin, JPE, 2002).

Application: Berry, Levinsohn, Pakes (AER, 1999)

- What is the impact of Japanese voluntary export restraints?
- Japanese auto manufacturers obtained increasing markets shares in the US throughout the 1970's.
- US firms ask for protection and Reagan "asked" Japan to institute "voluntary export restraints."

Sales and VER limits

TABLE 1-U.S. AUTOMOBILE IMPORTS FROM JAPAN

Year	International Trade Commission data	VER limit	Difference (Imports-VER)	
	U.S. imports from Japan including Puerto Rico			
1981	1,833,313	1,832,500 ^a	813	
1982	1,831,198	1,832,500	-1,302	
1983	1,851,694	1,832,500	19,194	
1984	2,031,250	2,016,000 ^b	15,250	
1985	2,605,407	2,506,000 ^c	99,407	
1986	2,518,707	2,506,000	12,707	
1987	2,377,383	2,506,000	-128,617	
1988	2,115,304	2,506,000	-390,696	
1989	2,015,920	2,506,000	490,080	
1990	1,911,828	2,506,000	-594,172	

Hedonic regression

TABLE 4—A FIRST PASS AT EXAMINING THE EFFECT OF THE VER ON AUTOMOBILE PRICES AN ORDINARY LEAST-SQUARES HEDONIC REGRESSION [DEPENDENT VARIABLE IS LN(PRICE)]

	Parameter	Standard error	
Variable	estimater		
Constant	2.248	0.044	
ln(HP/Weight)	0.593	0.027	
In(Space)	1.038	0.056	
In(MP\$)	-0.312	0.035	
Air	0.479	0.015	
Trend	0.021	0.004	
Japan	2.358	2.945	
Euro	2.357	0.436	
itrend	-0.006	0.018	
etrend	-0.018	0.005	
In(e-rate)	-0.272	0.091	
Lag[In(e-rate)]	0.258	0.089	
In(e-rate)*Japan	0.295	0.300	
In(e-rate)*Euro	0.374	0.070	
VER80	-0.199	0.078	
VER81	-0.155	0.083	
VER82	-0.156	0.114	
VER83	-0.099	0.121	
VER84	-0.148	0.135	
VER85	-0.149	0.151	
VER86	-0.120	0.115	
VER87	-0.122	0.118	
VER88	-0.191	0.129	
VER89	-0.257	0.137	
VER90	-0.280	0.150	
DOM80	-0.056	0.037	
DOM81	0.018	0.039	
DOM82	0.112	0.041	
DOM83	0.130	0.043	
DOM84	0.109	0.048	
DOM85	0.076	0.050	
DOM86	0.216	0.057	
DOM87	0.171	0.060	
DOM88	0.164	0.065	
DOM89	0.111	0.069	
DOM90	0.063	0.073	

Note: The regression had 2,217 observations and an R^2 of 0.815

Model

Treat VER as a type of cost, constraining firms to set MR > MC.

$$\Rightarrow s_j + \sum_{k \in \mathfrak{F}_t} (p_k - mc_k - \lambda_t \text{VER}_t) \frac{\partial s_k}{\partial p_j} = 0$$

Intuition: Do J firms set prices at a point where MR is relatively higher than US firms?

Main results

TABLE 5—ESTIMATED PARAMETERS OF THE DEMAND AND PRICING EQUATIONS: BASE CASE SPECIFICATION 1971–1990 DATA, 2,217 OBSERVATIONS

	Variable	Parameter estimate	Standard error
Demand-side para	ameters		
Means (B [*] s)	Constant	-5.901	0.712
······································	HP/Weight	2.946	0.486
	Size	3.430	0.342
	Air	0.934	0.199
	MP\$	0.202	0.084
Standard deviatio	ns		
$(\sigma_{B}'s)$	Constant	1.112	1.171
	HP/Weight	0.167	4.652
	Size	1.392	0.707
	Air	0.377	0.886
	MP\$	0.416	0.132
Term on price (a)		
	(-p/y)	44.794	4.541
Cost-side parame	ters		
	Constant	0.035	0.310
	In(HP/Weight)	0.604	0.063
	In(Size)	1.291	0.106
	Air	0.484	0.043
	Trend	0.018	0.004
	Japan	3.255	0.667
	Japan*trend	-0.036	0.008
	Euro	3.205	0.525
	Euro*trend	-0.032	0.006
	lag[In(e-rate)]	0.026	0.024
	In(wage)	0.356	0.079
VER dummics			
	VER81	-0.085	0.187
	VER82	-0.022	0.228
	VER83	0.001	0.248
	VER84	0.403	0.245
	VER85	0.361	0.303
	VER86	0.675	0.307
	VER87	1.558	0.353
	VER88	1.490	0.379
	VER89	1.277	0.458
	VER90	1.063	0.469

Simulations

- VER causes J prices to climb substantially, US prices only a bit.
 - Price sensitive consumers are the ones that switch.
- VER causes J profits to go up.
 - VER implements the collusive outcome
- CS down 13 mil, profits up 10mil, total loss 3 mil
 - But standard error is 7.5mil.
 - Should use a tariff?