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Abstract

Two ending rules, a soft close and a hard close, exist in Internet auctions. In hard
close auctions, each auction ends with a fixed deadline determined by a seller. In soft close
auctions, the end time automatically extends if at least one bid is submitted in the last
few minutes, so each buyer has an opportunity to reply to other buyers’ bids. The reserve
prices set by the seller in hard close auctions are higher than the reserve prices in soft close
auctions. The result is consistent with data of DS Lite auctions in Yahoo! Japan.

1 Introduction

Since Onsale and eBay started Internet auctions in 1995, the number of items and the amount

of money in transactions have been growing at a high rate. As Internet auctions are widely

used to sell a variety of items, many research papers study Internet auctions theoretically

or empirically. Lucking-Reiley (2000) provides a good survey of Internet auctions, and he

considers public reserve prices, secret reserve prices, time durations and buy prices in detail.

Internet auctions have inherent features as compared with traditional auctions like Sotheby’s

and Christie’s. One of the features is that people can hold the auction whenever they want to

sell items, and they can quickly re-auction their items with few costs whenever the item remains

unsold. In this sense, we can consider Internet auctions as sequential auctions. There are some

works which analyze sequential auctions where a seller has a single item. 1 McAfee and Vincent

∗Graduate School of Economics, Hitotsubashi University; 2-1, Naka, Kunitachi, Tokyo, Japan 186-8601;
E-mail:tsucchi1978@yahoo.co.jp

†I am very grateful to members in Hitotsubashi Game Theory Workshop and 14th DC conference for helpful
comments and suggestions. I am truly indebted to my superviser Akira Okada for his invaluable guidance. Any
remaining errors are of course my own responsibility.

1There are also many researches which analyze sequential auctions where a seller has many identical items and
she sequentially sells one unit of the items in each auction. In this setting, each buyer has single-unit demand,
and he exits from the auction once he gets the item. In this context, buyers’ bidding strategies and winning
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(1997) analyze both sequential auctions in which the stage game is a sealed-bid second-price

or first-price auction in the independent private value (IPV) context. 2 In their model, a seller

posts a high reserve price in the first period and decreases reserve prices in consequent periods,

so that each buyer is faced with a chance between submitting in the current period and waiting

for lower prices in the future. 3 In the other study, Grant et al. (2006) discuss repeated

auctions in the IPV context in which a seller chooses both a reserve price and a duration for

each auction. In their model, a seller cannot change a reserve price once she chooses it. They

consider an English auction as a stage game in which bidders appear according to a random

(Poison) arrival process.

The other feature of Internet auctions is that there are different rules for ending auctions.

Two famous rules exist for ending auctions. The first rule is a hard close which ends an auction

with a fixed end time determined by a seller. A hard close is adapted by eBay and other auction

sites. Another rule is a soft close which automatically extends an end time if at least one bid is

submitted in the last few minutes (ten minutes in Amazon and five minutes in Yahoo! Japan),

and the auction ends if the last minutes have passed without any bids. A seller can or cannot

choose the rules in Internet auctions. 4 5 Since ending rules change the structure of auctions,

a seller may post different reserve prices depending on ending rules. Since McAfee and Vincent

(1997) provide a model of Internet auctions with a hard close, and they characterize a perfect

Bayesian equilibrium of hard close auctions. In this paper, we construct a model of Internet

auctions with a soft close by developing McAfee and Vincent’s (1997) model and compare

reserve prices. We obtain the two results. First, we show that the seller posts a higher reserve

price in hard close auctions than in soft close auctions. The result is consistent with the auctions

data of DS Lite in Yahoo! Japan. Second, while a difference between reserve prices in different

auctions exists, a timing of the item to be sold is the same independent of ending rules. There

prices are analyzed but the reserve prices are not. The winning prices are theoretically to drift upward (Weber,
1983; Milgrom and Weber, 2000), but they have a tendency to drift downward in the real auctions (Ashenfelter,
1989).

2To our knowledge, we do not find any papers which analyze sequential auctions in the common value context.
3In a bargaining under one-sided or two-sided uncertainty, the similar results are obtained. See Samuelson

(1984), Fudenberg et al (1985) and Gul et al. (1986).
4A seller can choose an ending rule in Yahoo! Japan auction. Other Internet auction sites, eBay and Amazon,

do not allow sellers to choose rules for ending auctions.
5While Yahoo! in the U.S also have provided the similar auction system to Yahoo! Japan’s, Yahoo! finished

the auction services in September 2007.
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are few papers which analyze ending rules. Roth and Ockenfels (2002) and Ockenfels and Roth

(2006) examine sniping by comparing English auctions with different ending rules. 6 Ockenfels

and Roth (2006) develop a one-shot English auction model by introducing a probability of

a bid to be failed in the last minute, and show that sniping occurs in equilibrium in hard

close auctions such as eBay. Roth and Ockenfels (2002) compare bidding in eBay with that

in Amazon and find that there is a great deal of sniping on eBay, and considerably less on

Amazon.

The reason why we adopt a sequential auction model instead of a one-shot game is that the

unsold item can quickly be re-auctioned with no/few costs in Internet auctions. Furthermore,

we can see that ending rules do not affect outcomes in one shot case. Though a stage game of

Internet auctions is a kind of English (ascending) auction, it can be considered as a sealed-bid-

second-price auction due to a proxy bid system in the IPV context. 7 We analyze a sequential

auction with a soft close in the IPV context developing McAfee and Vincent’s (1997) model,

and discuss how the two rules change reserve prices. We do not consider a secret reserve price,

buy price and a positive minimum increment. 8 This paper is organized as follows. Section 2

presents the model. Section 3 considers one shot case and a sequential case. Section 4 analyzes

stationary linear equilibria. Section 5 compares ending rules and section 6 concludes. All proofs

are given in the Appendix.

2 The Model

We consider a sequential soft close auction in the IPV context in which each period is a sealed-

bid-second-price auction with potentially two stages. A seller has a single item to which she

evaluates v0 = 0. She chooses a reserve price rt in each period t. There are n potential buyers.

6Sniping is an inherent phenomenon which many buyers submit bids in the very last few minutes even though
the item is been auctioning during a few days.

7In Internet auctions, the current price is not the highest bid but the second highest bid plus a minimum
increment (called “proxy bid system”). Due to a proxy bid system, each bidder suffices to submit his reserve
price early in the auction and wait for the auction end.

8Internet auctions equip with some useful systems which can support auction transactions such as a proxy
bid, a rating system and a watch list. Furthermore, sellers and buyers have many options. Lucking-Reiley (2000)
discusses these options, and many research papers study them theoretically or empirically. Choosing a rule for
ending auctions may be one of sellers’ options. Minimum increments can affect a buyer’s strategy. Submitting
a bid equal to a seller’s true valuation is not a weakly dominant strategy in IPV English auctions which equip
with minimum increments. See Roth and Ockenfels (2002).
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Buyer i’s valuation of the item vi, which is the buyer i’s private information, is independently

and identically drawn from [0, 1] according to a distribution function F . The density function

is given by f = F
′
> 0 (full support). The seller posts a reserve price rt at the beginning of

period t (first stage). The buyer with the highest bid over the reserve price r wins the auction,

and pays a price p which is higher of the second highest bid and the reserve price. If a winner’s

value is vi and the item is sold for a price p, the seller’s payoff is p and the winner’s payoff is

vi − p. In what follows, we refer buyer v as a buyer with reservation value v. We assume that

no one can submit a bid below the reserve price. If at least one bid is submitted in the first

stage, the second stage starts in the current period t, where the buyers simultaneously submit

bids (second stage). Notice that no one can submit a bid below the second highest bid in the

first stage. On the other hand, if no bid is submitted in period t, no buyer can obtain the item

and the item is re-auctioned without any costs in period t + 1. 9 10 Both seller’s and buyers’

payoffs are discounted by a common discounting factor δ ∈ (0, 1). No buyer can submit a bid

after the second stage is shutdown, thus the auction ends with probability 1 in the current

period if the second stage starts. 11

Strategy A history at the beginning (of the first stage) of period t is a sequence of reserve

prices and it is denoted by ht ∈ Ht = {ht | ht = (r1, · · · , rt)}, where h0 = {∅}. A (pure)

strategy for each buyer is a pair b = (b1, b2). In period t, the buyer decides whether to submit

a bid or not in the first stage given his valuation v and a history ht according to b1
t , which is

a function from [0, 1] × Ht to R+ ∪ {∅}, where {∅} means no bid. Similarly, the buyer decides

whether to submit a bid or not in the second stage of period t given his valuation v, a history

ht and the reserve price rt according to b2
t , which is a function from [0, 1]×Ht×R+ to R+∪{∅},

where {∅} means no bid. 12 We assume b2
t (v, ht, rt) ≥ b1

t (v, ht) for all t. A (pure) strategy s for

9Notice that only the final period has two stages and the other periods have only one stage.
10Ockenfels and Roth (2006) consider a one-shot auction with two stages. In their model, an auction is held

during a period [0, 1]. The first stage is [0, 1), where any buyers can reply to other bids. The second stage is
{1}, where any buyers cannot reply to other bids.

11This assumption loses nothing about generality. We can add the third stage in any periods. If some buyers
submit bids in the second stage, the ending time automatically extends, and the third stage will be given to all
buyers. However, since nothing is discounted within a period and the auction surely ends at the current periods,
the added third stage cannot affect the outcome.

12McAfee and Vincent (1997) set up a model where no-bid-option is not allowed for the buyer. In their model,
however, the buyer can submit a bid below a reserve price, which is not accepted by the seller, thus the bid
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the seller is setting a reserve price rt in period t given history ht, and it is formally described

as a function from Ht−1 to R+.

We analyze a symmetric perfect Bayesian equilibrium (PBE) of the game. A PBE of the

game is represented by a profile (s∗, b∗, µ∗) of strategies and the seller’s belief. The seller and

buyers maximize their conditional expected payoff. Furthermore, we assume that buyers use

the weakly dominant strategies if they exist. The seller’s belief µ∗ is her probability assessment

of the highest buyer’s valuation, given a history, and it is formally a function from Ht−1 to

the set of distributions over the highest buyer’s valuation [0, 1]. Precisely, the seller’s belief is

the probability assessment of all buyers’ valuations ∆([0, 1]n). However, the seller is typically

interested in the highest order statistics due to the three assumptions: (i) Buyers’ valuations are

independently distributed; (ii) Buyers are identical; and (iii) Buyers use a symmetric strategy.

Precisely, we must consider buyers’ beliefs about other buyers’ valuations since each buyer has

a chance to update his belief after proceeding a period. However, since we assume that buyers

submit weakly dominant bids if they exist, and since buyers actually have weakly dominant

bids as we will show, thus we omit the buyers’ beliefs. We define a weakly dominant bid in

Definition 1 below.

3 Analysis

First we consider one period case. In this case, a hard close auction is identical with a standard

one-shot sealed-bid-second-price auction. In the auction, each buyer v has a weakly dominant

strategy in which he submits his true value v. If the seller sets a reserve price R, her expected

payoff is given by:

Π0(R) = n
[
R(1 − F (R))G(R) +

∫ 1

R
v(1 − F (v))g(v)dv

]
,

where G(x) = (F (x))n−1. By differentiating Π0 with respect to R, we obtain:

R =
1 − F (R)

f(R)
.

If F is the uniform distribution on [0, 1], then R = 1/2.

bellow a reserve price can be considered as no-bid. Furthermore, they call a bid above reserve price a serious
bid.
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A soft close auction can be considered as a sealed-bid-second-price auction with two stages.

We can analyze it by backward induction. In the second stage, each buyer v has a weakly

dominant strategy in which he submits his true value v. In the first stage, if buyer v submits a

bid b, the bid should be equal to or lower than v. Otherwise, he might not be able to submit v

in the second stage. However, submitting nothing is strictly dominated by the above bid, since

the auction ends if the other buyers do not submit any bids. From the view of a seller, this

auction can be considered as the standard one-shot sealed-bid-second-price auction. Therefore,

the seller chooses the same reserve price as above.

Second, we consider a sequential case of soft close auctions by developing McAfee and

Vincent’s (1997) sequential second-price auctions. When we consider a buyer’s strategy, we

must specify both a timing of submitting and a price against to any reserve prices in both the

first and the second stage. However, the next two lemmas can simplify an analysis for a buyer’s

strategy. Before stating lemmas, we define a weakly dominant bid as below.

Definition 1 Fix a history ht and a reserve price rt in period t. For a buyer with a reservation

value v, a pair of b1
t (v, ht) ̸= ∅ in the first stage and b2

t (v, ht, rt) ̸= ∅ is a weakly dominant bid

if:

Vt((b1
t , b

2
t ), b

−
t ; v) ≥ Vt((b̃1

t , b̃
2
t ), b

−
t ; v)

for all (b̃1
t , b̃

2
t ) and b−t where b−t denotes the other buyers’ bids.

The term Vt((b1
t , b

2
t ), b

−
t ; v) represents a buyer’s expected payoff when his reservation value

is v, he submits bid (b1
t , b

2
t ) and the other buyers’ bids are b−t .

Lemma 1 In any PBE, if buyer v submits a bid, submitting his true value v or lower in the

first stage (b1
t (v, ht) ≤ v) and submitting his true value v in the second stage (bs

t (v, ht, rt) = v)

is a weakly dominant bid for all v, ht, rt and t.

The proof follows a standard proof which submitting a true value is a weakly dominant

strategy in sealed-bid-second-price auctions. Similar to standard sealed-bid-second-price auc-

tions, there exist many asymmetric PBE where one bidder submits a very high bid and the
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others’ bids are low. In what follows, we restrict attention to a PBE where each buyer submits

a weakly dominant bid, where it satisfies b1
t (v, ht) = v and b2

t (v, ht, rt) = v, hence, a PBE is

symmetry. 13

Thanks to Lemma 1, we can focus only on timing when each buyer should submit a bid

in an optimal strategy. Therefore, we can consider a buyer’s strategy as b1
t (v, ht) ∈ {v, ∅} and

b2
t (v, ht, rt) ∈ {v, ∅} for all v, ht, rt and t.

Lemma 2 In any PBE, following any history ht, if buyer v submits v in the first stage, then

any buyer v′ > v submits v′ in the first stage.

The proof is similar to proofs in Sobel and Takahashi (1983), Cramton (1984) and McAfee

and Vincent (1997). By Lemma 1 and Lemma 2, in any PBE, buyer v should use a cut-off

strategy in which he submits v in the first stage if and only if rt is equal to or lower than his

cut-off value, and submits v in the second stage if the second stage starts. In j-th stage of

period t, buyer v decides a cat-off value given his reservation value v and history ht according

to βj
t , which is a function from [0, 1] × Ht to R+. By Lemma 2, βj

t (v
′, ht) > βj

t (v, ht) for all

v′ > v, for all t and j = 1, 2. Notice that since the auction surely ends if the second stage

starts, buyer v should submit his true value v, so β2
t (v, ht) = v for all t and ht. In what follows,

it is sufficient to consider only the cut-off values in the first stage, so we write βt(v, ht) instead

of β1
t (v, ht). Therefore, we can replace a buyer i’s strategy to

b1
t (v, ht) =

{
v if rt ≤ βt(v, ht)
∅ otherwise.

(1)

Lemma 3 Let βt be an equilibrium buyer’s strategy. There exists a unique value vt such that

the support of µ(ht−1) is given by [0, vt], and rt = βt−1(vt, ht−1) given rt for all ht−1 and t > 1

and v1 = 1.

13Even though b1
t (v, ht) < v and b2

t (v, ht, rt) = v is also a weakly dominant bid, but the outcome is the same
as the outcome induced by b1

t (v, ht) = v and b2
t (v, ht, rt) = v. Thus, for simplicity, we restrict attention to the

weakly dominant bid b1
t (v, ht) = v and b2

t (v, ht, rt) = v.
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Lemma 3 determines a way to update the seller’s on-path belief. We assume that vt ∈ [0, 1]

for all ht and t, and the seller’s off-path belief is also given by the way in Lemma 3. Furthermore,

we can consider as if the seller were to choose the lowest value xt instead of reserve price rt

which all buyers v ≥ xt would submit in period t. Formally, the seller’s decision rule is described

as a function αt from (x0, · · · , xt−1), the lowest values she chose up to period t−1, to xt, where

x0 = v1 = 1. The function αt satisfies in equilibrium.

(βt)−1(rt|ht) = (βt)−1(st(ht−1)|ht)

= xt = αt(x0, · · · , xt−1).

We can write cut-off value as xt = αt(v1, · · · , vt) and vt+1 = xt. In what follows, we consider

(αt, βt)t=1,2,··· instead of a PBE (s, b, µ). Consider buyer v ≥ (βt)−1(rt|ht) given rt and ht. If

the buyer v submits a bid v in period t, his expected payoff is given by:

xG(x) − rtG(rt) −
∫ x

rt

Y dG(Y ) (2)

where Y is the highest value of n − 1 buyers and G(x) =
(
F (x)

)n−1
. Since his bid causes the

other buyers’ bids, he wins only if all the other buyers have reservation values below v. His

payment is equal to reserve price rt if the second highest bid does not reach rt, and otherwise he

pays the second highest bid. Notice that the second highest bid is equal to the second highest

value since all buyers use the symmetric strategy. On the other hand, if the buyer v waits but

expects to submit v in the next period t+1, in the event of no sale, his expected payoff is given

by:

δ
[
vG(v) − rt+1G(rt+1) −

∫ (βt)−1(rt|ht)

rt+1

Y dG(Y )
]

(3)

Notice that rt+1 = st+1(r1, · · · , rt) = βt+1(αt(v1, · · · , vt), ht). Given reserve price rt and history

ht, buyer v such that rt = βt(v, ht) is indifferent between bidding in this period and bidding

in the next period. Thus, by combining the equations above, we obtain an equation of αt and

βt. Next we consider the seller’s expected payoff. The seller’s expected payoff satisfies the
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following equation.

Π(v1, · · · , vt, xt) = nrtG(rt)
[
F (vt) − F

(
(βt)−1(rt | ht)

)]
+ (4)

n

∫ vt

(βt)−1(rt|ht)

∫ (βt)−1(rt|ht)

rt

Y dG(Y )dX+ (5)

n

∫ vt

(βt)−1(rt|ht)

∫ X

(βt)−1(rt|ht)
Y dG(Y )dX + δΠ(v1, · · · , vt+1, xt). (6)

That is, the seller’s expected payoff has a recursive structure and she believes that she will

face to buyers whose values are below xt in the next period t + 1. She can sell her item for

the price equal to the reserve price rt if only the highest buyer submits a bid in the first stage

and no bid occurs in the second stage, and otherwise she obtains the second highest bid. The

seller chooses xt in order to maximize her expected payoff given by the equation above. Their

solution to the equations above give a PBE (α∗
t , β

∗
t )t=1,2,···.

4 Stationary linear equilibrium

As seen above, since the solution (α∗
t , β

∗
t )t=1,2,··· is very complex, we can hardly compare reserve

prices in soft close auctions with hard close auctions. Thus, we specify the distribution and we

consider a stationary linear PBE similar to McAfee and Vincent’s (1997) linear example.

Definition 2 A PBE is stationary linear if the seller’s and buyers’ strategies are characterized

by period independent two constants (α, β). The seller’s strategy is given by αt(v1, · · · , vt) =

α(vt) = αvt for all ht and t, and buyers’ strategies are given by βt(v, ht) = β(v) = βv for all ht

and t.

We assume that each buyer’s valuation is uniformly distributed on the interval [0, 1]; F (x) =

x and G(x) = (F (x))n−1. Thus, the equilibrium reserve price in any period t is given by αβvt.

As noted by Cramton (1983), seller’s on-path conjecture uniquely determines by Bayes’ rule

and we do not need to consider off-path conjecture, since the seller’s belief can be calculated

by Bayes’ rule for all reserve prices.

Notice that we consider a linear PBE but we do not restrict each buyer’s action to a linear

action, so we allow them to deviate to any non-linear actions from a linear action. We show,
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however, that any best responses to linear strategies are also linear strategies.

Lemma 4 In any PBE, a best response to a linear strategy is a linear strategy.

For any reserve price r, if buyer v submits v in the first stage of the current period, condi-

tional on winning, his expected payoff is given by:

vG(v) − rG(r) −
∫ v

r
Y dG(Y ) =

vn

n
(1 − βn), (7)

where Y is the highest of n − 1 buyers’ valuations. On the other hand, if he submits v in

the next period, his expected payoff is given by:

δ
[
vG(v) − αrG(αr) −

∫ r
β

αr
Y dG(Y )

]
=

δvn

n

[
1 − αβn

]
. (8)

Similar computations can be performed for v ≤ r/β. Notice that given that the lowest

type of buyer to submit a bid is strictly monotonic in the reserve price and bids are strictly

monotonic in buyer type, in equilibrium, if x is the lowest type to submit a bid with reserve

price r, then x will only win if no other buyer submits a bid, therefore if he wins he must win

at exactly the reserve price.

For a buyer with value v such that r = βv, these two payoffs are indifferent. By combining

these equations, we obtain:

βn =
1 − δ

1 − δαn
. (9)

Next, we consider the seller’s expected payoff. Let ΠS(vt, x) be her expected payoff given

that the seller believes that the support of the highest buyer’s valuation and she sets a reserve

price such that only buyers with valuations above x submits bids in the first stage. The seller’s

expected payoff is given by:

ΠS(vt, x) = nrG(r)[F (vt) − F (
r

β
)]︸ ︷︷ ︸

(1)

+n

∫ vt

r
β

∫ r
β

r
Y dG(Y )dX︸ ︷︷ ︸

(ii)

+ n

∫ vt

r
β

∫ X

R
β

Y dG(Y )dX︸ ︷︷ ︸
(iii)

+ δΠS(vt+1, x)︸ ︷︷ ︸
(iv)

.

The seller’s expected payoff can be divided into four parts. (i) The first part is obtained when

only one buyer submits a bid in the first stage and no buyer submits in the second stage. The
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price is given by the reserve price r. (ii) The second part is obtained when some buyers with

v ≥ r/β submit bids in the first stage and some buyers with v ∈ [r, r
β ) submit counter bids.

The price lies in an interval (r, r
β ). (iii) The third part is obtained when some buyers with

v ≥ r/β submit bids in the first stage and no buyers submit in the second stage. The price lies

in an interval [ r
β , v]. (iv) The last part is a discounted continuation payoff. The distribution of

the prices is described in the figure 1.

Figure 1: The distribution of the price

(iii)Second highest bid Y (ii)Second highest bidY(i)Res. price r(iv)         Unsold

Consequently, we obtain the following proposition.

Proposition 1. There exists a unique stationary linear PBE (αS , βS) such that

δ(αS)n+1 − 2αS + 1 = 0 (10)

(βS)n =
αS(n − 1)(1 − δ)

n(1 − αS) − αS(1 − δ(αS)n)
. (11)

In the equilibrium path, a reserve price in period t is given by αSβSvt. The seller’s belief is

given by vt = (αS)t−1.

As can be seen in figure 2, there exists the maximum value ᾱ < 1, and the equilibrium
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value α(δ) is in the open interval (1/2, ᾱ) depending on the discount factor δ ∈ (0, 1) as shown

in the following figure. We can obtain ∂α/∂δ > 0 and α → ᾱ as δ → 1.

Figure 2: Optimal value of α
Before proceeding the analysis, we briefly look at hard close auctions. Hard close auctions

have only first stage, so each buyer cannot have any chances to reply other bids. McAfee and

Vincent (1997) characterize a stationary linear PBE as follows:

Proposition 2 (McAfee and Vincent, 1997). In hard close auctions, there exists a unique

stationary linear PBE (αH , βH) such that

δ(αH)n+1 − 2αH + 1 = 0 (12)

βH = 1 +
1
n

[(1 − δ)
αH

1 − αH
− 1]. (13)

In the equilibrium path, a reserve price in period t is given by αHβHvt. The seller’s belief is

given by vt = (αH)t−1.
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5 Result

In this section, we compare a PBE under a soft close and a PBE under a hard close. Let (αS , αS)

be a PBE under a soft close, and (αH , βH) be a PBE under a hard close. By Proposition 1 and

Proposition 2, we immediately obtain αS = αH . This equation means that the seller decreases a

reserve price at the same rate period by period independent of ending rules. In both auctions,

the seller chooses a cut-off value xt in period t such that all buyers with valuations v ≥ xt

submit bids. The cut-off value xt is given by αxt−1 for t = 1, 2, · · · and x0 = 1. Since αS = αH ,

(xS)t = (xH)t for all t. We summarize the result as the proposition below.

Proposition 3. Let {(xS)t}∞t=1 be a sequence of cut-off values in soft close auctions and

{(xH)t}∞t=1 be a sequence of cut-off values in hard close auctions. In a stationary linear PBE

(xS)t = (xH)t holds for all t.

Though the cut-off value is given by αxt−1 in period t, the reserve price depends also on β

and it is given by αβxt−1 in period t. The following is the main result of this paper.

Theorem 1. Let {(rS)t}∞t=1 be a sequence of reserve prices in soft close auctions and {(rH)t}∞t=1

be a sequence of reserve prices in hard close auctions. In a stationary linear PBE (rS)t < (rH)t

holds for all t.

The intuition of Theorem 1 is following. In soft close auctions, since each buyer has a

chance to react to the other buyers’ bids in the second stage, the buyer has an incentive to

wait to submit a bid until a reserve price will go down. However, the seller knows the buyers’

incentives for waiting, thus she rationally charge a lower reserve price in order to prevent her

payoff from discounting in soft close auctions than in hard close auctions. Figure 3 shows a

numerical example where δ = 0.99 and n = 10. In such a case, we obtain α = 0.500243,

βS = 0.631019 and βH = 0.9010097.
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Figure 3: Reserve price (numerical example)

Res. price r

Period t

rH1=0.901
rS1=0.631

Corollary 1. From the view point of the seller, revenue equivalent holds. For all t,

ΠS(vt, x
S
t ) = ΠH(vt, x

H
t ).

Notice that Corollary 1 crucially depends on the private value setting, but may not depend

on the uniform distribution.

6 Empirical Data

6.1 Data description

In this section we analyze reserve price data of Yahoo! Japan auction. In Yahoo! Japan

auction, a seller chooses the ending rule from a soft close and a hard close. Though a default

option is a hard close, a seller can freely choose a soft close. Data was downloaded from each

auction in a category “System” in “Nintendo DS” in “Toys”. The data is publicly obtained

and freely downloaded during the auctions. The data set consists of auctions except auction

stores between July 2008 and August 2008. We focus on reserve prices, all items should be

similar enough, so auctions which treat the following items were excluded. (i) New items; a

stable re-sale market exists in which the items can be sold for nearly list prices. (ii) Broken

items; these items are considered as the other items. The quality among items should be

similar. (iii) Item bundle; items with some softs or souvenir are also considered as the different

14



items. Yahoo! Japan auction equips with many options for a seller “Take-it-price” auctions

and “Buy-it-now” auctions in which a bid equal to a seller-defined take-it-price immediately

halts the auction is accepted, and “Secret reserve price” auctions were also excluded. In the

former auctions, even though a hammer price may not reach the take-it-price, the item will be

sold to a winner, but in the latter auctions a starting price is posted as the buy-it-now price.
14 In total, the data set consists of 264 auctions, 211 for soft close auctions and 53 for hard

close auctions. For each auction, I recorded a reserve price (starting price). I also collected

information about each seller’s feedback number. On Yahoo! Japan auction, buyers and sellers

have the opportunity to give each other a positive feedback (+1), a neutral feedback (0) or a

negative feedback (-1). 15 The cumulative total of positive and negative feedback is what we

call the “feedback number” on Yahoo! Japan.

6.2 Average reserve price

Table 1 and Graph 1 show a distribution of reserve prices. In soft close auctions one third of

reserve prices (73 prices) are 1 yen (minimum price) or less than 2000 yen while only 11% of

reserve prices (6 prices) are set under 2000 yen in hard close auctions. The maximum reserve

price in soft close auctions is 16800 yen, which is the same as the list price, while the maximum

reserve price in hard close auctions is 13500 yen. The auctions with reserve prices over 10001

yen are 37 (17.5%) in soft close auctions and 14 (26.4%) in hard close auctions.

Table 2 shows a comparison between the average reserve price of soft close auctions and

hard close auctions. As can be seen in Table 2, sellers post higher reserve prices in hard close

auctions than in soft close auctions, and the difference is statistically significant (two-sided

Student’s t-test, p = 0.013). The result confirms the theoretical result that sellers post higher

reserve prices in hard close auctions than in soft close auctions. 16

14Roth and Ockenfels (2002) and Ockenfels and Roth (2006) selected the category Computers to analyze IPV
auctions. Though the category Computers consists of a variety of items, there is no matter since Roth and
Ockenfels (2002) and Ockenfels and Roth (2006) focus on bidding time but the retail price. However, since we
want to focus on the reserve price, items should be similar enough. Therefore, I selected the category “System”
in “Nintendo DS”.

15The feedback system on Yahoo! Japan is similar to eBay, but the positive feedback includes “Very good”
and “Good”, and the negative feedback includes “Very bad” and “Bad”.

16We do not reject the null-hypothesis that the variance of reserve prices in soft close auctions is the same as
the variance of reserve prices in hard close auctions (one-sided F -text, p = 0.071).

15



Table 1: Distribution of reserve prices of soft close auctions and hard close auctions on Yahoo!
Japan

JPY Soft close Hard close
1 - 2000 73 6
2001 - 4000 8 2
4001 - 6000 26 12
6001 - 8000 24 8
8001 - 10000 43 11
10001 - 37 14
Observation 211 53

Graph 1: Distribution of reserve prices
01020304050607080

1-2000 2001-4000 4001-6000 6001-8000 8001-10000 10001-Res. price (JPY)

Soft closeHard close

Table 2: Average reserve prices of soft close auctions and hard close auctions on Yahoo! Japan

Soft close (JPY) Hard close (JPY)
Mean 5962.5 7682.7
Variance 21741389.9 15414840.4
Observation 211 53
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Table 3: Variables

RESPRICE Reserve prices (JPY)
ENDRULE Hard close (1) or Soft close (0)
RATING Seller’s rating number (positive or negative integer)

6.3 Regression analysis

The following regression analysis shed light on how ending rules relate to reserve prices. We have

one dependent variable RESPRICE and two explanatory variables ENDRULE and RATING

in the regression analysis in Table 3. ENDRULE is a binary variable with value 1 if the seller

chooses a hard close and 0 otherwise (a soft close). RATING is the seller’s rating or feedback

number. Feedback is made up of comments and ratings left by the seller (buyer) whom you

have bought from (sold to). These comments and ratings are considered as valuable indicators

of the reputation as a buyer or seller on Yahoo! Japan. The regression confirm the theoretical

prediction that ending rules significantly affect the reserve prices and reserve prices in hard

close auctions are higher than in soft close auctions. The regression equation is given by:

RESPRICE = α + β1RATING + β2ENDRULE

The result of the regression is given by:

RESPRICE = 5768.3 + 0.295RATING + 1812.7ENDRULE

7 Conclusion

We considered how rules for ending auctions affect the reserve prices and the buyers’ bidding

behaviors. In Internet auctions, items being unsold will be re-auctioned since the cost is very

low. Since the reserve price decreases and buyers correctly anticipate the decrease of reserve

prices, they have incentives to wait for the next period. Since buyers faced to a hard close

are more impatient than buyers faced to a soft close, the former submit bids against a high

17



Table 4: Regression result

Coefficient Standard Error
Intercept (α) 5768.3 352.3

(0.000)
RATING 0.295 0.264

(0.265)
ENDRULE 1812.7 699.0

(0.010)
R2 0.028
Adjusted R2 0.020
SE 4524.0

reserve price. A seller in auctions with a hard close chooses higher reserve prices than a seller in

auctions with a soft close. Furthermore, we can investigate the above results by using empirical

data. For example, the seller can choose rules for ending her auction in Yahoo! Japan. There

are many categories in this auction. According to Ockenfels and Roth (2006), “information

about the retail price of most items is in general easily available since most items are new”.

The category of DS in Yahoo! Japan may seem to be suitable. This is the future research.
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Proof of Lemma 1
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Proof. In the second stage, since the auction surely ends, the auction is the same as a stan-

dard sealed-bid-second-price auction, so submitting a true value is a weakly dominant strategy

for buyer v. Conditioning on bidding, the buyer v should submit v′ ≤ v in the first stage.

Otherwise, he cannot submit v in the second stage by assumption.

Proof of Lemma 2

Proof. Following history ht, we consider a case where buyer v submits a bid v in period t. Since

the other buyers submit true values in the second stage after buyer v submits in the first stage,

we obtain the following inequality in equilibrium:

vG(v) − RtG(Rt) −
∫ v

Rt

Y dG(Y ) ≥ δV (v, ht)Prob[No bid]

where Y is the highest value of the other n− 1 buyers and V (v, ht) is a continuation payoff for

buyer v. Suppose, contrarily, that buyer v′(> v) does not submit a bid in equilibrium. That

is, the following inequality must hold:

v
′
G(v

′
) − RtG(Rt) −

∫ v
′

Rt

Y dG(Y ) ≤ δV (v
′
, ht)Prob[No bid].

Therefore, we obtain:

δ
(
V (v′, ht) − V (v, ht)

)Prob[No bid]
G(v)

> v′ − v

In equilibrium, buyer v cannot benefit from mimicking buyer v′,

VB(v, ht) =
∞∑

τ=t

δτρτ (v, ht)(v − pτ (v, ht))

≥
∞∑

τ=t

δτρτ (v′, ht)(v − pτ (v′, ht))

VB(v
′
, ht) =

∞∑
τ=t

δτρτ (v
′
, ht)(v

′ − pτ (v
′
, ht))

Finally, we obtain:

δ

∞∑
τ=t

δτρτ (v′, ht)(v′ − v)
Prob[No bid]

G(v)
> v′ − v

.
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Proof of Lemma 3

Proof. Fix a history ht−1. Let βt(v, ht) be a cut-off value chosen by buyer v given ht−1 in

period t in equilibrium. Since buyers use the cut-off strategy defined by equation (1), βt(v, ht)

is increasing in v given ht by Lemma 2. Thus, for any reserve price rt, there exists a unique

value v such that rt = βt(v, ht). Notice that there would be a case v > 1. Suppose that the

seller chooses reserve prices r1, · · · , rt) up to period t, and no bid is submitted in period t.

Since there should exist the lowest value xt such that rt = βt(xt, ht) where ht = (r1, · · · , rt−1)

in period t, the seller will believe that the highest value for the buyer she faces to is below

vt+1 = xt in the next period t+1. Therefore, the support of µ(ht) is given by [0, vt+1] in period

t + 1 in equilibrium. Furthermore, since the seller has the initial belief at the beginning of the

game, so v1 = 1.

Proof of Lemma 4

Proof. Let be r∗ an equilibrium strategy. For any r and v, the following inequality holds.

∞∑
t=1

δt−1[v − αt(r∗, v)pt(r∗, v)] ≥
∞∑

t=1

δt−1[v − αt(r, v)pt(r, v)],

where αt(r, v) is an expected probability of obtaining the object and pt(r, v) is an expected

hammer price in period t given r and v pt(r, v). If at least one bid is submitted, the second

stage arises, so pt(r∗, v) = pt(r, v) for any deviation r in period t. αt(r, v) = 1 in a period where

the buyer submits a serious bid, and αt(r, v) = 0 in other periods. Therefore, the buyer’s

strategy decides the period to submit given a sequence of reserve prices. If the buyer cannot

benefit from any linear strategies r, then he cannot benefit from any (non-linear) strategies.

Proof of Proposition 1
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Proof. The seller’s expected payoff is given by:

ΠS(vt, x) = nrG(r)
[
F (vt) − F (

r

β
)
]

+ n

∫ vt

r
β

∫ r
β

r
Y dG(Y )dX

+ n

∫ vt

r
β

∫ X

r
β

Y dG(Y )dX + δΠS(vt+1, x)

= n(αx)n(vt − x) + (n − 1)(vt − x)(1 − αn)xn

+ n(n − 1)
[vt

n
((vt)n − xn) − 1

n + 1
((vt)n+1 − xn+1)

]
+ δΠS(vt+1, x).

The last part ΠS(vt+1, x) is a continuation payoff at period t. We solve the following maxi-

mization problem with respect to x.

max
x

ΠS(vt, x)

Let x∗(vt) be a solution to the above problem. The continuation payoff can be written as:

ΠS(vt+1, x
∗(vt)) = ΠS(x∗(vt), x∗(vt)) = Π̃S(x∗(vt))

At period t− 1, vt = x∗(vt−1) is selected to maximize the seller’s expected payoff, therefore we

obtain:

Π̃S(vt) = ΠS(vt, x
∗(vt))

To solve the maximization problem, we first obtain the derivative of the continuation payoff

Π̃S(vt). By using Envelop Theorem, the derivative of the continuation payoff is given by:

∂Π̃S(vt+1, vt)
∂vt

=
dΠS(vt, x

∗(vt))
dvt

=
∂ΠS(vt, x)

∂vt
|x=x∗(vt)

= n(αx∗)n + (n − 1)(1 − αn)(x∗)n + n(n − 1)
[ 1
n

(vt)n − (x∗)n + vn
t − vn

t

]
= n(αx∗)n − n(αx∗)n + n(x∗)n − (1 − αn)(x∗)n + (n − 1)(vn

t − (x∗)n)

=
[
(αβ)n + n − 1

]
vn
t

In the above computation, we use x∗ = x∗(vt) = αvt. Finally, we consider the maximization

problem of ΠS(vt, x) w.r.t x. The first order condition is given by:

∂ΠS(vt, x)
∂x

= 0 = n2αnxn−1(vt − x) − n(αx)nvt + (n − 1)(1 − αn)
[
n(vt − x)xn−1 − xn

]
+ n(n − 1)(−vtx

n−1 + xn) + δxn
[
(αβ)n + n − 1

]
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Therefore, we obtain the following equations:

δ(αS)n+1 − 2αS + 1 = 0 (14)

(βS)n =
αS(n − 1)(1 − δ)

n(1 − αS) − αS(1 − δ(αS)n)
. (15)

Proof of Proposition 2.

Proof. Similar to soft close, we can consider the buyer’s expected payoff. The buyer with

valuation x = r/β is indifferent between bidding in the current period and bidding in the next

period, therefore we obtain the following equation.

xG(x) − rG(
r

β
) −

∫ x

r
β

Y dG(Y ) = δ
[
xG(

r

β
) − αrG(

αr

β
) −

∫ r
β

αr
β

Y dG(Y )
]
. (16)

On the other hand, the seller’s expected payoff is given by:

ΠH(x, vt) = n · r(x)G(x)[F (vt) − F (x)] + n

∫ vt

x

∫ X

x
Y dG(Y )dX + δΠ̃H(x). (17)

These equations give the constants (αH , βH) such that:

δ(αH)n+1 − 2αH + 1 = 0

βH = 1 +
1
n

[
(1 − δ)

αH

1 − αH
− 1

]
.

Proof of Theorem 1.

Proof. In any period t, the reserve price is given by rSt = αSβSvt and rHt = αHβHvt, respec-

tively. Since αS = αH = α, it is sufficient to show that βS < βH .

By Proposition 1 and Proposition 2,

(βS)n =
1 − δ

1 − δαn
= 1 − 1 − 2α + δα

1 − α
,

βH = 1 − δ

n
· 1 − αn

1 − δαn
= 1 − 1 − 2α + δα

n(1 − α)
.
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Let z = (1 − 2α + δα)/(1 − α), therefore we obtain

βH = 1 − z

n
and (βS)n = 1 − z.

Let w(z) = (1 − z
n)n − (1 − z). We can show that w(z) > 0 for all z by Lemma 5, and we

complete the proof.

Proof of Lemma 5.

Lemma 5. w(z) > 0 for all z.

Proof.

z =
1 − sα + δα

1 − α
=

1 − 2α + 2α−1
αn

1 − α
=

(αn − 1)(1 − 2α)
αn(1 − α)

=
2α − 1

αn
× (1 + α + · · ·αn−1) =

2α − 1
αn+1

× (α + α2 + · · ·αn)

< α + α2 + · · ·αn < n.

The above inequality holds from the fact αn+1 > 2α − 1. Thus, z < n. Finally, w(0) = 0 and

w
′
(z) = −(1 − z

n
)n−1 + 1 > 0.

Proof of Corollary 1.

Proof. Since the last two parts of the seller’s expected payoff under the both ending rules are

the same, it is sufficient to compare the first part of the seller’s expected payoff under a hard

close as the sum of the first and the second part of expected payoff under a soft close. By using

the fact αS = αH = α, we obtain the following equation under a hart close:

[Hard] = nβHxn

= nxn
[
1 − δ

n
· 1 − αn

1 − δαn

]
We obtain the following equation under a soft close:

[Soft] = nxn · 1 − δ

1 − δαn
+ (n − 1)xn · δ(1 − αn)

1 − δαn

=
xn

1 − δαn

[
n(1 − δαn) − δ(1 − αn)

]
Therefore, we obtain [Hard] = [Soft].
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