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Abstract

Block rate pricing is often applied to income taxation, telecommunication services,

and brand marketing in addition to its best-known application in public utility services.

Under block rate pricing, consumers face piecewise-linear budget constraints. A dis-

crete/continuous choice approach is usually used to account for piecewise-linear budget

constraints for demand and price endogeneity. A recent study proposed a methodology

to incorporate a separability condition that previous studies ignore, by implementing a

Markov chain Monte Carlo simulation based on a hierarchical Bayesian approach. To

extend this approach to panel data, our study proposes a Bayesian hierarchical model

incorporating the individual effect. The random coefficients model result shows that the

price and income elasticities are estimated to be negative and positive, respectively, and

∗Corresponding author: Tel:+81-3-5841-5516, E-mail:omori@e.u-tokyo.ac.jp
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the coefficients of the number of members and the number of rooms per household are

estimated to be positive. Furthermore, the AR(1) error component model suggests that

the Japanese residential water demand does not have serial correlation.

Key words:Block rate pricing, Bayesian analysis, Panel data, Residential water demand.

JEL classification:C11, C23, C24, Q25.

1 Introduction

Block rate pricing usually has been applied to services in public utility sectors such as water,

gas, and electricity.1 However, block rate pricing is becoming common in areas such as local

and wireless telephone services and brand marketing. Under block rate pricing, unit price

changes with quantity consumed. When unit price increases with quantity consumed, shown

in Figure 1, such a price schedule is called the increasing block rate pricing. When unit price

decreases with quantity consumed, it is called the decreasing block rate pricing. Then, under

block pricing consumers maximize utility by selecting the unit price and the consumption

amount. This circumstance leads to a utility-maximization problem under a piecewise-linear

budget constraint.

As surveyed by Olmstead (2009), there are two types of estimation approaches that deal

with this problem: reduced-form approaches, such as instrumental variables, and struc-

tural approaches. The structural approach solves a consumer’s utility maximization prob-

lem in two steps. A consumer first decides appropriate consumption given each block’s

price, and then selects the block that maximizes consumer utility. This is also called a dis-

crete/continuous choice approach because the block selection is discrete while the amount

consumed is continuous. Its important feature is that the derived model explicitly addresses

the relationship between the block choice and the amount consumed under block rate pricing.

As discussed in Olmstead (2009), the reduced-form approaches can incorporate only

1The other example where the same rate structure is applied is a progressive tax rate in income tax systems.
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limited aspects of the piecewise-linear budget constraint, while the structural approaches ac-

count just for the particular implications of piecewise-linear budget constraints for demand

as well as price endogeneity. Thus the latter approaches have two main advantages over the

former ones: (1) the structural approaches can produce unbiased and consistent estimates of

parameters of the price and the income2and (2) they are consistent with utility theory. De-

spite these advantages, most previous studies employ reduced-form approaches. Structural

approaches are rare in demand analysis.3 This is because the discrete/continuous choice ap-

proach had been applied only to the simplified block rate price structure—for example, the

number of blocks is fixed at two.

Pint (1999); Rietveld et al. (2000); Olmstead, Hanemann, and Stavins (2007); Olmstead

(2009) considered multiple-block pricing—for example, the number of blocks varies from

two to four. Miyawaki, Omori, and Hibiki (2010) proposed a methodology to solve the prob-

lem of multi-tier block rate pricing by implementing a Markov chain Monte Carlo (MCMC)

simulation based on a hierarchical Bayesian approach. Their method also showed that model

parameters are subject to the separability condition, or set of linear inequality constraints.

Despite its importance, previous literature generally ignores the condition because the pa-

rameter region becomes tightly restrained, making numerical maximization of the likelihood

function difficult (Pint, 1999; Rietveld et al., 2000; Olmstead et al., 2007; Olmstead, 2009).

To extend Miyawaki et al. (2010) for the panel data analysis, this study proposes a

Bayesian hierarchical model. It incorporates the individual effect to estimate the residential

water demand function under the separability condition using panel data of Japanese house-

holds. This is the first study that incorporates the individual effect in the discrete/continuous

choice approach.

2Previous studies suggested that water demand is price inelastic. However, as is suggested in the meta-
analysis (Dalhuisen, Florax, de Groot, and Nijkamp, 2003), the choice of the approach may affect the estimates,
since the water demand is price inelastic in previous studies employing the reduced form approach, however,
are price elastic in the discrete/continuous choice approach.

3Olmstead (2009) reported that, between 1963 and 2004, there were only three studies on water de-
mand (Hewitt and Hanemann, 1995; Pint, 1999; Rietveld, Rouwendal, and Zwart, 2000) that adopted the
discrete/continuous choice approach.
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We organize this article as follows. Section 2 describes block rate pricing and reviews

previous studies. Section 3 explains the derivation of the model, incorporating the individual

effect to extend Miyawaki et al. (2010) for panel data analysis and proposes its MCMC

estimation method. Section 4 shows the empirical analysis of Japanese residential water

demand using panel data. Section 5 concludes.

2 Block rate pricing system and literature review

Figure 1 shows the example of a three-tier increasing block rate pricing whereY is the

consumption of the good or service,Pk is the unit price ofY in blockk (k= 1,2,3) andȲk is

the boundary quantity between blockk andk+1, i.e., the upper limit of blockk. Under this

system, when consumption ofY exceeds̄Yk the unit price jumps fromPk to Pk+1.

Block  1 Block  2 Block  3

P

P
3

P
2

P
1

0 Y
1

Y
2

Y

Figure 1: Three-Tier increasing block price structure.

A block rate pricing system generally has the following characteristics:

1. The total payment is comprised of the fixed charge,FC, and the variable charge,VC,

depending on the volume consumed. A practical example of the fixed charge is a

minimum access charge for water and electricity services.

2. In a block rate pricing system withK blocks, potential consumption is divided intoK

consumption regions—i.e.,K blocks.
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3. K unit prices correspond toK blocks. Thek-th (1≤ k≤ K) unit price in thek-th block

is applied to consumption and is constant within thek-th block.

Now we consider two consumption goods. The first is a good, such as water or electricity,

to which block rate pricing is applied. The second is a composite good, to which a single

constant price is applied. We denoteYi andYi
a as consumption of the first and the second

good by the consumeri. We denoteȲi
k as an upper limit (threshold) of thek-th block and

Pi
k as the unit price of thek-th block. The superscripti is attached because we assume

that different consumers face different block rate pricings. Then, the budget constraint of

consumeri, who chooses the consumption,Yi
k, within the k-th block, Ȳi

k−1 ≤ Yi
k < Ȳi

k, is

expressed as follows.

Pi
kY

i
k+Yi

a ≤ Qi
k ≡ I i −FCi −

k−1∑
j=1

(
Pi

j −Pi
j+1

)
Ȳi

j , (1)

where we denoteI i as the income of consumeri. The Qi
k is called as the virtual income

of consumeri, who chooses to consume at thek-th block. We also set̄Yi
0 = 0 andȲi

K i =∞

without loss of generality. As shown in the above equation, the budget constraint becomes

piecewise-linear (see also Figure 2).

The discrete/continuous choice approach is a common structural approach that solves

the utility maximization problem under a piecewise-linear budget constraint first proposed

by Burtless and Hausman (1978). Other studies include expenditures with food stamps (Mof-

fitt, 1989), car ownership, and use (de Jong, 1990), electricity demand (Herriges and King,

1994; Reiss and White, 2005), water demand (Hewitt and Hanemann, 1995; Olmstead et al.,

2007; Miyawaki et al., 2010), choice of wireless service calling plans (Iyengar, 2004), and

consumer preference regarding multiple product categories and brands (Song and Chinta-

gunta, 2007).

Although the discrete/continuous choice approach is based on economic theory and can

be extended to allow various dependencies, it is difficult to estimate the model’s parameters.
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For example, Moffitt (1986) pointed out a problem with non-differentiability in the likelihood

function and also a computational burden. This is why most previous studies estimate the

demand function in a simplified manner in which, for example, all consumers face identical

two-tier block rate pricing.

Several recent studies (Pint, 1999; Rietveld et al., 2000; Olmstead et al., 2007; Olmstead,

2009) consider multiple-block pricing (the number of blocks varies from two to four). How-

ever, they ignored the separability condition. Miyawaki et al. (2010) addressed this problem

by implementing an MCMC simulation based on a hierarchical Bayesian approach, but they

did not consider the application to the panel data.

The main contributions of our article are to extend Miyawaki et al. (2010) to incorporate

the individual effect and to take a hierarchical Bayesian approach in estimating the residential

water demand function under the separability condition using Japanese household panel data.

3 Derivation of the demand function under block rate pric-

ing and application of MCMC

3.1 Derivation of the demand function under block rate pricing

In this subsection we explain the derivation of the demand function under a block rate pricing

system within the setting of Section 2.

Suppose consumeri determines the consumption of a good that is subject toK i-block

rate pricing,Yi , to maximize utility,U(Yi ,Yi
a), under the piecewise-linear budget constraint

as is shown in (1). Since the increasing block rate pricing is used for the residential water

supply in Japan, we supposePi
k < Pi

k+1 (k= 1, . . . ,K i −1). Figure 2 illustrates an example of

a utility maximization problem under a piecewise-linear budget constraint due to a block rate

pricing system (the case of three-tier increasing block pricing), where we denoteVi as the

level of an indifference curve and where the second block is optimal with its optimal demand
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Figure 2: Utility maximization problem: three-block case.

Before derivating the demand function under block rate pricing, we considerK i condi-

tional utility maximization problems. Fork= 1, . . . ,K i , thek-th conditional problem is given

as follows:

max
Yi

k,Y
i
a

U
(
Yi

k,Y
i
a

)
s.t. Pi

kY
i
k+Yi

a ≤ Qi
k. (2)

The optimal conditional consumption,Yi
k, is determined as if consumeri faced a single price

Pi
k and given incomeQi

k. With theseK i optimal conditional consumptions, the demand

function under increasing block rate pricing for consumeri is given by

Yi =


Yi

k, if Ȳi
k−1 < Yi

k < Ȳi
k andk= 1, . . . ,K i ,

Ȳi
k, if Yi

k+1 ≤ Ȳi
k ≤ Yi

k andk= 1, . . . ,K i −1.

(3)

Since we apply the log-linear conditional demand model used in previous studies, Equa-

tion (3) is rewritten as

yi =


yik, if ȳi,k−1 < yik < ȳik andk= 1, . . . ,K i ,

ȳik, if yi,k+1 ≤ ȳik ≤ yik andk= 1, . . . ,K i −1,

(4)
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yik = β1pik +β2qik ≡ xxx′ikβββ, (5)

where (yi ,yik, ȳik, pik,qik)= (logYi , logYi
k, logȲi

k, logPi
k, logQi

k), xxxik = (pik,qik)′, andβββ= (β1,β2)′.

As per Miyawaki et al. (2010), we now introduce two unobserved random variables into

the demand function of thei-th consumer: the heterogeneity,w∗i , and the state variable,s∗i .

The heterogeneity is a stochastic term that models consumers’ characteristics and is assumed

to be an additive to the log conditional demandyi
k. Thus,w∗i is assumed to follow the linear

model

w∗i = zzz′iδδδ+vi , vi ∼ i.i.d. N(0,σ2
v), (6)

wherezzzi andδδδ ared× 1 vectors of explanatory variables for the heterogeneity and corre-

sponding parameters, respectively, andvi is an independently and identically distributed dis-

turbance term with a normal distribution of mean 0 and varianceσ2
v. The state variable,s∗i ,

is a discrete random variable that indicates which block is potentially optimal for consumers.

Then, the basic model for the demand function under increasing the block rate pricing is

given by the following equations:

yik = xxx′ikβββ, xxxik = (pik,qik)′ , k= 1, . . . ,K i , (7)

w∗i = zzz′iδδδ+vi , vi ∼ i.i.d. N(0,σ2
v), (8)

s∗i =


2k−1, if w∗i ∈ Ri,2k−1 =

(
ȳi,k−1−yik, ȳik −yik

)
andk= 1, . . . ,K i ,

2k, if w∗i ∈ Ri,2k =
(
ȳi,k−1−yik, ȳik −yik

)
andk= 1, . . . ,K i −1,

(9)

y∗i =


yik +w∗i , if s∗i = 2k−1 andk= 1, . . . ,K i ,

ȳik, if s∗i = 2k andk= 1, . . . ,K i −1,

(10)

yi = y∗i +ui , ui ∼ i.i.d. N(0,σ2
u). (11)

The extension of the above model to incorporate the individual effect for parameterδδδ in

the panel data withn observations andT time periods, which we call a random coefficients
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model (RC), is rewritten as follows:

yit,k = xxx′it,kβββ, xxxit,k =
(
pit,k,qit,k

)′ , k= 1, . . . ,K i , (12)

www∗i = ZZZiδδδi +vvvi , vvvi ∼ i.i.d. NT

(
000,σ2

vIII
)
, (13)

s∗it =


2k−1, if w∗it ∈ Rit,2k−1 andk= 1, . . . ,K it ,

2k, if w∗it ∈ Rit,2k andk= 1, . . . ,K it −1,

(14)

y∗it =


yit,k+w∗i = xxx′it,kβββ+w∗i , if s∗it = 2k−1 andk= 1, . . . ,K it ,

ȳit,k, if s∗it = 2k andk= 1, . . . ,K it −1,

(15)

yit = y∗it +uit , uit ∼ i.i.d. N(0,σ2
u), (16)

where subscriptsi andt denote the observationi and timet, respectively,NT(µµµ,ΣΣΣ) denotes

a T-variate normal distribution with meanµµµ and covariance matrixΣΣΣ, and III is an identity

matrix.

This RC model extends the basic model in three ways. First, it introduces a linear

structure and a normal errorvvvi to consumer heterogeneity,www∗i = (w∗i1, . . . ,w
∗
iT )′. The ZZZi =

(zzzi1, . . . ,zzziT )′ andδδδi are aT × d vector of explanatory variables and ad× 1 vector of their

coefficients, respectively. The heterogeneity intervals are given by

Rit,2k−1 =
(
ȳit,k−1− xxx′it,kβββ, ȳit,k− xxx′it,kβββ

)
, Rit,2k =

(
ȳit,k− xxx′it,kβββ, ȳit,k− xxx′it,k+1βββ

)
. (17)

To capture the individual effect for the coefficient ofZZZi , theδδδi ’s are assumed to be indepen-

dently and identically distributed random samples from a normal distributionNd(µµµδδδ,σ
2
vΣΣΣδδδ)

as in (18). Second, a discrete latent variable,s∗it , is used to indicate potentially optimal de-

mand chosen by thei-th consumer at timet. Whens∗it is odd (s∗it = 2k−1 for k = 1, . . . ,K it),

the i-th consumer would select the optimal conditional demand. When, on the other hand,

s∗it is even (s∗it = 2k for k = 1, . . . ,K it −1), one of threshold values would be optimal for the

9



consumer. We augment the model parameter space by introduction of thes∗it and exploit the

data augmentation method to estimate parameters (see, e.g., Tanner and Wong (1987) for the

description of the data augmentation). Third, another normal disturbanceuit is considered

for the potential demandy∗it . It represents the measurement error as well as the optimization

error and the model misspecification error (see Hausman, 1985).

The RC model above includes two popular models in panel data analysis. Whenzzzit in-

cludesyi,t−1 as an explanatory variable, the model becomes the dynamic panel data model.

On the other hand, when the heterogeneityw∗it has an AR(1) serial correlation, this model

is interpreted as an AR(1) error component model (see Appendix A.2). The AR(1) pro-

cess specification can be further extended with a heteroskedastic variance structure,www∗i ∼

N(ZZZiδδδi ,Σ).

The next subsection describes a Bayesian estimation method for this RC model.

3.2 Bayesian analysis and MCMC implementation

To conduct a Bayesian analysis, we assume the prior distributions of (βββ, {δδδi}ni=1,σ
2
u,σ

2
v),

which are given by

βββ|σ2
u ∼ N2

(
µµµβββ,0,σ

2
uΣΣΣβββ,0

)
, δδδi |σ2

v,µµµδδδ,ΣΣΣδδδ ∼ i.i.d. Nd

(
µµµδδδ,σ

2
vΣΣΣδδδ

)
,

σ2
u ∼ IG

(
nu,0

2
,
Su,0

2

)
, σ2

v ∼ IG

(
nv,0

2
,
Sv,0

2

)
,4

(18)

whereµµµβββ,0 = (µβ1,0,µβ2,0)′ is a 2×1 known vector,ΣΣΣβββ,0 = diag(σ2
β1,0
,σ2
β2,0

) is a 2×2 known

diagonal matrix with positive diagonal elements (σ2
β1,0
,σ2
β2,0

), andnu,0, Su,0, nv,0, Sv,0 are

known positive constants. Letπ(βββ, {δδδi}ni=1,σ
2
u,σ

2
v | µµµδδδ,ΣΣΣδδδ) denote the prior probability den-

sity function of (βββ, {δδδi}ni=1,σ
2
u,σ

2
v) conditional on

(
µµµδδδ,ΣΣΣδδδ

)
. We further assume the proper

4The distributionIG(a,b) denotes an inverse gamma distribution with a probability density function

π(x) ∝ x−(a+1)exp(−b/x), x> 0,

wherea andb are positive constants.
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hierarchical priors for
(
µµµδδδ,ΣΣΣδδδ

)
such that

µµµδδδ ∼ Nd

(
µµµδ̄δδ,0,ΣΣΣδ̄δδ,0

)
, ΣΣΣδδδ ∼ IWd

(
nδ̄δδ,0,SSSδ̄δδ,0

)
,5 (19)

whereµµµδ̄δδ,0 is ad×1 known vector,ΣΣΣδ̄δδ,0 andSSSδ̄δδ,0 are knownd×d positive definite matrices,

and nδ̄δδ,0 > d− 1 is known constant. Denoting the prior probability density function of(
µµµδδδ,ΣΣΣδδδ

)
by π

(
µµµδδδ,ΣΣΣδδδ

)
, the joint prior probability density function of model parameters is

π
(
βββ, {δδδi}ni=1,σ

2
u,σ

2
v,µµµδδδ,ΣΣΣδδδ

)
= π

(
βββ, {δδδi}ni=1,σ

2
u,σ

2
v | µµµδδδ,ΣΣΣδδδ

)
π
(
µµµδδδ,ΣΣΣδδδ

)
. (20)

Then the joint posterior probability density function of model parameters is given by

π
(
βββ,

{
δδδi , sss

∗
i ,www
∗
i

}n
i=1
,σ2

u,σ
2
v,µµµδδδ,ΣΣΣδδδ |

{
yyyi
}n
i=1

)
∝ π

(
βββ, {δδδi}ni=1,σ

2
u,σ

2
v,µµµδδδ,ΣΣΣδδδ

)
×σ−nT

u σ−nT
v exp

−1
2

n∑
i=1

{
σ−2

u

(
yyyi −yyy∗i

)′ (
yyyi −yyy∗i

)
+σ−2

v

(
www∗i −ZZZiδδδi

)′ (
www∗i −ZZZiδδδi

)}
×

n∏
i=1

T∏
t=1

I
(
w∗it ∈ Rit,s∗it

)K it−1∏
k=1

I
(
xxx′it,k+1βββ ≤ xxx′it,kβββ

) , (21)

where I (A) is the indicator function;I (A) = 1 if A is true andI (A) = 0 otherwise,yyyi =

(yi1,yi2, . . . ,yiT )′, yyy∗i = (y∗i1,s∗i1
,y∗i2,s∗i2

, . . . ,y∗iT,s∗iT
)′, and sss∗i = (s∗i1, s

∗
i2, . . . , s

∗
iT )′. The last term

5The IWd(nδ̄δδ,0,SSSδ̄δδ,0) denotes an inverse Wishart distribution with a probability density function given by

π (ΣΣΣδδδ) ∝ |ΣΣΣδδδ|−
nδ̄δδ,0+d+1

2 exp

{
−1

2
tr
(
SSS−1
δ̄δδ,0
ΣΣΣ−1
δδδ

)}
.

Fornδ̄δδ,0 > d+3, its mean and variance exist and are given by

E (ΣΣΣδδδ) =
1

nδ̄δδ,0−d−1
SSS−1
δ̄δδ,0
,

Var(σii ) =
2(sii )2

(nδ̄δδ,0−d−1)2(nδ̄δδ,0−d−3)
, Var

(
σi j

)
=

sii sj j +
nδ̄δδ,0−d+1
nδ̄δδ,0−d−1

(
si j

)2(
nδ̄δδ,0−d

) (
nδ̄δδ,0−d−1

) (
nδ̄δδ,0−d−3

) ,
whereσi j andsi j are thei j -th element ofΣΣΣδδδ andSSS−1

δ̄δδ,0
, respectively. When (d,nδ̄δδ,0,SSSδ̄δδ,0)= (4,10,10−1IIId) (which

we use for our empirical analysis in Section 4), the mean and variance ofΣΣΣδδδ are (2,8/3) for σii and (0,10/9)
for σi j (see Chapter 3 of Gupta and Nagar (2000) for further characteristics of the inverse Wishart distribution).
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I (xxx′it,k+1βββ ≤ xxx′it,kβββ) is the separability condition that guarantees disjoint heterogeneity in-

tervals (see (17)). Becauseβββ is a two-dimensional vector in our statistical modeling, this

condition reduces to two inequality constraints:

β2 ≤ rβ1 andβ2 ≤ rβ1, (22)

wherer = maxi,t,k−(pit,k+1− pit,k)/(qit,k+1− qit,k) and r = mini,t,k−(pit,k+1− pit,k)/(qit,k+1−

qit,k). Further discussion is found in Miyawaki et al. (2010).

As all full conditional distributions are well-known (see Appendix A.1), we use a Gibbs

sampler to draw samples from the posterior distribution, which is implemented in nine steps:

MCMC algorithm for the RC model

Step 1. Initializeβββ,
{
δδδi , sss∗i ,www

∗
i

}n
i=1
,σ2

u, σ2
v, µµµδδδ, andΣΣΣδδδ.

Step 2. Generateβ1 givenβ2,
{
sss∗i ,www

∗
i

}n
i=1
,σ2

u.

Step 3. Generateβ2 givenβ1,
{
sss∗i ,www

∗
i

}n
i=1
,σ2

u.

Step 4. Generate
(
σ2

v, {δδδi}ni=1

)
given

{
www∗i

}n
i=1
,µµµδδδ,ΣΣΣδδδ.

(a) Generateσ2
v given

{
www∗i

}n
i=1
,µµµδδδ,ΣΣΣδδδ.

(b) Generateδδδi given
{
www∗i

}n
i=1
,σ2

v,µµµδδδ,ΣΣΣδδδ for i = 1, . . . ,n.

Step 5. Generateµµµδδδ given{δδδi}ni=1 ,ΣΣΣδδδ,σ
2
v.

Step 6. GenerateΣΣΣδδδ given{δδδi}ni=1 ,µµµδδδ,σ
2
v.

Step 7. Generate
(
s∗it ,w

∗
it

)
givenβββ, {δδδi}ni=1 ,σ

2
u,σ

2
v for i = 1, . . . ,n andt = 1, . . . ,T.

(a) Generates∗it givenβββ,δδδi ,σ2
u,σ

2
v.

(b) Generatew∗it givenβββ,δδδi , s∗it ,σ
2
u,σ

2
v.

Step 8. Generateσ2
u givenβββ,

{
sss∗i ,www

∗
i

}n
i=1

.

Step 9. Go to Step 2.
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4 Empirical analysis

4.1 Data

We use the household-level dataset collected by internet surveys concerning household water

and energy consumption and garbage emissions, which we conducted twice (in June 2006

and June 2007) for individuals in the Tokyo and Chiba prefectures in collaboration with

INTAGE, Inc., a marketing research company (www.intage.co.jp/english), which has more

than 1.3 million monitors all over Japan. As respondents, 1,687 monitors were randomly

selected from all INTAGE monitors, 47,239, in this area who are between age 20 and 79.

The numbers of respondents in June 2006 and June 2007 were 1,276 and 760, respectively.

The number of respondents in both June 2006 and 2007 was 515. The individuals’ answers

concerned attributes of the household to which they belong, including the number of house-

hold members, household annual income, number of rooms and floor space of their house or

apartment, and the household’s monthly water and sewerage bills. Because water and sewer-

age are billed every second month in Japan, reported usage is considered to be a two-month

usage. In the survey, these attributes are collected only once yearly, and we used respondents

collected in June 2006 and April 2007. Since sewerage and water bills are also calculated

based on water consumption, the amount of water consumption was calculated from the wa-

ter and sewerage bills using the corresponding information on water charge schedules and

sewerage charge schedules in each city. Every household faces increasing block rate pricing;

the number of blocks varies from two to eleven, depending on cities where respondents live.

The number of observations used for the empirical analysis in the next subsection was

reduced to 135 because of respondents’ missing or inappropriate answers or for technical

reasons as follows:

1. Consumption within the zero unit price block is observed.

2. Living in cities that have discontinuous parts in their price system.

3. Living in cities that changed rate tables in June 2006.6
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4. Using a well for water use because of its special charge system.

The histograms of the amount of water consumption, the dependent variable for the empirical

analysis in the next subsection, are shown in Figure 3. Other variables used as explanatory

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(a) June 2006.
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0.2

0.4

0.6

0.8

1.0

(b) June 2007.

Figure 3: Histograms of the amount of water consumption (logm3).

variables for the empirical analysis are listed in Table 1. In Figure 4, we summarize the block

Table 1: Explanatory variables used in the water demand function

Variable Coefficient Description

price β1 water+sewer (log ¥103/m3)

virtual income β2 income augmented by price (log ¥103)

variables forw∗i δ0 the constant

δ1 the number of members in a household (person)

δ2 the number of rooms in a house/apartment (room)

δ3 the total floor space of a house/apartment (50m2)

rate price structure. Each column of Figure 4 shows the histograms of the number of blocks,

the unit price where the consumption is actually made, and the minimum access charge for

June 2006 and June 2007.

Regarding the income variable, it is a sensitive issue to ask households their exact annual

income level. Therefore, in our survey, instead of the actual values, the household is asked to

choose one of eight categories for the annual income in million yen; 0-2, 2-4, 4-6, 6-8, 8-10,

6In June 2007, no cities changed the rate tables.
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(b) Price (¥103/m3).
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Figure 4: Histograms of the number of blocks, price, and fixed cost. Top row is for June
2006 and bottom row is for June 2007.

10-12, 12-15, over 15 million yen. The histograms for the income categories are shown in

Figure 5. For the empirical analysis, we use the median of the interval of each categories

15

(a) June 2006.

15

(b) April 2007.

Figure 5: Histograms for the income (¥106).

divided by six to estimate the two-month income for the households except of those who

choose “over 15 million yen.” Households whose annual incomes are over 15 million yen

are asked to answer the value of their annual income.
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Basic statistics for heterogeneity are given in Table 2. We calculate the correlation coef-

Table 2: Basic statistics of explanatory variables for heterogeneity

Variable Unit Year Mean SD Min. Max.

the number of members in a household (δ1) person
2006 3.18 1.20 1 7

2007 3.21 1.23 1 8

the number of rooms in a house/apartment (δ2) room
2006 4.41 1.08 2 8

2007 4.39 1.07 2 8

the total floor space of a house/apartment (δ3) 50m2 2006 1.68 0.72 0.24 4.60

2007 1.68 0.72 0.24 4.60

ficients among explanatory variables for heterogeneity. All correlation coefficients are less

than.6, except for the correlation between the number of rooms and total floor space, which

is .68 in 2006 and.67 in 2007.

4.2 Estimation results of panel data models

This subsection conducts the empirical analysis of Japanese residential water demand using

the random coefficients (RC) model. It should be noted that use of two-period panel data

conducted in June 2006 and June 2007 data is useful in removing the seasonality effect. The

dependent variable is the amount of water consumption calculated from water and sewerage

bills using the corresponding charge schedules. The explanatory variables are listed in Table

1. The separability condition on the parameter space ofβββ implies

β2 ≤ −0.16β1 andβ2 ≤ −3263.83β1. (23)

Prior distributions are parameterized by settingµµµδ̄δδ,0 = 000, ΣΣΣδ̄δδ,0 = 10III4, nδ̄δδ,0 = 10, SSSδ̄δδ,0 =

10−1III4, µµµβββ,0 = 000,ΣΣΣβββ,0 = 10III2, andnu,0 =Su,0 = nv,0 =Sv,0 = 0.1. We adopt the Gibbs sampler

described in Subsection 3.2. For Bayesian inferences, we generate 15 million samples after

deleting the initial six million samples. The recorded values are reduced to 10,000 samples
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by picking up every 1500-th value. Results are summarized in Figure 6 and Table 3.
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Figure 6: Estimated marginal posterior densities.

Table 3: Water demand function (RC model)

Parameter Mean SD 95%interval INEF∗ CD∗

β1 (price) −1.61 .33 [−2.30 −1.02] 125 .593
β2 (income) .17 .079 [− .00 .30] 157 .787
µδ0 (constant) −2.30 1.06 [−4.42 − .34] 134 .705
µδ1 (num. of members) .38 .082 [ .23 .56] 20 .814
µδ2 (num. of rooms) .25 .13 [ .00 .52] 6 .870
µδ3 (floor space) .039 .19 [− .33 .42] 2 .387
σu (measurement error) .25 .019 [ .21 .29] 2 .636
σv (heterogeneity) .18 .027 [ .13 .24] 9 .853

∗ “INEF” and “CD” denote the inefficiency factor and thep-value of convergence
diagnostic statistic, respectively.

Each column of Table 3 represents the parameter symbols (their corresponding vari-

ables), posterior means, posterior standard deviations, posterior 95% credible intervals, in-

efficiency factors, andp-value of convergence diagnostic statistics. The inefficiency factor is

an indicator that measures the degree of autocorrelation of the Markov chain and is defined

as 1+ 2
∑∞

j=1ρ( j), whereρ( j) is the lag j sample autocorrelation. As pointed out in Chib

(2001), this value is interpreted as the ratio of the variance of the sample mean obtained by

the Markov chain to that of the sample mean by an uncorrelated draw. When it is close to

one, the Markov chain would be as efficient as an uncorrelated Monte Carlo draw. When, on
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the other hand, it is much greater than one, we need to take a longer Markov chain. In con-

trast, thep-value is for the two-sided test of whether the convergence of the Markov chain is

reached, proposed by Geweke (1992). The first 10% and last 50% MCMC samples are used

to conduct this test as suggested by Geweke (1992).

Obtained MCMC samples for all parameters can be considered to be those from the

posterior distribution judging from thep-values of their convergence diagnostics. The in-

efficiency factors also suggest that we took a sufficiently long Markov chain to conduct

inferences.

Table 3 shows several aspects of the Japanese residential water demand function. First,

price and income elasticities are highly credible to be negative and positive, respectively,

in terms of their 95% credible intervals.7 The absolute value of price elasticity is much

larger than that of income elasticity. Because the separability condition strongly restricts the

parameter space, this result could be a consequence of this condition (see also Miyawaki

et al. (2010)). These elasticities have theoretically correct signs. Second, the number of

members in a household and the number of rooms in a household/apartment have a positive

effect on water demand because the posterior probabilityP(µδ j > 0 |Data)> .95 (j = 1,2). In

contrast, the total floor space in a household/apartment (δ3) has no effect on water demand in

terms of its 95% credible interval. This result is partly influenced by the correlation between

the number of rooms and total floor space, as noted at the end of the preceding subsection.

We compare our results with those obtained in previous studies,8 all of which applied

the maximum likelihood method to estimate the water demand function based on the dis-

crete/continuous choice approach. Their statistical models to be estimated do not include the

individual effect. Furthermore, the separability condition is also ignored in these studies.

Olmstead et al. (2007) used data from households in the United States and Canada. The

7Precisely, the 95% credible interval forβ2 includes zero, which means thatβ2 does not differ from zero in
terms of the credible interval. However, the posterior probabilityP(β2 > 0 | Data)= .97 implies that we have
credible evidence for the positive income elasticity with more than 95% posterior probability.

8Pint (1999) estimated the water demand function during the California drought. Because Pint (1999) used
the level of unit price as an explanatory variable for the conditional demand, its estimation result cannot be
simply compared with ours.
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household faces one of three kinds of price schedules: two-block increasing block rate pric-

ing, four-block increasing block rate pricing, and uniform pricing. The estimated price and

income elasticities (the coefficients of price and virtual income) are−.3407 and.1306, re-

spectively, and their standard errors are.0298 and.0118, respectively. While their income

elasticity is similar to ours, their price elasticity is smaller. They used 21 explanatory vari-

ables for heterogeneity, including number of residents per household, number of bathrooms,

approximate are of the home, approximate area of its lot, and the approximate age of the

home as household attributes. Coefficients of these variables are all significant at the 5%

level. In particular, the coefficients of the number of residents per household and the approx-

imate area of the home are.1960 and.1257, respectively.

Hewitt and Hanemann (1995) also estimated the residential water demand function under

two-block increasing block rate pricing in Denton, Texas. The price and income elasticities

are estimated to be−1.8989 and.1782, respectively, and their asymptotict statistics are

−6.421 and 1.864, respectively. These results are similar to ours. Among variables for

heterogeneity, they found that the number of bathrooms has a positive effect on water demand

at the 5% significance level. They consider that the number of bathrooms would represent the

number of members in a household, which would better explain the variation in residential

water use.

Rietveld et al. (2000) analyzed the water demand function under four-block increasing

block rate pricing in Indonesia. The price and income elasticities are estimated to be−1.280

and .501× 10−6, respectively, with standard errors.235 and.348× 106, respectively. The

tendency for demand to be elastic with regard to price and inelastic with regard to income is

coincident with the results of Hewitt and Hanemann (1995) and ours. Furthermore, the log

of the number of members in a household has a positive effect on water demand at the 5%

significance level.

Finally, we further considered another panel data model, the AR(1) error component

model. The MCMC simulation following procedures described in Appendix A.2 is con-
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ducted. Because the results are found to be very similar to those obtained for the RC model,

their details are omitted. The parameter that represents the serial correlation is not credible

to be positive or negative in the sense that its 95% credible interval includes zero. No serial

correlation is also observed when we use the four-consecutive-months data—that is, the data

from June 2006 to September 2006.

5 Conclusion

This paper conducted a structural analysis of the Japanese residential water demand using

panel data. The random coefficients model result shows that the price and income elasticities

are estimated to be negative and positive, respectively, and the coefficients of the number

of members and the number of rooms are estimated to be positive. Furthermore, the AR(1)

error component model suggests that the Japanese residential water demand does not have

serial correlation.

We note two applications of our model. First, the proposed model is useful for making

policies that continue several periods. For example, the price and income elasticities play

an important role when the policy makers make decisions on efficient use and allocation of

water. This is especially important in developing countries and transition economies (see,

e.g., da Motta, Huber, and Ruitenbeek (1998)). Furthermore, our model is beneficial to

formulate the policy on population. The water and sewerage services are one of the factors

that determine the population growth (see, e.g., Robinson (1997)).

Second, our model can incorporate a spatial dependency through the consumer hetero-

geneity. When we analyze the interregional residential water demand, it is important to

control such a spatial dependency. The analysis of spatial dependency in the demand for

public utilities would be a subject for future research.
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Appendices

A.1 Full conditional distributions for RC model

The full conditional distributions for the random coefficients (RC) model is described in

detail, following the algorithm in Subsection 3.2. We assumepit,1> 0,qit,1> 0, andȳit,1> 0 to

avoid tedious expressions depending on the sign of these variables without loss of generality.

Let kit = ⌈s∗it/2⌉ andA = {(i, t) | s∗it is odd and equal to 2kit −1 for t = 1, . . . ,T}, where⌈x⌉ is

the ceiling function returning the smallest integer that is larger than or equal tox.

Step 1. Initializeβββ, {δδδi , sss∗i ,www∗i }ni=1,σ
2
u, σ2

v, µµµδδδ, andΣΣΣδδδ.

Step 2. Generateβ1 givenβ2, {sss∗i ,www∗i }ni=1,σ
2
u. The full conditional distribution forβ1 is the

truncated normal distribution with meanµ1, varianceσ2
1, and truncation intervalR1: β1 ∼

T NR1(µ1,σ
2
1), where

σ−2
1 = σ

−2
β1,0
+

∑
(i,t)∈A

(
pit,kit

)2 , (A.24)

µ1 = σ
2
1

σ−2
β1,0
µβ1,0+

∑
(i,t)∈A

pit,kit

(
yit −β2qit,kit −w∗it

) , (A.25)

R1 =

{
max

i,t

(
−∞,BL1

it

)
, min

i,t,k

(
BU1

it ,−β2
qit,k+1−qit,k

pit,k+1− pit,k

)}
, (A.26)

(
BL1

it ,BU1
it

)
=


(

ȳit,k−1−β2qit,k−w∗it
pit,k

,
ȳit,k−β2qit,k−w∗it

pit,k

)
, if ( i, t) ∈ A,(

ȳit,k−β2qit,k−w∗it
pit,k

,
ȳit,k−β2qit,k+1−w∗it

pit,k+1

)
, otherwise.

(A.27)

These (BL1
it ,BU1

it) are constructed from the intervalsRit,s∗it
defined by (17) of Subsection 3.2.

Step 3. Generateβ2 givenβ1, {sss∗i ,www∗i }ni=1,σ
2
u. The full conditional distribution forβ2 is the
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truncated normal distribution,β2 ∼ T NR2(µ2,σ
2
2), where

σ−2
2 = σ

−2
β2,0
+

∑
(i,t)∈A

(
qit,kit

)2 , (A.28)

µ2 = σ
2
2

σ−2
β2,0
µβ2,0+

∑
(i,t)∈A

qit,kit

(
yit −β1pit,kit −w∗it

) , (A.29)

R2 =

{
max

i,t

(
−∞,BL2

it

)
, min

i,t,k

(
BU2

it ,−β1
pit,k+1− pit,k

qit,k+1−qit,k

)}
, (A.30)

(
BL2

it ,BU2
it

)
=


(

ȳit,k−1−β1pit,k−w∗it
qit,k

,
ȳit,k−β1pit,k−w∗it

qit,k

)
, if ( i, t) ∈ A,(

ȳit,k−β1pit,k−w∗it
qit,k

,
ȳit,k−β1pit,k+1−w∗it

qit,k+1

)
, otherwise.

(A.31)

Step 4. Generate(σ2
v, {δδδi}ni=1) given{www∗i }ni=1,µµµδδδ,ΣΣΣδδδ. Integrating the joint full conditional prob-

ability density of (σ2
v, {δδδi}ni=1) with respect to{δδδi}ni=1, we have the full conditional distribution

of σ2
v as the inverse gamma distribution,σ2

v ∼ IG(nv,1/2,Sv,1/2). Then, the full conditional

distribution ofδδδi is the multivariate normal distribution,δδδi |σ2
v ∼ Nd(µµµδδδi ,1,σ

2
vΣΣΣδδδi ,1). Parame-

ters of these full conditionals arenv,1 = nv,0+nT,

Sv,1 = Sv,0+nµµµ′δδδΣΣΣ
−1
δδδ µµµδδδ+

n∑
i=1

(
www∗′i www∗i −µµµ′δδδi ,1ΣΣΣ

−1
δδδi ,1
µµµδδδi ,1

)
, (A.32)

µµµδδδi ,1 = ΣΣΣδδδi ,1
(
ΣΣΣ−1
δδδ µµµδδδ+ZZZ′i www

∗
i

)
, ΣΣΣ−1

δδδi ,1
= ΣΣΣ−1
δδδ +ZZZ′i ZZZi . (A.33)

Step 5. Generateµµµδδδ given{δδδi}ni=1,ΣΣΣδδδ,σ
2
v. The full conditional distribution ofµµµδδδ is the multi-

variate normal distribution,µµµδδδ ∼ Nd(µµµδ̄δδ,1,ΣΣΣδ̄δδ,1), where

µµµδ̄δδ,1 = ΣΣΣδ̄δδ,1

ΣΣΣ−1
δ̄δδ,0
µµµδ̄δδ,0+σ

−2
v ΣΣΣ

−1
δδδ

n∑
i=1

δδδi

 , ΣΣΣ−1
δ̄δδ,1
= ΣΣΣ−1
δ̄δδ,0
+nσ−2

v ΣΣΣ
−1
δδδ . (A.34)

Step 6. GenerateΣΣΣδδδ given{δδδi}ni=1,µµµδδδ,σ
2
v. The full conditional distribution ofΣΣΣδδδ is the inverse
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Wishart distribution,ΣΣΣδδδ ∼ IWd(nδ̄δδ,1,SSSδ̄δδ,1), wherenδ̄δδ,1 = nδ̄δδ,0+n and

SSS−1
δ̄δδ,1
= SSS−1

δ̄δδ,0
+σ−2

v

n∑
i=1

(
δδδi −µµµδδδ

) (
δδδi −µµµδδδ

)′ . (A.35)

Step 7. Generate(s∗it ,w
∗
it) givenβββ, {δδδi}ni=1,σ

2
u,σ

2
v for i = 1, . . . ,n and t= 1, . . . ,T. The full

conditional distribution ofs∗i is the multinomial distribution. Its probability mass function is

given by

π
(
s∗it = s | βββ, {δδδ}ni=1 ,σ

2
u,σ

2
v

)
∝ τs

[
Φ

{
τ−1

s
(
RUit,s− θit,s

)}−Φ {
τ−1

s
(
RLit,s− θit,s

)}]
exp

(
−mit,s

2

)
,

(A.36)

for s= 1, . . . ,2K it − 1, whereΦ(·) is the cumulative distribution function of the standard

normal distribution,RUit,s andRLit,s denote the respective upper and lower limits ofRit,s

(see (17)), and

(
mit,s, θit,s, τs

)
=



σ
−2
u σ

−2
v

(
yit − xxx′it,kβββ−zzz′itδδδi

)2
σ−2

u +σ
−2
v

,
σ−2

u

(
yit − xxx′it,kβββ

)
+σ−2

v zzz′itδδδi

σ−2
u +σ

−2
v

,
(
σ−2

v +σ
−2
u

)−1

 ,
if s= 2k−1 andk= 1, . . . ,K it ,(

σ−2
u

(
yit − ȳit,k

)2 , zzz′itδδδi , σ−2
v

)
, if s= 2k andk= 1, . . . ,K it −1.

(A.37)

Givens∗it = s, we generatew∗it from the truncated normal distribution,w∗it |s∗it = s∼T NRit,s(θit,s, τ
2
s).

Step 8. Generateσ2
u givenβββ, {sss∗i ,www∗i }ni=1. The full conditional distribution ofσ2

u is the inverse

gamma distribution,σ2
u ∼ IG(nu,1/2,Su,1/2), wherenu,1 = nu,0+2+nT and

Su,1 = Su,0+
(
βββ−µµµβββ,0

)′
ΣΣΣ−1
βββ,0

(
βββ−µµµβββ,0

)
+

n∑
i=1

(
yyyi −yyy∗i

)′ (
yyyi −yyy∗i

)
. (A.38)
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Step 9. Go to Step 2.

A.2 AR(1) EC model

To incorporate a serial correlation into the RC model, we consider AR(1) process forvit ,

w∗it = zzz′itδδδi +vit ,

vit = γvi,t−1+ηit , ηit ∼ N
(
0,σ2

v

)
, vi0 ∼ N

(
0,

(
1−γ2

)−1
σ2

v

)
,

(A.39)

whereηit is independent ofηit′ (t , t′) and|γ| < 1. We call (A.39) an AR(1) error component

(AR(1) EC) model.

It is straightforward to implement an MCMC method for the AR(1) EC model. All prior

distributions except forγ are assumed to be the same as those for the RC model ((18) and

(19)). Forγ, we assume a uniform prior on an interval (−1,1) given by

γ ∼ U (−1,1) , (A.40)

and it is assumed to be independent of other parameters. Thus, the joint prior probability

density function for the AR(1) EC model parameters is

π
(
βββ, {δδδi}ni=1,σ

2
u,σ

2
v,µµµδδδ,ΣΣΣδδδ,γ

)
= π

(
βββ, {δδδi}ni=1,σ

2
u,σ

2
v,µµµδδδ,ΣΣΣδδδ

)
U (γ | −1,1) . (A.41)

Taking account of conditional distributions for the heterogeneities,

w∗i0 ∼ N
(
0, (1−γ2)−1σ2

v

)
,9 w∗it | w∗i,t−1 ∼ N

(
zzz′itδδδi +γ(w

∗
i,t−1−zzz′i,t−1δδδi),σ

2
v

)
for t ≥ 1,

(A.42)
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the posterior probability density function for the AR(1) EC model is given by

π
(
βββ,

{
δδδi , sss

∗
i ,www
∗
i

}n
i=1
,σ2

u,σ
2
v,µµµδδδ,ΣΣΣδδδ,γ |

{
yyyi
}n
i=1

)
∝ π

(
βββ, {δδδi}ni=1 ,σ

2
u,σ

2
v,µµµδδδ,ΣΣΣδδδ,γ

)
×σ−n

v

(
σ−nT

u σ−nT
v

) (
1−γ2

)n/2
exp

[
−1

2

{(
1−γ2

)
σ−2

v www∗′0 www∗0

+

n∑
i=1

(
σ−2

u

(
yyyi −yyy∗i

)′ (
yyyi −yyy∗i

)
+σ−2

v

(
w̃ww∗i − Z̃ZZiδδδi

)′ (
w̃ww∗i − Z̃ZZiδδδi

))


×
n∏

i=1

T∏
t=1

I
(
w∗it ∈ Rit,s∗it

)K it−1∏
k=1

I
(
xxx′it,k+1βββ ≤ xxx′it,kβββ

) ,
(A.43)

wherewww∗0= (w∗10,w
∗
20, . . . ,w

∗
n0)′, w̃ww∗i =www∗i −γwww∗i,−1, Z̃ZZi =ZZZi−γZZZi,−1, www∗i,−1= (w∗i0,w

∗
i1, . . . ,w

∗
i,T−1),

andZZZi,−1 = (zzzi0,zzzi1, . . . ,zzzi,T−1)′.

The full conditional posterior distributions ofβββ,µµµδδδ,ΣΣΣδδδ,σ
2
u are identical to those of the

RC model derived in Appendix A.1. Other full conditional distributions are described as

follows.

Conditional posterior distributions of(σ2
v, {δδδi}ni=1). The blocking technique (Step 4 of Ap-

pendix A.1) is applied to draw samples of (σ2
v, {δδδi}ni=1). Then, the full conditional distri-

butions ofσ2
v andδδδi are the inverse gamma,σ2

v ∼ IG(nv,1/2,Sv,1/2) and the multivariate

normal,δδδi |σ2
v ∼ Nd(µµµδδδi ,1,σ

2
vΣΣΣδδδi ,1), respectively, wherenv,1 = nv,0+n(T +1),

Sv,1 = Sv,0+nµµµ′δδδΣΣΣ
−1
δδδ µµµδδδ+ (1−γ2)www∗′0 www∗0+

n∑
i=1

(
w̃ww∗′i w̃ww∗i −µµµ′δδδi ,1ΣΣΣ

−1
δδδi ,1
µµµδδδi ,1

)
, (A.44)

µµµδδδi ,1 = ΣΣΣδδδi ,1
(
ΣΣΣ−1
δδδ µµµδδδ+ Z̃ZZ

′
i w̃ww
∗
i

)
, ΣΣΣ−1

δδδi ,1
= ΣΣΣ−1
δδδ + Z̃ZZ

′
i Z̃ZZi . (A.45)

Conditional posterior distributions of w∗i0, (s∗it ,w
∗
it). The posterior distribution ofw∗i0 is the

9We setzzzi0 ≡ 000.
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normal distribution,w∗i0 ∼ N(γ(w∗i1−zzz′i1δδδi),σ
2
v). We draw (s∗it ,w

∗
it) for i, t ≥ 1 from the similar

full conditional distributions to those of the RC model replacingzzz′itδδδi by zzz′itδδδi + γ(w
∗
i,t−1−

zzz′i,t−1δδδi).

Conditional posterior distribution ofγ. The full conditional posterior probability density

function is given by

π
(
γ |

{
δδδi ,www

∗
i

}n
i=1

)
∝

(
1−γ2

)n/2
exp

−
(
γ−µγ

)2

2σ2
vσ

2
γ

 I {γ ∈ (−1,1)} , (A.46)

where

µγ = σ
2
γ

n∑
i=1

(
www∗i −ZZZiδδδi

)′ (
www∗i,−1−ZZZi,−1δδδi

)
, σ−2

γ =

n∑
i=1

(
www∗i −ZZZiδδδi

)′ (
www∗i −ZZZiδδδi

)
. (A.47)

We adopt the MH algorithm to draw samples ofγ. Using the normal approximation to this

density, we generate a candidateγ′ from the proposal distributionT N(−1,1)(µγ,σ2
vσ

2
γ), and

acceptγ′ with probability

α
(
γ,γ′

)
=min

1,

(
1−γ′2
1−γ2

)n/2 . (A.48)
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