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Abstract

This paper applies the time-varying parameter vector autoregressive model to
the Japanese economy. The both parameters and volatilities, which are assumed
to follow a random-walk process, are estimated using a Bayesian method with
MCMC. The recursive structure is assumed for identification and the reversible
jump MCMC is used for the ordering of variables. The empirical result reveals the
time-varying structure of the Japanese economy and monetary policy during the
period from 1981 to 2008 and provides evidence that the order of variables may

change by the introduction of zero interest rate policy.
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1 Introduction

To date, the Japanese economy has experienced several distinct periods of macroeco-
nomic activity and monetary policy. It is relevant as existing literature has shown that
the Japanese economy has faced the heteroscedasticity of the exogenous shocks and
the transitions in the transmission mechanism. Nakajima et al. (2009) and Nakajima
(2011a) show significant changes in relations among major macroeconomic variables in
Japan in last several decades, using the time-varying parameter vector autoregressive
(TVP-VAR) model," originally proposed by Primiceri (2005).

The standard TVP-VAR models exploit the recursive structure in decomposition
of the covariance matrix for identifying structural shocks of the system, and therefore,
the ordering of variables is of interest and relevant in empirical studies of the TVP-VAR
models. As discussed by Primiceri (2005), one strategy to assess this issue is to introduce
uncertainty of the ordering of variables. In a Bayesian inference, we consider a prior on
the model space where each model has a different ordering and explore the posterior
probability of different ordering. This strategy can be accomplished by the reversible
jump Markov chain Monte Carlo (RIMCMC) method (Green (1995)).2 Although the
RIJMCMC is a useful approach to assess the ordering of the economic variables, little
has been done in the context of the TVP-VAR models. This paper develops an efficient
RJMCMC algorithm for the TVP-VAR model and provides the empirical analysis of the
Japanese macroeconomy and monetary policy.

Let M denote a set of competing models, and suppose that for every model m € M,
we have a vector #,, € ©,, of unknown parameters. In the RIMCMC, we explore the
model space by simulating the joint posterior distribution of (m,6,,) given data using
the Mertropolis-Hasting (MH) algorithm. In theory, a choice of proposal distribution
does not affect the results, but it may affect the convergence speed of the MCMC. There

is no general way to construct an adequate proposal distribution. One straightforward

!See Nakajima (2011a) for the literature survey of the TVP-VAR models. As the study for the
empirical study of Japanese macroeconomy, see Miyao (2000, 2002) for standard VAR models, Fujiwara
(2006) and Inoue and Okimoto (2008) for Markov-switching VAR models and Kimura et al. (2003) for
time-varying coefficient VAR models, Nakajima et al. (2010) for TVP-VAR models.

2See Vrontos et al. (2000) and Kasuya and Takagawa (2001) for applications of the RJMCMC
algorithm in econometrics. See also Brooks et al. (2003) for efficient construction of the RIMCMC
algorithm



approach commonly used in literature (e.g., Vrontos et al. (2000) and Kasuya and Tak-
agawa (2001)) is to construct the proposal distribution using the sample obtained from
a preliminary MCMC run for each model in M. That is, we firstly generate the sample
of #,, via the MCMC for its posterior distribution of every single model m € M. Then,
we run the RIMCMC algorithm where we propose the candidate of parameters from
the preliminary-constructed posterior distribution of the proposed model. This strat-
egy may automatically assure an adequate proposal distribution, but the computational
cost would become intractable when the number of competing models increase. For
the TVP-VAR models, Primiceri (2005) develops the RIMCMC algorithm based on this
strategy where the proposal distributions are constructed using the preliminarily MCMC
run including a huge dimensional state variables. For k-variate TVP-VAR models, if we
include all the permutation of the variables to examine the ordering, we explore k! com-
peting models and are forced to run k! different TVP-VAR models in advance. For the
preliminary run, it would not be necessary to run the MCMC until the convergence
can be reached, because the proposal distribution of the RIMCMC may only require
roughly approximated distribution for the conditional posterior distribution. However,
there is no general guidance for the degree of preliminary runs to construct the proposal
distribution for the RIMCMC.

To avoid this problem, this paper proposes a novel approach to construct the pro-
posal distribution based on the current point of the parameters for searching the or-
dering of the variables in the TVP-VAR models. The candidate of the parameters is
generated from the conditional posterior distribution given the permuted sample of the
current point. It searches the model space by jointly generating the posterior sample
of the parameters including state variables and requires no preliminary run for every
single model. We illustrate our method by fitting four variables TVP-VAR model to
the Japanese macroeconomic data and provide empirical results of model search and
parameter estimates under model uncertainty.

The paper is organized as follows. In Section 2, we review the standard MCMC
algorithm for the TVP-VAR model. Section 3 develops the new method of the RIMCMC
for searching the ordering of the variables in the TVP-VAR model. Section 4 provides the
empirical analysis of the proposed RIMCMC algorithm for the Japanese macroeconomic

data. Finally, Section 5 concludes.



2 TVP-VAR models

2.1 Model specification

We consider the TVP-VAR model formulated by
Yo = ¢+ Buyr1 4+ -+ Bayis e, e~ N(0,8y),

where y; is a k x 1 vector of observed variables, ¢; is a k x 1 vector of intercepts, B;;’s
are k x k matrices of time-varying coefficients, and €); is a k x k variance-covariance
matrix. Following a standard recursive identification commonly used for the TVP-
VAR models, we take a triangular reduction of €, defined by A4,QA; = ¥,3, where
¥, = diag(oyy, . .., 0k) is kX k diagonal matrix of time-varying variances for idiosyncratic

shocks, and A; is a k x k lower-triangular matrix of covariance components, defined by
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Define the k(k +1)s x 1 vector [3; by stacking the set of ¢; and By by rows and by order
j=1,...s, and the k x k(k + 1)s matrix X; = I, ® (1,y,_4, ..., y;_,), where ® denotes

the Kronecker product. Then the model can be written as
y = XiB+ A 'S, e~ N(0T).

Let a; be the vector (¢ x 1, with ¢ = k(k —1)/2) of the strictly lower-triangular elements
of A; (stacked by rows), and define hy = (hyy, . .., hy)', with hy = logo?, fori =1,... k.

The dynamics of the parameters (3;, a;, hy) is specified as

5 5+ £ I O O O

t+1 = Pt T Ugt,

o ugy ~ ~lo O Vg O O

ht+1 ht ) at Uyt ) O O ‘/(_1 O )
= u y

t+1 t ht Ung O O O Vh



for t = s+ 1,...,n, where Bs11 ~ N(pgo, Vso), asi1 ~ N(ftao, Vao), and hgyq ~
N(ptno, Vao), with each of the matrices (V,, Vi, Vo, Vao, Vio) diagonal.

As discussed by Primiceri (2005) and Nakajima (2011a), we remark two important
aspects on modeling the TVP-VAR models. First, the assumption of a lower-triangular
matrix for A; is recursive identification for the VAR system. This specification is simple
and widely used for both time-invariant and time-varying VAR models, although an
estimation of structural models may require a more complicated identification to extract
adequate implications for the economic structure, as pointed out by Christiano et al.
(1999) and other studies. To focus on this issue, this current paper explores the ordering
of the variables in y; using the RJIMCMC algorithm described below.

Second, the parameters are assumed to follow a random walk process which is non-
stationary in theory. Because the TVP-VAR model has a number of parameters to
estimate, we often employ the random walk assumption, which effectively decreases the
number of parameters. Most of studies commonly assume the random walk process in
the TVP-VAR models. The non-stationarity assumption of the time-varying parameters
would be sometimes not adequate in deducing economic structural models, but as far as
we fit the model for the finite sample periods, this assumption is acceptable and rather
advantageous because it can capture permanent shifts of the parameter which would be

plausibly observed in real data.

2.2 MCMC algorithm

We take a Bayesian inference to estimate the TVP-VAR models via the MCMC methods.
The goal of the MCMC methods is to assess the joint posterior distribution of the
parameters of interest under certain prior probability densities that the researchers set in
advance. Given data, we repeatedly sample a Markov chain whose invariant (stationary)
distribution is the posterior distribution (see e.g., Chib (2001), Koop (2003), Geweke
(2005) and Gamerman and Lopes (2006)).

Define 6 = (B,a,h,V) with 5 = {Bi}i_, 11, a = {a}ii,, b = {h}ii,,, and
V = (Vs, Vo, V). We assume the following priors: Vi ~ IW (vg0, Wo), vZ ~ IG (40, Sao),
and vZ, ~ IG(vpo, Sho), where v2; and v, are the diagonal elements in V, and V},, respec-

tively, ITW denotes the inverse Wishart distribution and /G denotes the inverse gamma



distribution. Given observation y = {yi,...,yn}, the full joint posterior distribution
7(0ly) is explored using MCMC technique. We briefly describe the MCMC algorithm
as follows (see the detail in Primiceri (2005) and Nakajima (2011a)).

1. Generate 5 ~ m(f|a, h, Vs,y), based on the state space model,

Yy = Xt5t+At_12t€t, (1)
Biy1 = B+ ug. (2)

The state variable 3 is generated using the simulation smoother (e.g. de Jong and
Shephard (1995), Durbin and Koopman (2002)).

2. Generate a ~ m(a|8,h,V,,y), based on the state space model,?

U = Xtat+2t5ta (3)

Qi1 = Qg + Ugg- (4)

The state variable a is generated using the simulation smoother as in Step 1.

3. Generate h; ~ m(h;|5,a,V,,y) for i =1,... k, based on the univariate stochastic

volatility model,

Wi = eXP(hz‘t/Q)Qt, (5)
higr1 = hi + Unis, (6)

where w;; is the i-th element of w; = A;y,. The log-volatility A is generated using

the multi-move sampler for the stochastic volatility models (Shephard and Pitt

*Define Ut = ey -+ Uke)' = ye — XiBe, and

0 0
— U1t 0 0
B 0 U1t —Yau 0
Xe=1 "9 0 0 -p
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0 - 0~ - —Gere



(1997), Watanabe and Omori (2004)).

4. Generate V ~ 7(V|f3, a, h), based on the conjugate conditional posterior distribu-
tions w(V3|5), m(Vala), and 7(Vy,|h).

3 RJMCMC algorithm for TVP-VAR models

3.1 Concept

In a Bayesian inference, a posterior probability of the model m is given by

r(mly) = f@ (y|m, 0,) 7 (0| M) db,,
ZmIEMW ) Jo, F WM, 0 ) (O |m2) Ay

(7)

where f(y|m,0,,) is the likelihood given data y under the model m, m(m) is the prior
probability for the model m, and w(6,,|m) is the prior distribution of #,, under the
model m. The evaluation of the integrals in (7) is often a challenging problem. Green
(1995) proposes the RIMCMC algorithm to generate sample from the joint posterior
distribution 7(m, 0,,|y) by exploiting the MH algorithm, which produces the estimates
of m(m|y). The RIMCMC algorithm searches model space and parameter space jointly
based on the Markov chain whose kernel satisfies the detailed balance condition to ensure
the convergence to the limiting distribution m(m, 6,,|y).

Given the current point (m,#,,) of the RIMCMC, suppose that we propose a move
to the model m* with probability j(m, m*). Suppose that the models m and m* have the
unknown parameters 6, and . with the dimensions d(f,,) and d(%,.), respectively.

As an auxiliary variable to bridge between the parameter spaces of #,, and 0% ., we

m*»

generate u from some proposal distribution ¢(u|f,,, m, m*). Then, we set (0. ,u*) =

Gm.m* (Om, w), where g, .~ is an invertible function such that g« ., = g;:m*, which follows
d(0,) +d(u) = d(6;,.) +d(u*). Finally, we accept the move of (m, 6,,,) — (m*, 6%,.) with

the MH acceptance probability a(m, m*) = min{1, R}, where

fQylm?®, 05, )m (07, [ )7 (m*) j (m”*, m)q(u*]6,-)
S (ylm, Om)m (O ) (m) j (m, m*) g (u|0rm)

where J = 0(0%,.,u*)/0(0y,, u) is the Jacobian of the transformation.

R= 7], (8)




The key issue to implement the RJIMCMC algorithm is the choice of the function
g for the proposal of the next point of the unknown parameters. Primiceri (2005)
(and other authors, e.g., Vrontos et al. (2000), Kasuya and Takagawa (2001) in dif-
ferent context) suggests that (0., u*) = (O, ), with d(6,,) = d(u*), d(6%,.) = d(u),

m*»

*
m*?

q(u|0,, m,m*) = q(u|m*), and q(u*|0},., m*,m) = q(u*|m). That is, the proposal distri-
bution does not depend on the current point. The independent proposal distributions
q(ulm*) and ¢(u*|m) are constructed using the sample obtained from a preliminary
MCMC run for each model in M. We generate the sample of 6,, via the MCMC for
its posterior distribution of every single model m € M, which requires considerable
computational burden when the number of competing model is large.

We instead propose an efficient algorithm of the RIMCMC for the TVP-VAR models.
We construct the proposal distribution using the current point. The candidate of the
parameters is generated from the conditional posterior distribution given the permuted
sample of the current point. It searches the model space by jointly generating the
posterior sample of the parameters including state variables with no requirement of

preliminary run for every single model. We describe the detail in the next subsection.

3.2 Proposed algorithm

We consider the RIMCMC algorithm to explore the ordering of the variables in the TVP-
VAR model.* Our strategy to construct the efficient RIMCMC algorithm is summarized

as follows.

1. Propose the new point (m*, 6% .).

(a) Propose the move m — m*, with probability j(m,m*).

(b) Propose (0,,,u) — (u*,0;.) with auxiliary variables u = (8*, a*, h*, V*) and

y VYm*

u* = (B,a,h,V). Note that |J| = 1. The proposal density is given by

q(/8*7 a’*7 h*7 V*|/87 h? V7 y)
= q(B"lao, b, V. §) x q(a’|B", h, Vi, §) x q(h'[ 8", 0", Vi, §) > (V8" a", 1Y),

“We fix the lag length. Huerta and West (1999), Prado and Huerta (2002) develop the methodology
for model order (i.e., the number of autoregressive lags) uncertainty for autoregressive models.



where ay denotes the set of zero elements whose size is equal to that of a,
and & denotes the permutation of = {y, h, V3, V},,} according to the order
change of m — m*. Note that the proposal density is not conditional on a.

Specifically, the candidate is generated by the following steps.

i. Generate 3* ~ q(3*|ay, h, f/ﬂ,gj), based on the state space model (1)-(2)
with a; = 0 (i.e., A, = A, ' =1TI), for all ¢.

ii. Generate a* ~ q(a*|5*, h,V,,7), based on the state space model (3)-(4),
where V, = 021 with o] = (v, + --- + v2,)/q, i.e., the average of the
variance in the current point of V.

iii. Generate h* ~ q(h*|5*, a*, Vi, 1), based on the stochastic volatility model
(5)-(6).

iv. Generate V* ~ q(V*|*,a*, h*) = n(V*|B*, a*, h*).

2. Accept the candidate with MH probability a(m, m*) = min{1, R}, where

R fy|m*, 6. )m (0%, Im*)q(u*|6%,.)
£ (ylm, O ) (O ) g (u]Orn)

We generate the next point of unknown parameters basically following the original
MCMC algorithm for the single TVP-VAR model as described in Section 2.2, by per-
muting the parameters including state variables based on the order change of m — m*.
Regarding time-varying parameters, a different ordering would involve a different dy-
namics, but we consider it is plausible that our proposal distribution is close to the
posterior distribution of the proposed model. The crucial point different between mod-
els m and m* is the time-varying parameter a for the simultaneous effects of structural
shocks. Because a different order involves a different structure of A; by construction, it
is not reliable to use the current point of ¢ in #. Therefore, we generate 5* conditional
on a; = 0 in Step 1.(b).i. Our experiments show successful implementation based on

this proposed algorithm, as shown using the real data in the next section.
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Figure 1: Japanese macroeconomic data (1981/1Q to 2008/3Q).

4 Empirical findings for Japanese economy and mon-

etary policy

4.1 Data and setup

In this section, we apply our proposed RJIMCMC algorithm for the TVP-VAR model to
the Japanese macroeconomic data. The dataset is quarterly and the sample period is
from 1981/1Q) to 2008/3Q. We consider a four-variable TVP-VAR model which includes:
inflation rate (p), industrial production (y), nominal short-term interest rate (r), and
monetary base (m), exhibited in Figure 1.° The VAR lag is set equal to two, which
yields the highest marginal likelihood for the same data in Nakajima et al. (2009).

>The inflation rate is taken from the CPI (consumer price index, general excluding fresh food, and
seasonally adjusted). For the CPI, the effects of the increase in the consumption tax are removed for
1989/2Q and 1997/2Q. Industrial production is seasonally adjusted. The nominal short-term interest
rate is the overnight call rate. The monetary base is the average outstanding, adjusted for the reserve
requirement ratio changes, and seasonally adjusted. For the sudden and temporal increases of the
monetary base around December 1999 and February 2002, a linear interpolation is used. Except for the
call rate, all the variables are transformed in logarithm, and multiplied by 100. In the estimation, we
take the first difference of all variables including the call rate.



We consider all the permutation of the four variables, i.e., |[M| = 4! = 24. The model
prior probability is assumed as w(m) = |[M|™"' for all m € M. In the RIMCMC, we
propose a move to the different model, m — m* (m # m*), with probability j(m, m*) =
(1—=S)(|M|—1)"!, and a stay at the same model with probability j(m,m) = S, where
0 < S < 1. From our experiments we suggest that S = 0.3 for an appropriate balance of
Markov chain mixing and acceptance rate of the MH algorithm in the RIMCMC, which
is taken throughout this paper.%

The following priors are assumed: Vg ~ IW(25,0.01), v ~ IG(4,0.02), and vi, ~
IG(4,0.02). For the initial state of the time-varying parameters, 541 ~ N(0,107),
asy+1 ~ N(0,107), and hsyq ~ N(0,507). We generate K = 100,000 sample after the
initial 10,000 sample are discarded.” This burn-in period is determined based on the

model trace and the convergence diagnostics for the common parameters.

4.2 Model uncertainty

Figure 2 exhibits the estimation results of the RIMCMC algorithm. Figure 2(i) plots
the trace plot of the model search, showing a better mixing of the chain and adequately
covering the model space. The MH acceptance probability is 29.7% for the move of
the model, which would be enough level of the acceptance for the satisfactory model
search. Figure 2(ii) plots the trajectory of the posterior model probability through the
RJMCMC run, which clearly shows the convergence of the RIMCMC algorithm. Figure
2(iii) displays the posterior model probability (the model index listed in Appendix A.1).
Table 1 reports the top three models selected from the RIMCMC algorithm. The result
indicates considerable model uncertainty for the ordering of the variables in the TVP-
VAR models, although it is evident that the similar models are selected in the top three
models.

For further analysis, we divide the data into two subsample periods: (i) 1981/1Q
to 1995/4Q), and (ii) 1996/1Q to 2008/3Q, based on the evidence of structural change

6Some authors (e.g., Vrontos et al. (2000), Kasuya and Takagawa (2001)) implement the RIMCMC
where the algorithm always proposes a different model from the current model (i.e., S = 0). In our
proposed algorithm, our experience shows that the mixing is better when we take the positive stay
probability (S > 0), which allows the procedure to update the parameters some time based on the
current single model.

"The computational results are generated using Ox version 5.0 (Doornik (2006)).
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Figure 2: Estimation results of the RIMCMC algorithm: (i) trace plot of model search
(top, left), (ii) on-line trajectory of the posterior model probability (top, right), and
(iii) histogram of posterior model probability (bottom). The model index is listed in
Appendix A.1.

in the Japanese macroeconomy and monetary policy suggested by existing literature
(e.g., Fujiwara (2006), Inoue and Okimoto (2008), Kimura et al. (2003), Nakajima et al.
(2009)). Obviously, the second subsample includes the periods of the zero interest rate
policy (February 1999 to August 2000) and the quantitative easing policy (March 2001
to March 2006). After the Bank of Japan lowered the official discount rate from 1.0%
to 0.5% in September 1995, the overnight call rate stayed in the very low level during
the second subsample period until the raising of the target overnight call rate to 0.25%
from the zero interest rate policy in July 2006.

We apply the RIMCMC algorithm to these two subsample periods, and the estimated
top three models are reported in Table 1.8 Evidently, the selected models differ between
the subsample periods, which indicates that the ordering of variables may change by the
introduction of the zero interest rate policy. The top three models in the first subsample

have inflation rate at the last of the ordering, which indicates the price level would be not

8Figure 6 in Appendix A.2 exhibits the histograms of the posterior model probability for these
subsample periods.

11



Full sample Sub samples
1981-2008 (1)1981-1995 (11)1996-2008
Rank | Order Prob. | Order Prob. | Order Prob.
1 (y,m,p,r) 0.054 | (y,r,m,p) 0.068 | (m,y,p,r) 0.071
2 (m,y,p,r) 0.053 | (r,y,m,p) 0.066 | (m,y,r,p) 0.048
3 (m,y,r,p) 0.050 | (y,m,r,p) 0.052 | (p,y,m,r) 0.046

Table 1: Posterior model probability: top 3 models.

so reactive in terms of simultaneous relation of structural shocks. The second subsample
clearly prefers the top model, considerably dominating other models, where the call rate
places at the last in the recursive identification, because the call rate does not play a

role as the monetary policy instrument in most of the second period.

4.3 Model comparison

We explore the model comparison between the model with the ordering uncertainty and
the top model selected by the RIMCMC estimation result. For this purpose, we estimate
the marginal likelihood based on the harmonic mean method (e.g., Geweke (1999)). The

simulation-based harmonic mean estimator, denoted by m(y), is computed by

1 1 & Vo)
NESSY g(V\)

my) K f@lVO,00)x (V)

J=1

where ¥ = (B,a,h), f(y|V®,90)) and 7(V)) denote the likelihood function and
prior density, respectively and K is the iteration size of the MCMC. If the fraction
g(V)/f(y|V,9)m (V) is bounded above, the approximation is simulation consistent and
the rate of convergence is likely to be practical.

The ¢g(V') can be any p.d.f. with support contained in the parameter space of the
model. Geweke (1999) recommends the choice of a certain g for the modified harmonic

mean estimator to guarantee the boundness of this fraction as follows. Consider the

12



Full sample Sub samples
1981-2008  (i)1981-1995 (ii)1996-2008
(a) Under the ordering uncertainty (RJMCMC)

TVP -434.62 -264.56 -385.99
(b) Top model

TVP -291.91 -256.89 -214.11

STVP1 -360.24 -261.49 -238.61

STVP2 -498.25 -264.44 -280.66

CP -044.54 -288.02 -256.81

Table 2: Estimated marginal likelihoods (ML) in logarithm scale. TVP refers to: time-
varying parameter model, STVP: semi time-varying parameter model (1: time-varying

hy, 2: time-varying f3; and a;), CP: constant parameter model. The top model is selected
in Table 1.

normal density with the tails truncated,

G — (@) — YT (D) — 5
g(VV)) T(27T)p/2|W|1/2 exp { (v o)W~ (v v)}

X I[(@0) =YW ) —6) < x2(p)],

where I[Q)] is an indicator function that takes the value of one if € is satisfied and zero
otherwise, p is the number of unknown parameters in V', v is the p x 1 stacked vector of
the parameters in V', and x2(p) denotes the 7 percentile of the Chi-square distribution
with p degrees of freedom. The idea is to cut off the tails so that samples that drop
in that potentially problematic regions are avoided for the computation of the marginal
likelihood. We set ¢ and W equal to the sample mean and covariance matrix computed
from the posterior draws {V@W}E | “and 7 = 0.99 in this paper.” Even under the ordering
uncertainty, we can compute the marginal likelihood using the harmonic mean method
through the RIMCMC algorithm.

Table 2 reports the estimated marginal likelihoods for the model under the ordering
uncertainty and the top model. It is evident that the marginal likelihood of the top

model is higher than the model under the ordering uncertainty for all three sample

9We experimented 7 = 0.95 and 0.90, but the difference of the estimated marginal likelihoods are
negligible, as mentioned by Schorfheide (2000). For more details, see Appendix B in the updated version
of Nakajima et al. (2009).
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periods, which implies that the ordering uncertainty does not contribute the model fit in
terms of the marginal likelihood for our data, presumably because the TVP-VAR model
had a considerable uncertainty for the ordering as shown in Section 4.2.

To confirm the superiority of the time-varying parameters for the top model, we also
compute the marginal likelihoods for the reduced models of TVP-VAR model. We con-
sider semi time-varying parameter (STVP) models that partially allow the parameters
time-varying in two ways. The STVP1 model includes the time-varying h;, but 3, and
a; are constant over time. In contrast, the STVP2 model includes the time-varying 3,
and a;, but h; is constant. A constant parameter (CP) model is defined as the standard
VAR model where all the parameters are constant over time.

Table 2 reports the marginal likelihood for these models. The TVP-VAR model
obviously dominates the other reduced models for all three sample periods, which implies
that the Japanese macroeconomic variables yield significant changes in relations for the
recent three decades. It is interesting that the STVP1 model performs better than the
STVP2 model, which indicates that the changes in volatility for structural shocks are
relevant, compared to the changes in the VAR coefficients and simultaneous effects of
structural shocks. In particular, the marginal likelihood of the STVP2 model is lower
than that of the CP model for the second subsample. We focus on the macroeconomic

dynamics of the Japanese economic variables in the next subsection.

4.4 Estimation results for macroeconomic dynamics

One of the advantages using the RJIMCMC algorithm is that one can obtain the param-
eter estimates under model uncertainty as known as model averaging. Figure 3 plots the
estimated posterior means of stochastic volatility o;; = exp(h;/2) under model uncer-
tainty based on the sample from the RJIMCMC run and under the selected top model
(y,m,p,r). Clearly, the levels of the volatility are almost same between two methods,
although the uncertainty of the estimates is larger in the RIMCMC algorithm than that
from the top model due to the model uncertainty.

Figure 4 plots the time-varying impulse response of the top model (y,m,r,p),!* and

OFollowing Nakajima (2011a), the impulse response is computed by fixing an initial shock size equal
to the time-series average of stochastic volatility over the sample period, and using the simultaneous
relations at each point in time. To compute the recursive innovation of the variable, the estimated time-
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(a) RIMCMC (b) Top model

50
251

1985 1990 1995 2000 2005 1985 1990

Figure 3: Estimated stochastic volatility o;; = exp(h;/2) for idiosyncratic shocks (a)
under model uncertainty using the RIMCMC algorithm (left) and (b) under the top
model (right). Posterior means (solid) and one-standard-deviation bands (dotted).

Figure 5 illustrates the impulse response in selected time points; 1988/2Q, 1995/4Q
and 2005/4Q. The responses indicate considerable changes in macroeconomic behavior
related to the monetary policy in these three decades, as discussed by Nakajima et al.
(2009). The responses of call rate to the shocks of other variables are diminishing
towards zero during the zero interest rate periods. In Figure 5, it is remarkable that
the response of industrial production to monetary base shock (g, — y) is considerably

small in 2005/4(Q when the quantitative easing policy was implemented.

varying coeflicients are used from the current date to future periods. Around the end of the sample
period, the coefficients are set constant in future periods for convenience.
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Figure 4: Time-varying impulse response from the TVP-VAR model of the top ordering
(y,m, p,r) for one-year (solid), two-year (dashed) and three-year (dotted) horizons.
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5 Concluding remarks

This paper proposes the efficient RIMCMC algorithm for the TVP-VAR model to ex-
plore the ordering of the variables and provides empirical evidence of the Japanese
macroeconomy and monetary policy. The empirical result reveals the time-varying struc-
ture of the Japanese economy and monetary policy during the period from 1981 to 2008
and reveals that the order of variables may change by the introduction of zero interest
rate policy.

For identification issues in the TVP-VAR models, Benati and Surico (2008), Baumeis-
ter and Benati (2010) and Franta (2011) develop the sign restriction approach. From
another perspective, Nakajima (2011b) proposes an explicit zero lower bound of the
short-term interest rate in the TVP-VAR models, and Nakajima and West (2010) pro-
vide the latent threshold technique to induce an implicit zero interest rate constraint.
Including these models, there remain further analyses of model search using the RJM-

CMC algorithm for future research.
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Appendix

A.1. Model index for the Japanese macroeconomic data

No. Order
1 (p,y,r,m)
2 (p,y,m,7)
3 (p,ry,m)
4 (p,r,m,y)
5  (p,m,y,r)
6 (p,m,7,y)
7 (y,p,r,m)
8 (y,p,m,r)
9  (y,r,p,m)
10 (y,r,m,p)
11 (y,m,p,r)
12 (y,m,r,p)
13 (r,p,y,m)
14 (r,p,m,y)
15 (r,y,p,m)
16 (r,y,m,p)
17 (r,m,p,y)
18  (r,m,y,p)
19 (m,p,y,r)
20 (m,p,7,y)
21 (m,y,p,7)
22 (m,y,r,p)
23 (m,r,p,y)
24 (m,r,y,p)

Table 3: Model index for the ordering of the Japanese macroeconomic data (p: inflation
rate, y: industrial production, r: call rate, m: monetary base).
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A.2. Posterior model probability for the subsample periods

(i) First subsample

0.06

0.04

0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.08- (ii) Second subsample

0.06
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0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 6: Histograms of posterior model probability for the first (top) and second (bot-
tom) subsample periods. The model index is listed in Appendix A.1.
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