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Abstract

When a certain procedure is applied to extract two component
processes from a single observed process, it is necessary to impose a
set of restrictions that defines two components. One popular restriction
is the assumption that the shocks to the trend and cycle are orthogo-
nal. Another is the assumption that the trend is a pure random walk
process. The unobserved components (UC) model (Harvey, 1985) as-
sumes both of the above, whereas the BN decomposition (Beveridge
and Nelson, 1981) assumes only the latter. Quah (1992) investigates a
broad class of decompositions by making the former assumption only.
This paper provides a general framework in which alternative trend-

cycle decompositions are regarded as special cases, and examines al-
ternative decomposition schemes from the perspective of the frequency
domain. We find that as long as the US GDP is concerned, the con-
ventional UC model is inappropriate for the trend-cycle decomposition.
We agree with Morley et al (2003) that the UC model is simply mis-
specified. However, this does not imply that the UC model that allows
for the correlated shocks is a better model specification. The correlated
UC model would lose many attractive features of the conventional UC
model.
JEL Classification: E44, F36, G15

Key Words: Beveridge-Nelson decomposition, Unobserved Component
Models.
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1 Introduction

It has been a common practice in empirical macroeconomic analysis to treat
a time-series process such as an output level as the sum of its long-run trend
and the short run fluctuation from the trend. These two components are
sometimes called the trend and cycle or the permanent and transitory. This
type of decomposition is clearly motivated by the modern macroeconomic
theory, which is accustomed to separate analytically the long-run equilib-
rium of an economy from the short-run adjustment of the economy to an
occasional shock. In the case of output, the long-run equilibrium process
is treated by the economic growth theory, while the theory of business cy-
cles investigates the short-run fluctuations of output from the trend and the
impacts of government policies on its short-run behavior.

When a certain procedure is applied to extract two processes from a
single observed process, however, it is necessary to impose a set of restric-
tions that defines two component processes. When there are overidentified
restrictions, they can be tested, which might be interpreted as a specifica-
tion test. One popular restriction is the assumption that the shocks to the
trend and cycle are orthogonal. Another is the assumption that the trend
is a pure random walk process. The unobserved components (UC) model
(Harvey, 1985) assumes both of the above, whereas the BN decomposition
(Beveridge and Nelson, 1981) assumes only the latter. Quah (1992) inves-
tigates a broad class of decompositions by making the former assumption
only.

The orthoganlity assumption has several desirable features to model the
output process. First, when two shocks are orthogonal, the total variability
is the sum of variabilities of two shocks, and hence the relative importance
of each shock is easily caculated. Second, the dynamic response of yt to
each shock can be computed and interpreted nicely. If two shocks were
correlated, distinguishing the impact of one shock from the other would be
diffi cult. Hence, some people think that the orthogonality assumption is
indispensable for the decomposition to be a useful analytical tool.

The random walk assumption for the trend component has also some
attractive features. First, such a trend is well defined and always identifiable
without any additional assumptions. Second, it can be interpreted as the
long-run forecast of yt. A drawback for this assumption is that it makes the
trend quite volatile.
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This paper has two contributions to the literature. First, it provides a
general framework in which alternative trend-cycle decompositions are re-
garded as special cases. In this way, we can find a link between what are
otherwise viewed as different models with no apparent connection. Second,
the paper examines alternative decomposition schemes from the perspec-
tive of the frequency domain. Several authors have included the spectral
approach in their analysis of the trend-cycle decomposition, either merely
superficially or quite substantially (Watson 1986, Quah 1992, Lippi & Re-
ichlin 1992, Proietti 2006, and others). This paper attempts to provide
a broad view of alternative decomposition schemes in terms of the spectral
representation. The latter is quite natural because the aim of decomposing a
macroeconomic process into the long-run and short-run process is inherently
connected to the notion of frequecies of the original process.

The organization of this paper is as follows. In the next section, we
develop the general form of the UC model and present the reduced form
ARIMA model, the conventional (uncorrelated) UC model and the corre-
lated UC model as special cases. We show the regression of the cycle shock
on the trend shock as a link to connect the above three models. In section 3,
we turn our attention to the US GDP process. Through this empirical ex-
amination of the alternative decomposition schemes, we ask two important
questions: (i) Is the UC model misspecified? and (ii) Does the correlated
UC model make sense? In section 4, we provide a brief conclusion.

2 UC and ARIMA Models

The trend-cycle decomposition of yt in the conventional form of the unob-
served component (UC) model (Harvey 1985) is given by

yt = τ t + ct (1)

τ t = µ+ τ t−1 + ηt (2)

ct = ψ̃(L)εt (3)

where τ t is the trend component, ct is the cycle component of yt, and ψ̃(z) =
θ̃(z)

φ̃(z)
, θ̃(z) and φ̃(z) are the polynomials of z. Both θ̃(z) and φ̃(z) have all
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roots outside of the unit circle. Let[
ηt
εt

]
∼ N(0,Σ) (4)

be possibly correlated bivariate normal random variables, where

Σ =

[
σ2
η σηε

σηε σ2
ε

]
. (5)

Now consider the regression of εt on ηt

εt = βηt + et (6)

where β =
σηε
σ2η
. Write the UC model as (1),(2),(3) with[

ηt
εt

]
=

[
1 0
β 1

] [
ηt
et

]
(4’)

where [
ηt
et

]
∼ N(

[
0
0

]
, σ2

η

[
1 0
0 γ2

]
) (5’)

where γ2 = σ2
e/σ

2
η so that σ

2
ε = (β2 + γ2)σ2

η.

The model (1),(2),(3),(4′),(5′) is a general UC model for which the un-
correlated UC model as well as the ARIMA model as a special case. If β is
set equal to zero, we have the uncorrelated UC model of Harvey (1985). If
γ is set equal to zero, the model becomes the single source of error (SSOE)
UC model (Anderson et. al., 2006), equivalent to the ARIMA model. To
see the point above, take the first difference of (1) and use (2) and (3) to
obtain

∆yt = µ+ ηt + ψ∗(L)εt

= µ+ [1 + βψ∗(L)]ηt + ψ∗(L)et

= µ+ ζ(L)η∗t + ψ∗(L)et (7)

where ψ∗(z) = (1 − z)ψ̃(z) = 1 + ψ∗1z + ψ∗2z
2 + . . . and ζ(z) = 1 + ζ1z +

ζ2z
2 + . . . Note that 1 + βψ∗(z) = (1 + β) + βψ∗1z + βψ∗2z

2 + . . . Therefore,
we find

η∗t = (1 + β)ηt ∼ N(0, (1 + β)2σ2
η) (8)
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and

ζj = (
β

1 + β
)ψ∗j j = 1, 2, 3 . . . (9)

Recall the Wold representation of ∆yt as

∆yt = µ+ ψ(L)ut (10)

where ut ∼ WN(0, σ2
u). The ARIMA model admits ψ(z) be expressed as

ψ(z) = θ(z)
φ(z) with finite order polynomials of θ(·) and φ(·).

2.1 Single source of error UC model

Suppose γ = 0 now. Then et = 0 with probability 1, which in turn implies
from (6) that εt = βηt. Therefore (7) reduces to

∆yt = µ+ ζ(L)η∗t (11)

Comparing (10) and (11), the uniqueness of the Wold representation implies

ut = η∗t = (1 + β)ηt (12)

σ2
u = (1 + β)2σ2

η

ψ(z) = ζ(z) =
1

1 + β
[1 + βψ∗(z)] (13)

Setting z = 1 in (13) implies

ψ(1) =
1

1 + β
(14)

or

β =
1− ψ(1)

ψ(1)

Given ψ(z) and β, solving (13) for ψ̃(z) yields

ψ̃(z) =
1 + β

β

[
ψ(z)− 1

1 + β

]
/(1− z)

=
ψ(z)− ψ(1)

[1− ψ(1)] (1− z) =
ψ+(z)

1− ψ(1)
(15)

where ψ(z)− ψ(1) = (1− z)ψ+(z).
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Unless ψ(1) = 1, there is a one to one mapping between an ARIMA
model and the corresponding SSOE UC model. To see this, suppose yt ∼
ARIMA(p, 1, q) and the corresponding UC model has ct ∼ ARMA(p, q∗)
where q∗ = max(p, q − 1). Then in addition to the common parame-
ters µ and φ1, · · · , φp, we need to have a mapping from

(
θ1, · · · , θq, σ2

u

)
to
(
θ̃1, · · · , θ̃q∗, σ2

η, β
)
. (14) yields β from the former set of parameter val-

ues. (13) gives σ2
η from β and σ2

u. Then (15) leads to the mapping from

(θ1, · · · , θq) to
(
θ̃1, · · · , θ̃q∗

)
. It is easy to see that the resulting trend and

cycle are, respectively, identical to those for the BN decomposition. That
is,

τ t = µt+

t∑
s=0

ηs = µt+
1

1 + β

∑
us = µt+ ψ(1)

t∑
s=0

us

and

ct = ψ̃(L)εt = βψ̃(L)ηt =
β

1 + β
ψ̃(L)ut = [1− ψ(1)]ψ̃(L)ut.

We find in this case

cov(ηt, εt) = cov(ψ(1)ut, [1− ψ(1)]ut)

= ψ(1) [1− ψ(1)]σ2
u

and

corr(ηt, εt) =

{
1 if ψ(1) < 1

−1 if ψ(1) > 1
.

2.2 Correlated UC model

We now consider a more general UC model given in (1)-(5). Let fv(w) be the
spectral density matrix of vt = [ηt, εt]

′. Then fv = 1
2πΣ and the spectrum

of ∆y is given by

f∆y(ω) =
1

2π

[
1, ψ∗(e−iω)

]
Σ

[
1

ψ∗(eiω)

]
(16)

Now (6) implies that Σ can be written as

Σ = σ2
η

([
1
β

] [
1 β

]
+

[
0 0
0 γ2

])
5



Substituting the above expression into (16), we obtain

f∆y(ω) =
σ2
η

2π

∣∣1 + βψ∗(e−iω)
∣∣2 +

γ2σ2
η

2π

∣∣ψ∗(e−iω)
∣∣2

=
σ2
η∗

2π

∣∣ζ(e−iω)
∣∣2 +

γ2σ2
η

2π

∣∣ψ∗(e−iω)
∣∣2 (17)

where σ2
η∗ = (1 + β)2σ2

η and ζ(z) is given in (13).

The equality (17) reveals an important point. Suppose, for a while, that
yt is generated from the ARIMA model given in (10) with ψ(z) = θ(z)

φ(z) .

Then f∆y(ω) = σ2u
2π

∣∣ψ(e−iω)
∣∣2 and we can always set σ2

e equal to zero to

obtain σ2
η∗
∣∣ζ(e−iω)

∣∣2 = σ2
u

∣∣ψ(e−iω)
∣∣2 by (14) and (15). In other words, the

likelihood of a correlated UC model is always maximized by choosing the
SSOE model.

The above point might sound a little odd because Morley, Nelson and
Zivot (2003, MNZ hereafter) show that the correlated UC model fitted to
the US GDP has typically a negative correlation between ηt and εt close to
but not exactly equal to -1. This confusing phenomenon is due to the issue
of model approximation and the identification problem, which is discussed
later.

Now applying the Kolmogorov’s Lemma to both sides of inequality f∆y(ω)

≥ σ2
η∗

2π

∣∣ζ(e−iω)
∣∣2 and noticing σ2

u = exp[ 1
2π

∫ π
−π log 2πf∆y(ω)dω], we obtain

σ2
u ≥ σ2

η∗ = (1 + β)2σ2
η. Since ψ(1)2σ2

u = σ2
η, it follows that ψ(1)2 ≤ 1

(1+β)2

so ψ(1) > 1 implies β < 0, which is the result of Nagakura & Zivot(2006).

This result is important, since ψ(1) > 1 for many macroeconomic series
such as the US GDP process. It tells that the negative correlation between
the trend and cycle shocks is simply the consequence of the persistence of
the original process. And it would be incorrect and misleading to try to find
any structural interpretation from it.
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2.3 Uncorrelated UC model

The conventional UC models developed by Harvey and others consists of
(1)-(5) with σηε = 0. Setting β = 0 and noticing σ2

ε = γ2σ2
η = σ2

e in (17),
we obtain the spectrum of ∆yt as

f∆y(ω) =
σ2
η

2π
+
σ2
ε

2π

∣∣ψ∗(e−iω)
∣∣2 ≥ σ2

η

2π

which implies that the UC representation with uncorrelated trend and cycle
shocks is ’feasible’only when the spectrum of ∆yt has the global minimum
at frequency zero, which is shown by Lippi and Reichlin(1994). This fact
appears to render the conventional UC models (proposed by Harvey and oth-
ers) inappropriate for describing the important macroeconomic series such
as the US GDP. Actually it is the main conclusion of MNZ, which has a
quite important implication on empirical macroeconomic model building. A
question is, however, as Harvey point out, whether BN decomposition would
also lose its attractiveness in such a case.

It is easy to see that if we apply the BN decomposition to the ARIMA
model implied by any uncorrelated UC model, the resulting trend and cycle
are identical to those in the original UC model.

3 US GDP

In this section we examine a variety of trend-cycle models when applied to
the US GDP process. Our special focus is on the comparison between the
BN decomposition and the UC models. Data used in our analysis are the
quarterly data on the US real output level from 1947Q1 through 2009Q1.

3.1 Cycles of the UC GDP implied by models

The left hand column of Figure 1 displays the plots of the cycle component
implied by the models popular among macroeconomists: (a) the BN, (b) the
UC(0), (c) the Perron-Wada (2009) Trend-break model, (d) the HP filter,
and (e) the Bandpass filter (Christiano & Fitzgerald 2003). In fact, (d)
and (e) are not originally proposed as procedures for decomposition. The
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shaded areas indicate the NBER recessions. The right hand column shows
the corresponding spectral density of the cycle component of each model.
The shaded area of each figure in this column indicates the range of business
cycle frequencies (defined by the period of 6 to 24 quarters).

A striking finding here is that, as seen in the right column of Figure 1(a),
the BN cycle almost totally fails to capture the business cycle frequencies of
the US output. The left column shows that the BN cycle exhibits too much
fluctuations and does not fit the NBER recessions in any sense. This fact
has been pointed out by many authors, which discredits the BN approach as
a way to separate the cyclical components of the US output from the trend
in a conventional sense.

The cycles in the UC(0) model (Figure 1(b)) and the Trend-break model
(Figure 1(c)) are similar except that the trend after 1972 is adjusted down
in the latter model (as emphasized in Perron & Wada 2009). Also the cycles
in the HP filter and the Bandpass filter are similar. Note that the spectral
densities of these cycles are equal to zero at frequency zero, implying that
they are I(-1) processes. In other words, both filters work when the GDP
process is not only I(1) but also I(2). Not surprisingly the cycle process
obtained by the Bandpass filter captures the business cycle frequencies very
well. So is the HP filter.

The cycles implied by UC(0), Trend-break models and the HP filter
look more consistent with the NBER business cycle chronology than other
models. This might imply that inclusion of the frequency range a little
lower than what is implied by 6 years period would help make cycles more
consistent with what we regard conventionally as the business cycle. The
UC(0) model does at least reasonable job in this respect.

3.2 Is the UC model misspecified?

We now turn our attention more closely to the comparison between the
BN decomposition and the UC models applied to the US GDP. Table 1
reports the estimates of the model parameters for the BN decomposition of
the ARIMA(2,1,2) model of the US GDP as well as its corresponding UC
models.

The estimates are obtained for the general UC model given in (1) , (2) , (3)

8



(4′) , (5′) with restrictions imposed on parameters corresponding to each
case, described in the second row of the table. The second column of the
table reports the SSOE-UC model (or the BN decomposition), the third and
fourth columns the UC(0) models, and the last two columns the correlated
UC models.

As is widely known, the size of the variance of the trend shock (σ2
η)

is quite different between the BN case and the UC(0) case. The former
is more than twice as large as the latter. This problem greatly confuses
many empirical macroeconomists when the size of the random walk part of
the GDP is such a crucial issue. Watson (1986) points out that the UC(0)
model assumes zero correlation between the trend and cycle shocks, whereas
the BN decomposition assumes the two are perfectly correlated. MNZ go a
step further and argue that the correlated UC model can be identified when
yt is assumed to be generated from ARIMA(2,1,2) process and the cycle
component in the UC model is ARMA(2,0) process. They find that the ML
estimate of the correlation of the two shocks is close to negative one, and
that the zero correlation is rejected by the likelihood ratio test. The fifth
column of Table 1 reports our estimates for this model, which is consistent
with MNZ. Our estimated correlation is -0.94, which is quite close to MNZ’s
-0.98.

The top panel of Figure 2 displays the spectral density functions of ∆yt
based on the BN model (or ARIMA) and the UC(0) model (with the shaded
area showing the Business cycle frequencies). The two functions look quite
different except for a high frequency region. The spectrum of ∆yt based on
the ARIMA model starts with about 0.22 at frequency zero, peaks at fre-
quency 0.2π, then declines quickly, and overlaps with the spectrum implied
by the UC(0) model after frequency 0.5π. In contrast, the spectrum for the
UC(0) model start with 0.04 at frequency zero, peaks at frequency 0.06π and
then gradually declines. The panels (b) and (c) display the 95% confidence
bands of ∆yt for the ARIMA model and the UC(0) model, respectively. To
construct the confidence bands we use bootstrapped error terms to generate
artificial data1. The spectrum in the figure corresponds to the median value
of simulated spectral ordinates.

The entire empirical distributions for the two spectra at frequency zero

1The method used for bootstrapping UC0 and ARMA model is a revised procedure in
RATS based on Stoffer and Wall (1991). We thank Tom Doan for his coding help.
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are displayed in Figure 3. The horizontal axis measures the long-run vari-
ance of ∆yt divided by 2π, namely σ̂2

η/2π. The modes of the distributions
are reached at 0.03 and 0.22, quite close but not necessarily equal to our
estimated values (0.04 and 0.22). The estimated value is clearly smaller
than the lower 2.5% quantile of the empirical distribution of the trend shock
variance based on the ARIMA(2,1,2) model.

A natural question is what causes these two estimates to be so different.
The answer lies in misspecification of the UC model. As we saw in section
2.3, the spectrum of ∆yt in the UC form is the sum of the spectrum of a
white noise (∆τ t) and I(-1) process (∆ct). The former is a positive constant(
σ2
η/2π

)
and the latter is a hump-shaped curve starting from the origin at

frequency zero. It implies that the ordinate of the spectrum for ∆yt is al-
ways higher than that at frequency zero, which contradicts the shape of ∆yt
in the ARIMA representation (seen in Figure 2(a) and (b)). Lippi and Re-
ichlin (1992) show that ψ(1) < 1 is a necessary condition for ∆yt to have the
conventional UC representation with uncorrelated shocks. The estimates of
ψ(1) for the US GDP under ARIMA(2,1,2) is 1.28. The estimated para-
meters for the uncorrelated UC model is the maximizer of the misspecified
likelihood function. The trend shock variance

(
σ2
η

)
has to be significantly

underestimated in order to give a room to let the spectrum of ∆ct have a
positive ordinate. But then ct has to have a near unit root to compensate
the underestimation at frequency zero. As is seen in Figure 2(a), distortion
of the spectrum shape is substantial.

3.3 Does the correlated UC model make sense?

MNZ relax the zero correlation assumption between the trend and cycle
shocks in the conventional UC model with AR(2) cycle and find the esti-
mated correlation close to negative one, and observe that, with this nonzero
correlation, all other parameter estimates get indistinguishable from those
in the ARIMA model (or the BN model). Our estimates in the fifth col-
umn of Table 1 (labeled with correlated UC model with θ = 0) reproduce
their result. Its entries are almost identical to those in the second column
(labeled with BN decomposition), including the likelihood values. Based on
this result, MNZ reject the zero correlation between and the trend and cycle.

If we assume that yt is generated from ARIMA(2,1,2) process, it has six
parameters (µ, σ2

η, φ1, φ2, θ1, θ2). The correlated UC model with ARMA(2,1)
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cycle (denoted UC-AR(2,1)), on the other hand, has 7 parameters (µ, σ2
η, φ1,

φ2, θ, β, γ) in our notation and
(
µ, σ2

η, φ1, φ2, θ, ρηε, σ
2
ε

)
in MNZ notation.

Therefore, the latter is not identified. Proietti (2006) argues that, for the
process to be identified we need to impose either β = 0 or θ = 0 (equivalently
ρηε = 0 or θ = 0). The reduced form of UC-AR(2,0) is also ARIMA(2,1,2),
so this process must be more restrictive than UC-AR(2,1). However, the
estimated values of other parameters are not different (as seen in the 3rd
and 4th columns in Table 1 under the labels ’β = 0 & θ = 0’and ’β = 0 &
θ 6= 0’). When θ is set at zero, we can estimate the correlation between the
trend and cycle shocks. MNZ follow this argument and use correlated UC-
AR(2,0) as the reference model. They find the shock correlation is estimated
as negative, close to -1 and very significant. At the same time the likelihood
value and the parameter estimates are almost same as the reduced form
ARIMA model.

This interesting finding motivates them to propose the correlated UC
model as a correct model specification, as opposed to the conventional un-
correlated UC model. To say that the correlated UC model is a correct
model specification is far beyond saying that the uncorrelated UC model
is misspecified. The former argument is not as persuasive as the latter for
two reasons. One is related to the issue of approximation and identification.
The other concerns the problem of interpretation.

To see these two issues, let us get back to the estimated model. When we
set θ = 0, we can estimate β and γ. Our estimate for this model is reported
in the 5th column of Table 1 under the label UC-UR with θ = 0. The
estimates imply the shock correlation is -0.940 (see Table 1), which is close
to the estimate of Oh et al (2008) of -0.9487. However, θ is not necessarily
equal to zero for the model to be identified. For instance, θ = 0.082, the
model is fully identified and we get the estimated correlation equal to -
1.0 (see the last column of Table 1). The likelihood value is the same. This
appears reasonable since this value of θ is the MLE for the SSOE-UC model,
where the correlation is set at -1.0. In fact, when θ shifts from 0.082 to 0.0,
the shock correlation moves from -1.00 to -0.940 and the likelihood stays
the same. MNZ’s correlated UC model is simply one point and no special
status within this continuous range of (θ, ρ) pairs.

The second issue is the interpretation problem. In the conventional UC
model, the two shocks are uncorrelated. In macroeconomic analysis, the
fundamental structural shocks are often assumed to be uncorrelated, and
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the movements of macroeconomic variables such as output or inflation are
considered as the outcome of those shocks that hit the economy simulta-
neously. Those orthogonal shocks can be analyzed in the variance decom-
position analysis and the impulse response function. When the shocks are
correlated, however, those powerful analytical devices cannot be used.

4 Conclusion

This paper provides a convenient general framework of the UC model in
which the standard ARIMA model, the single source of error (SSOE) UC
model, the conventional uncorrelated UC model, and the correlated UC
model are special cases of the general model. It helps understand the link
between different models with no apparent connection. A frequency domain
perspective applied to this general form of the UC model provides important
insight into understanding the difference between the BN decomposition and
the decomposition based on the UC model.

We find that as long as the US GDP is concerned, the conventional UC
model is inappropriate for the trend-cycle decomposition. As pointed out by
MNZ, the conventional UC model is simply misspecified. However, this does
not imply that the UC model that allows for the correlated shocks is a better
model specification. When macroeconomic variables are best captured with
ARIMA models, the SSOE model with perfectly correlated shocks is a best
model since it is simply another representation of the ARIMA model itself.
Moreover, the correlated UC model would lose many attractive features of
the conventional UC model.

12



Table 1: Parameters Estimates of Trend-Cycle Models

Models BN decomposition Uncorrelated Correlated
SSOE-UC Model UC Model UC Model

(ARIMA) (UC(0)) (UC-UR)
Restrictions on the γ = 0 β = 0 θ = 0 θ = 0.082
General UC Model θ = 0 θ 6= 0

µ 0.794* 0.809* 0.807* 0.794* 0.794*
(0.067) (0.041) (0.047) (0.075) (0.075)

φ1 1.333* 1.522* 1.491* 1.333* 1.333*
(0.146) (0.103) (0.102) (0.152) (0.127)

φ2 -0.734* -0.582* -0.562* -0.734* -0.734*
(0.173) (0.110) (0.106) (0.170) (0.129)

θ 0.082 [0.0] 1.000 [0.0] [0.082]
(0.196) (3.054)

ση 1.17* 0.603* 0.720* 1.17* 1.170*
(0.141) (0.103) (0.051) (0.140) (0.145)

β -0.563* [0.0] [0.0] -0.535* -0.563*
(0.202) (0.150) (0.128)

γ [0.0] 1.060* 0.446 0.194 0.006
(0.324) (0.690) (0.264) (5.484)

Likelihood -329.580 -331.883 -331.883 -329.580 -329.580
Implied rho -1.000 0.000 0.000 -0.940 -1.000

Notes:

1. Standard errors are in parentheses.

2. ‘*’indicates the significance level at 5% level.

3. Figures in [ ] indicate the values imposed rather than estimated.

4. ‘Implied rho’stands for the correlation of trend and cycle shocks calculated
as β̂√

β̂
2
+γ̂2
.
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