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Abstract

We deal with nonparametric estimation in a nonlinear cointegration model
whose regressor and error term can be contemporaneously correlated. The
asymptotic properties of the Nadaraya-Watson estimator are already exam-
ined in the literature. In this paper, we consider nonparametric least abso-
lute deviation (LAD) regression and derive the asymptotic distributions of
the local constant and local linear estimators by appealing to the local time
approach. We also present the results of a small simulation study.

Keywords: Nonlinear cointegration, Integrated process, Local time, Least
absolute deviation, Local polynomial regression, Bias
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1. Introduction

There have been a lot of papers applying nonparametric regression tech-
niques to time series data. Nonparametric regression techniques are flexible
and robust to model misspecifications. The techniques are also useful for
specification testing of parametric models. See Fan and Yao [6], Gao [7],
and Li and Racine [17] and the references therein for recent developments of
nonparametric estimation for stationary time series data.

Recently, Karlsen and Tjøstheim [13], Karlsen et al. [14], and Wang
and Phillips [21]-[23] have successfully applied nonparametric regression es-
timation to nonlinear cointegration models and investigated the asymptotic
properties of the estimators. Since Granger [9] and Engle and Granger [5],
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cointegartion models have been one of most popular models for nonstation-
ary time series data. However, most researches were limited to linear models
until [13], [14], and [21]-[23]. [13], [14], and [20] are based on the theory of
null recurrent Markov chains and [21]-[23] exploited the theory of local time
of nonstationary processes. See [1], [3], [8], [24] for specification testing and
semiparametric models of nonstationary time series.

Chen et al. [4] considered robust nonparametric regression in the setup
of [21] and derived the asymptotic distribution of the estimator. In [4], the
regressor and the error term are assumed to be mutually independent as
in Theorem 3.1 of [21]. Their robust nonparametric regression estimators
include nonparametric quantile regression estimators. However, Theorem
1 below contradicts with their Theorem 3.2. The details are given after
Theorem 1 below and in Remark 2 in section 4. Lin et al. [18] deals with
robust nonparametric regression by using the null recurrent Markov chain
approach and we cannot apply their approach to the setup of this paper
because {Xi} is not a Markov chain and Xi and ui are correlated in this
paper.

In this paper, we consider least absolute deviation (LAD) regression in
the setup of [22] where the regressor and dependent variable can be contem-
poraneously correlated. We examine the asymptotic properties of the local
constant estimator (LCE) and local linear estimator (LLE). The proof of our
main result crucially depends on the results in [21] and [22]. Our results
can be easily extended to general q-th quantile regression and we also give a
comment on how to deal with nonparametric robust estimators in Remark 4
in section 4. We also carried out a small simulation study. In the simulation
study, we compared the nonparametric LAD estimator and the nonparamet-
ric least squares estimator and investigated the effects of bandwidths.

Our nonlinear coinegartion model is given by

Yi = g(Xi) + vi, i = 1, . . . , n, (1)

where vi = v(Xi, ui), {Xi} is a near-integrated or integrated process, {ui} is
a stationary process. We estimate g(x0) for a fixed x0 under Assumptions G
and V below.
Assumption G: g(x) is twice continuously differentiable in a neighborhood
of x0.

We present the assumption on v(Xi, ui) here. We specify {Xi} and {ui}
and the other assumptions are given later in section 2.
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Assumption V: v(x, u) is monotone increasing in u for any x and v(x,mu) =
0 for any x, where mu is the median of ui. In addition, v(x, u) is continuously
differentiable in a neighborhood of (x0,mu) and ∂v

∂u
(x0,mu) ̸= 0. When we

deal with the local constant estimator (LCE), v(x, u) is twice continuously
differentiable in a neighborhood of (x0,mu).

Notice that sign(vi) = sign(ui − mu) under Assumption V and an ex-
ample of v(x, u) is σ(x)(u − mu). Hence we have E{sign(vi)} = 0, where
sign(v) = −1, v < 0, = 1, v ≥ 0, and we estimate g(x0) by using nonpara-
metric LAD regression. In [22], the error term in (1) is ui with E{ui} = 0
and g(x0) is estimated by nonparametric mean regression estimators such as
the Nadaraya-Watson estimator. In [22] and this paper, contemporaneous
correlation between the regressor and the error term is allowed.

There has been a lot of interest in quantile regression since Koenker and
Basset [16]. It is because quantile regression is robust to outliers and of-
fers more information on data than mean regression. See Koenker [15] for
more details on quantile regression. There are a lot of papers which deal
with nonparametric quantile regression for time series data, to name only a
few, Honda [11], [12], Cai [2], Hall et al. [10]. Xiao [26] considers quantile
regression in linear and time-varying cointegration models.

The rest of this paper is organized as follows. We state assumptions,
define the nonparametric estimators, and present the main result Theorem
1 in section 2. We rather focus on the local linear estimator (LLE) in this
paper. We present the results of a simulation study in section 3. The proof
of Theorem 1 and the propositions for the proof are given in section 4. The
proofs of the propositions are relegated to section 5.

We denote convergence in distribution and in probability by
d→ and

p→,
respectively and C is a generic positive constant whose value varies from place
to place. When X has a normal distribution with mean µ and covariance
matrix Σ, we write X ∼ N(µ,Σ). For a vector v, vT is the transpose of v.
We write [a] for the largest integer less than or equal to a. We introduce
two i.i.d. processes {ϵi| − ∞ < i < ∞} and {λi| − ∞ < i < ∞} later
in section 2. For notational simplicity, we write {ϵi} and {λi} for them,
respectively. In addition we omit almost surely or a.s. when we consider
conditional expectations or it is clear from the context. This is also for
notational simplicity.
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2. Estimators and asymptotic distributions

First we follow [22] to define {Xi} and describe the limiting process
Jκ(t), 0 ≤ t ≤ 1, of X[nt]/

√
n, 0 ≤ t ≤ 1. Next we specify {ui} as in [22].

We borrow a lot of notation from [22] in the definitions and specifications.
Then we define the LCE and LLE and present the asymptotic distributions
in Theorem 1, whose proof crucially depends on the results in [21] and [22]
and is postponed to section 4.

We specify {Xi} in Assumption X below and the assumption is Assump-
tion 1 of [22]
Assumption X: WithX0 = 0 and ρ = 1+κ/n for some constant κ, we define
Xi by Xi = ρXi−1 + ξi. {ξi} is a linear process given by ξi =

∑∞
k=0 ϕkϵi−k,

where
∑∞

k=0 |ϕk| < ∞, 0 <
∑∞

k=0 ϕk = ϕ, and {ϵi} is an i.i.d. process.
Besides, E{ϵi} = 0, Var{ϵi} = 1, and the characteristic function of ϵi is
integrable.

Suppose that Assumption X holds throughout this paper. ThenX[nt]/
√
n, 0 ≤

t ≤ 1, converges in distribution to

Jκ(t) = ϕ(W (t) + κ

∫ t

0

e(t−s)κW (s)ds), 0 ≤ t ≤ 1, (2)

in the Skorokhod topology on D[0, 1], where W (s), 0 ≤ s ≤ 1, is a standard
Brownian motion. See Proposition 7.1 of [22] for the proof. The local time
process L(s, a) of Jκ(t), 0 ≤ t ≤ 1 is defined as in (3.10) of [22]. Note that
Jκ(t) in (2) is Jκ(t) in (3.9) of [22] multiplied by ϕ.

Next we define {ui} in Assumption U1 below, which is essentially As-
sumption 2 of [22]. In the setup, Xi and ui can be correlated.
Assumption U1: Letting {λi} be another i.i.d. process independent of {ϵi},
we have ui = u(ϵi, . . . , ϵi−m0 , λi, . . . , λi−m0), where m0 is a positive integer.

We do not need any assumptions on moments of ui. Instead we have
to impose another assumption on the conditional density of ui to deal with
nonparametric LAD regression. We write E and E i

i−m0
for the σ-field gen-

erated by {ϵi} and {ϵi, . . . , ϵi−m0}, respectively. If ui has the conditional
density given E , then we can denote it by fui

(u|E i
i−m0

) due to Assumption
U1. Recall that we denote the unconditional median of ui by mu.
Assumption U2: There is a fixed and nonstochastic neighborhood of mu.
In the neighborhood, the conditional distribution of ui given E has the den-
sity function. Besides fui

(u|E i
i−m0

) is uniformly bounded in (ϵi, . . . , ϵi−m0)
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and continuously differentiable and the derivative f ′
ui
(u|E i

i−m0
) is uniformly

bounded in the neighborhood. We also have fu(mu) > 0, where fu(u) is the
density function of ui.

We assume that Assumptions U1 and U2 hold throughout this paper.
Denoting the conditional density of vi given E by fvi(v|E), we have a repre-
sentation of fvi(0|E) in (3).

fvi(0|E) = fui
(mu|E i

i−m0
)
(∂v
∂u

(Xi,mu)
)−1

. (3)

Here we introduce another notation fv(v|x) for the density function of
v(x, ui) with x fixed. Since Xi and ui are not independent, the density
function is not the conditional density function of v(Xi, ui) given Xi = x.
We slightly abuse the standard notation for conditional density functions
since it plays almost the same role as the conditional density function in the
cases of stationary processes. As for the density function of v(x, ui) fv(v|x),
we have

fv(0|x0) = fu(mu)
(∂v
∂u

(x0,mu)
)−1

. (4)

We state assumptions on the kernel function K(s) and the bandwidth
h. We define the Fourier transform of f(x) by f̂(t) = (2π)−1/2

∫
eitxf(x)dx,

where f(x) is an integrable function and i is the imaginary unit.
Assumption K: K(s) is a nonnegative bounded continuous function with
compact support and K̂(t) is integrable. In addition, the Fourier transforms
of sK(s), s2K(s), and s3K(s) are also integrable.

Assumption K above is Assumption 3 of [22] plus the last line of Assump-
tion K. Assumption 3 is not restrictive as asserted in [22] and the last line of
Assumption K is not restrictive, either because

dj

dtj
K̂(t) =

ij√
2π

∫
eitssjK(s)dx.

We introduce some notation related to the kernel function here.

Ki = K((Xi − x0)/h) and ηi = (1, (Xi − x0)/h)
T (5)

κj =

∫
sjK(s)ds and νj =

∫
sjK2(s)ds (6)

Assumption H: nh2 → ∞ and nh10 = O(1).
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Assumption H is a very mild condition. It is easy to see from Theorem
1 below that the asymptotically optimal bandwidth has the form of h =
C0n

−1/10, where C0 depends on the definition of the optimality and maybe a
random variable.

We define the LLE β̂ = (β̂1, β̂2)
T of (g(x0), hg

′(x0))
T by

β̂ = argmin
β∈R2

n∑
i=1

Ki|Yi − ηTi β|. (7)

The convergence rate of β̂ is (nh2)−1/4 and we set

τn = (nh2)1/4.

We use both τn and (nh2)1/4 in this paper. By normalizing β̂ as

θ̂ = τn(β̂1 − g(x0), β̂2 − hg′(x0))
T ,

we have from (7)

θ̂ = argmin
θ∈R2

n∑
i=1

Ki(|v∗i − τ−1
n ηTi θ| − |v∗i |), (8)

where

v∗i = vi +
1

2

(Xi − x0

h

)2

h2g′′(X̄i) (9)

and X̄i is defined in the second order Taylor expansion of g(x) at x0. For the
LCE, we can define θ̂ in (8) by removing ηi and replacing v∗i with v∗∗i below.

v∗∗i = vi + (Xi − x0)g
′(x0) +

1

2

(Xi − x0

h

)2

h2g′′(X̄i) (10)

Here we state Theorem 1, which is the main result of this paper and will
be proved in section 4. The theorem says we can estimate g(x0) without any
instrumental variables as in [22]. We also give a remark on the extension to
nonparametric robust regression at the end of section 4.

Theorem 1. Suppose that Assumptions V, X, U1, U2, K, and H hold. Then
we have for the LLE,

θ̂ −B1n
d→ 1

2
(fv(0|x0)L

1/2(1, 0))−1

(
κ0 κ1

κ1 κ2

)−1 (
Z1

Z2

)
,
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where

B1n = (nh2)1/4
h2

2

{(
κ0 κ1

κ1 κ2

)−1 (
κ2

κ3

)
g′′(x0) +Op

( 1

(nh6)1/4

)}
,(

Z1

Z2

)
∼ N

((
0
0

)
,

(
ν0 ν1
ν1 ν2

))
,

Note that (Z1, Z2)
T above is independent of L(1, 0).

For the LCE, we also assume that κ1 = 0. Then we have

θ̂ −B2n
d→ 1

2
(fv(0|x0)L

1/2(1, 0))−1κ−1
0 Z1,

where Z1 is defined above,

B2n = (nh2)1/4
h2

2

κ2

κ0

{
(fv(0|x0))

−1

×
(
g′′(x0)fv(0|x0) + 2g′(x0)

∂fv
∂x

(0|x0)− (g′(x0))
2∂fv
∂v

(0|x0)
)

+Op

( 1

(nh8)1/4

)}
,

∂fv
∂v

(0|x0) =
(∂v
∂u

(x0,mu)
)−2{

f ′
u(mu) + fu(mu)

∂

∂u

(∂v
∂u

(x0,mu)
)−1}

.

Note that Op(1/(nh
6)1/4) and Op(1/(nh

8)1/4) may affect the forms of
the bias terms. However, they do not affect the asymptotic distributions
since (nh2)1/4h2/(nh6)1/4 → 0 and (nh2)1/4h2/(nh8)1/4 → 0. The bias terms
B1n and B2n are negligible when nh10 = o(1). When C1 < nh10 < C2 for
some positive constants C1 and C2, Op(1/(nh

6)1/4) and Op(1/(nh
8)1/4) are

negligible.
We give an expression of the objective function and decompose the esti-

mator to the stochastic part and the bias part in the proof of Theorem 1.
We deal with the stochastic part by using the results in [22] and Theorem 1
allows for some endogeneity. The bias part is considered in Propositions 3
and 5.

The asymptotic distribution of the LLE will be the same as that of the
Nadaraya-Watson estimator in (3.12) of [22] if (2fv(0|x0))

−1 is replaced with
σu. (3.12) of [22] is derived under some restrictive assumptions. However,
some of them does not seem to be used in the proof. The relaxation of the
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restrictive assumptions may be a topic of future research. On the other hand,
the limiting distribution is c(L(1, 0))1/2ξ, where ξ is the standard normal
variable independent of L(1, 0) and c is some constant, in Theorem 3.2 of
[4]. They considered the LCE in the case of undersmoothing. The difference
comes from the difference between Proposition 2 and Lemma A.1 of [4]. See
Remark 2 in section 4 for the difference.

The bias term of the LCE is much more complicated than that of the LLE
and that of the Nadaraya-Watson estimator in [22] and [23]. The complicated
form is due to Proposition 5. The LCE also requires more technical assump-
tions. Thus we should use the LLE for nonparametric quantile regression
with integrated covariates.

Theorem 1 implies that the asymptotically optimal bandwidth may de-
pend on g′′(x0), L(1, 0), and fv(0|x0) and that larger bandwidths will be
preferable. It might be difficult to estimate fv(0|x0) from regression residu-
als. We will need another paper to establish the consistency even if we esti-
mate it by standard kernel conditional density estimators. A cross-validation
method as in [4] may be a promising candidate for bandwidth selection.

3. Simulation study

We carried out a small simulation study by using R to compare LAD and
least squares (LS) estimators and examine the effects of bandwidths. The
results are given in Tables 1-6. In the simulation study, we partly followed
section 4 of [22] and set

Yi = Xi +X2
i + vi and Xi = Xi−1 + ϵi,

where ϵi ∼ N(0, 1) and X0 = 0, and

vi = 0.8(λi + 0.4ϵi)/
√
1 + (0.4)2,

where λi ∼ N(0, 1), t(3)/
√
3, and t(2)/

√
3 in Tables 1-2, 3-4, and 5-6, respec-

tively. Note that t(j) means a t-distribution with d.f. j.
We estimated g(x) by the local linear LAD estimator and the local linear

LS estimator and denote the estimate by ĝ(x). The results for the LAD
estimator and for the LS estimator are presented in Tables 1, 3, and 5 and in
Tables 2, 4, and 6, respectively. The Epanechnikov kernel was used and we
employed the quantreg package for LAD regression. See [15] for the details
of the quantreg package.
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We took x = 0, 5, 10 and h = n−1/γ, γ = 4, . . . , 10 in the simulation
study. The sample size was 1600 and the entries in the tables were based on
10000 replications. In the tables, Bias and MSE stand for the simulated bias
and the simulated mean squared error of the estimators, respectively and
SE1 means the standard error of the the simulated MSE. We also computed
the approximate integrated squared error

1

L+ 1

L∑
l=0

(ĝ(x+ δl)− g(x+ δL))2 (11)

with L = 10 and δ = 0.1. We denote the simulated MISE by MISE and SE2
means the standard error of the simulated MISE.

We have to be very careful in the simulation study of nonparametric
regression for nonstationary time series since there are no or only a few
observations to estimate g(x) in some replications.

We used the LCE or the Nadaraya-Watson estimator to compute the
estimates for numerical stability when we had only two observations on (x−
h, x + h). We employed the weightedMedian function in the aroma.light
package of R for the LCE. The entries in the N2 rows are the numbers of
the replications in which there are less than 3 observations on (x− h, x+ h).
The entries in the N1 rows are the numbers of the replications in which there
is no or only one observation on (x − h, x + h). Note that we excluded the
replications with no or only one observation from the computation of the
MSE. When we have no observation around x, we cannot compute ĝ(x). In
addition, the simulation results were very badly affected by replications with
only one observation. The numbers in the N1 rows are included in the ones
in the N2 rows.

When we computed the values in the MISE rows, we used only replications
which had at least three observations at each grid of (11). The numbers in
the NU rows are the numbers of replications not used for computation of
MISE’s.

Tables 1-6 are around here.

Tables 1-6 give us the following implications.
1. When we look at MISE’s, the LS estimator performs better when vi has
finite variance. On the other hand, the LAD estimator performs better in
Tables 5 and 6, .
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2. Larger bandwidths tend to give smaller MISE’s. This means that the
effects of fewer observations for ĝ(x) are much more serious than the biases
caused by larger bandwidths.
3. MSE’s are larger than MISE’s. Some results omitted here imply that this
is partly due to replications with only two observations around x. Recall
that we used such replications only for MSE’s. We may need at least three
observations to estimate g(x). The values in the N2, N1, and NU rows and
the differences between MSE’s and MISE’s imply that we will need a very
large sample size to carry out nonparametric regression for nonstationary
time series.
4. Biases are small in spite of the endogeneity.

4. Proof of Theorem 1

We give Propositions 1-5 before we prove Theorem 1. The proofs of the
propositions are postponed to section 5.

Proposition 1 is essentially (3.8) combined with Proposition 7.2 of [22] and
the first two elements of the random vector in Proposition 1 are related to
the stochastic part of the nonparametric LAD regression estimators. Recall
that τn = (nh2)1/4.

Proposition 1. Suppose that Assumptions X, U1, U2, and K hold and that
nh2 → ∞ and h → 0. Then we have(
τ−1
n

n∑
i=1

Kisign(ui −mu), τ
−1
n

n∑
i=1

(Xi − x0

h

)
Kisign(ui −mu),

τ−2
n

n∑
i=1

Ki, τ
−2
n

n∑
i=1

Kifui
(mu|E i

i−m0
),

τ−2
n

n∑
i=1

(Xi − x0

h

)
Kifui

(mu|E i
i−m0

), τ−2
n

n∑
i=1

(Xi − x0

h

)2

Kifui
(mu|E i

i−m0
),

τ−2
n

n∑
i=1

(Xi − x0

h

)3

Kifui
(mu|E i

i−m0
)
)T

d→ (L1/2(1, 0)Z1, L
1/2(1, 0)Z2, κ0L(1, 0), κ0fu(mu)L(1, 0),

κ1fu(mu)L(1, 0), κ2fu(mu)L(1, 0), κ3fu(mu)L(1, 0))
T ,

where (Z1, Z2)
T is defined as in Theorem 1 and independent of L(1, 0).
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We need to apply the almost sure representation theorem in Remark 1 to
the result in Proposition 1 for technical reasons.

Remark 1. Let Ω be a σ-field generated by {ϵi} and {λi}. Addendum 1.10.5
of [25] implies that there exists a σ-field Ω̃ satisfies
1. Ω̃ virtually contains Ω,
2. (Z1, Z2)

T and L(1, 0) can be defined on Ω̃,
3. We can replace convergence in distribution with almost sure convergence
in Proposition 1.
Hence we will assume that the sequence of random vectors in Proposition 1
also converges almost surely in Proposition 4 below and the proof of Theorem
1.

Proposition 2 gives the expansion of the objective function for θ̂. Note
that θ is fixed in Proposition 2 and we consider the uniformity in θ in Proposi-
tion 4 by exploiting Proposition 2 and the convexity of the objective function.

Proposition 2. Suppose that Assumptions V, X, U1, U2, and K hold and
that nh2 → ∞ and h → 0. Then for any θ ∈ R2, we have

n∑
i=1

Ki(|v∗i − τ−1
n ηTi θ| − |v∗i |)

= −θT (τ−1
n

n∑
i=1

ηiKisign(v
∗
i ))

+θT
{
τ−2
n

n∑
i=1

ηiη
T
i Kifui

(mu|E i
i−m0

)
(∂v
∂u

(x0,mu)
)−1}

θ + op(1).

Remark 2. We compare Proposition 2 and Lemma A.1 of [4]. From Propo-
sition 1, we have

τ−2
n

n∑
i=1

ηiη
T
i Kifui

(mu|E i
i−m0

)
(∂v
∂u

(x0,mu)
)−1 d→

(
κ0 κ1

κ1 κ2

)
fv(0|x0)L(1, 0)

and L(1, 0) is a random variable. However, {nh(θ−θ0)
2λ1(z0)τϕ(0)ν1/(2dn)}

in Lemma A.1 of [4] is a sequence of constants converging to a constant.
Note that their θ − θ0 is not normalized and that they considered the LCE.
This means Proposition 2 contradict with Lemma A.1 of [4]. In the case
of stationary observations, we obtain the uniformity in θ from the pointwise
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convergence by employing the convexity lemma for random functions given in
[19] immediately. However, we cannot apply the convexity lemma in [19] as
it is because of the above convergence in distribution to a random variable.
Thus we need the almost sure representation in Remark 1 to obtain the
uniformity in θ in Proposition 4 below.

Proposition 3 is about the bias term of the LLE.

Proposition 3. Suppose that Assumptions V, X, U1, U2, K, and H hold.
Then we have

h−2τ−2
n

n∑
i=1

Kiηi(sign(v
∗
i )− sign(vi))

= τ−2
n g′′(x0)

n∑
i=1

(Xi − x0

h

)2

Kiηifui
(mu|E i

i−m0
)
(∂v
∂u

(x0,mu)
)−1

+Op

( 1

(nh6)1/4

)
+ op(1).

Proposition 4 is a version of the convexity lemma in Pollard [19] adapted
to the setup of this paper. In Proposition 4, we use the almost sure repre-
sentation of the convergence in distribution in Proposition 1. See Remark 2
above. Note that the convergence in probability in Proposition 4 is from the
almost sure representation and is correct.

Proposition 4. Suppose that Assumptions V, X, U1, U2, K, and H hold.
Then for any compact subset K of R2, we have

sup
θ∈K

∣∣∣ n∑
i=1

Ki(|v∗i − τ−1
n ηTi θ| − |v∗i |) + θT (τ−1

n

n∑
i=1

ηiKisign(v
∗
i ))− θTAθ

∣∣∣ p→ 0,

where

A = lim
n→∞

τ−2
n

n∑
i=1

Kiηiη
T
i fui

(mu|E i
i−m0

)
(∂v
∂u

(x0,mu)
)−1

a.s.

=

(
κ0 κ1

κ1 κ2

)
fv(0|x0)L(1, 0) a.s.

Proposition 5 is necessary to examine the bias term of the LCE. Recall
the definition of v∗∗i in (10).
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Proposition 5. Suppose that Assumptions V, X, U1, U2, K, and H hold.
Then we have

h−2τ−2
n

n∑
i=1

Ki(sign(v
∗∗
i )− sign(vi))

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Ki

[
g′′(x0)fui

(mu|E i
i−m0

)
(∂v
∂u

(x0,mu)
)−1

+2g′(x0)fui
(mu|E i

i−m0
)
∂

∂x

(∂v
∂u

(x0,mu)
)−1

−(g′(x0))
2
(∂v
∂u

(x0,mu)
)−2{

f ′
ui
(mu|E i

i−m0
)

+fui
(mu|E i

i−m0
)
∂

∂u

(∂v
∂u

(x0,mu)
)−1}]

+Op

( 1

(nh8)1/4

)
+ op(1).

Remark 3. It is easy to see that Proposition 2 holds for any θ ∈ R with
v∗i replaced by v∗∗i and without ηi. Proposition 4 is also true with the same
changes.

We prove Theorem 1 only for the LLE by exploiting Propositions 1-4.
We can deal with the LCE similarly by employing Proposition 5 instead of
Proposition 3.

Proof of Theorem 1. We consider all the random variables on Ω̃ given
in Remark 1. Taking a compact subset K of R2, we have from Propositions
1 and 4 that uniformly in θ on K,

n∑
i=1

Ki(|v∗i − τ−1
n ηTi θ| − |v∗i |) (12)

= −θT (τ−1
n

n∑
i=1

ηiKisign(v
∗
i )) + θT

(
κ0 κ1

κ1 κ2

)
θfv(0|x0)L(1, 0) + op(1).

We evaluate the first term of the RHS of (12) by combining Propositions
1 and 3 and get

τ−1
n

n∑
i=1

Kiηisign(v
∗
i ) (13)

= τ−1
n

n∑
i=1

Kiηisign(vi)

13



+
h2g′′(x0)

τn

n∑
i=1

(Xi − x0

h

)2

Kiηifui
(mu|E i

i−m0
)
(∂v
∂u

(x0,mu)
)−1

+Op

( τnh
2

(nh6)1/4

)
+ op(1)

=

(
Z1

Z2

)
L1/2(1, 0) + τnh

2g′′(x0)

(
κ2

κ3

)
fv(0|x0)L(1, 0)

+Op

( τnh
2

(nh6)1/4

)
+ op(1)

= Op(1).

Since L(1, 0) is a random variable, we have to modify the standard argument
about quantile regression.

We fix a small positive δ1 and take a sufficiently small δ2 s.t. P(δ2 <
L(1, 0) < 1/δ2) > 1 − δ1. Then setting Ω̃δ2 = {δ2 < L(1, 0) < 1/δ2}, we
temporarily consider the conditional probability given Ω̃δ2 .

Here we define ΘM for a positive M by {θ ∈ R2 | θT θ = M2}. Notice that
we have (12) uniformly on ΘM and inside ΘM . By (13), the second term of
the RHS of (12) is dominant on ΘM with conditional probability arbitrarily
close to 1 on Ω̃δ2 when we take a sufficiently large M . Hence the convexity
of the objective function imply that θ̂ must be inside ΘM with conditional
probability arbitrarily close to 1 on Ω̃δ2 .

As in [10] and [12], we can take any large M and minimize (12) inside
ΘM . Then from the uniformity of (12) and the second equation of (13), we
have that given Ω̃δ2 ,

θ̂ =
1

2
(fv(0|x0)L

1/2(1, 0))−1

(
κ0 κ1

κ1 κ2

)−1 (
Z1

Z2

)
(14)

+
τnh

2g′′(x0)

2

(
κ0 κ1

κ1 κ2

)−1 (
κ2

κ3

)
+Op

( τnh
2

(nh6)1/4

)
+ op(1).

Since we can choose an arbitrarily small positive δ1, we also have (14) on Ω̃.
Hence the proof of Theorem 1 is complete.

In Remark 4 below, we describe how to deal with a robust local linear
estimator defined by a convex loss function.

Remark 4. Suppose that we define the LLE by using a convex loss function
ρ(v) instead of |v|. We assume that ρ(0) = 0 and ρ(v) ≥ 0 and that ρ(v)

14



is differentiable except at the origin. In addition, we have E{ρ′(vi)} = 0.
Then we have to make some changes to Propositions 2 and 3. Let ξ and δ
be a generic random variable with density fξ(ξ) and a constant tending to 0,
respectively.

In Proposition 2, we deal with ρ(ξ − δ)− ρ(ξ) + δρ′(ξ) and we need (15)
and (16) below to establish the proposition.

E{|ρ(ξ − δ)− ρ(ξ) + δρ′(ξ)|2} = o(δ2) (15)

E{ρ(ξ − δ)− ρ(ξ) + δρ′(ξ)} = δ2s1(fξ) + o(δ2), (16)

where s1(fξ) is a functional of a density function and satisfies the regularity
conditions necessary in the proof of Proposition 2 given in section 5.

In Proposition 3, we consider ρ′(ξ + δ)− ρ′(ξ) and we need (17) and (18)
below to establish the proposition.

E{|ρ′(ξ + δ)− ρ′(ξ)|2} = O(δ) (17)

E{ρ′(ξ + δ)− ρ′(ξ)} = δs2(fξ) + o(δ), (18)

where s2(fξ) is a functional of a density function and satisfies the regularity
conditions necessary in the proof of Proposition 3 given in section 5.

When we have (15)-(18) for ρ(v), we can establish the same result as
in Theorem 1. However, fξ(ξ) is fvi(v|E) in the propositions and fvi(v|E)
depends on Xi and E i

i−m0
in a complicated way. Therefore we have to impose

much more restrictive assumptions on fvi(v|E) or fui
(u|E i

i−m0
) to obtain the

same results for a general ρ(v) than for a specific ρ(v) such as |v|. Thus we
decided to focus on LAD regression in this paper.

When ρ(v) = |v|q for some 1 < q < 2, it is easy to verify (15) and (17).
We also have

s1(fξ) =
1

2

∫
|ξ|qf ′′

ξ (ξ)dξ = −q

2

∫
|ξ|q−1f ′

ξ(ξ)dξ,

s2(fξ) = −q

∫
|ξ|q−1f ′

ξ(ξ)dξ

with some conditions on fξ(ξ). We will also need some assumptions on
fvi(v|E) or fui

(u|E i
i−m0

) to get the same results as in Propositions 2 and
3 and those assumptions will depend on q.

15



5. Proofs of propositions

In this section, we give the proofs of Propositions 1-5.

Proof of Proposition 1. First note the Fourier transforms of sjK(s),
j = 1, 2, 3, are integrable from Assumption K. Besides, fui

(mu|E i
i−m0

) satisfies
Assumption 2 of [22] and we obtain the same result as in Proposition 7.2 of
[22] for {(Xi − x0)/h}jKifui

(mu|E i
i−m0

), j = 0, 1, 2, 3.
Applying the arguments on pp.1922-1924 and Proposition 7.2 of [22] at

the same time to

τ−1
n

n∑
i=1

{
aKi + b

(Xi − x0

h

)
Ki

}
sign(ui −mu), (19)

where a and b are arbitrary constants, and τ−2
n

∑n
i=1Ki, τ−2

n

∑n
i=1{(Xi −

x0)/h}jKifui
(mu|E i

i−m0
), j = 0, 1, 2, 3, we have the same result as in Propo-

sition 1 with the first two elements of the both sides replaced with (19) and

(a2ν0 + 2abν1 + b2ν2)
1/2L1/2(1, 0)Z, (20)

respectively. Note that Z in (20) has the standard normal distribution and
is independent of L(1, 0). Since a and b are arbitrary constants, the desired
result follows from the Cramér-Wold device. Hence the proof of Proposition
1 is complete.

Proof of Proposition 2. Set

B2i(θ) = |v∗i − τ−1
n ηTi θ| − |v∗i |+ τ−1

n ηTi θsign(v
∗
i )

and notice
|B2i(θ)| ≤ Cτ−1

n |ηTi θ|I(|v∗i | ≤ Cτ−1
n |ηTi θ|). (21)

We also set
D2i(θ) = B2i(θ)− E{B2i(θ)|E}.

First we evaluate
∑n

i=1KiD2i(θ). From (21) and Assumption U2, we have

E{D2
2i(θ)|E} ≤ Cτ−2

n E{I(|v∗i | ≤ Cτ−1
n |ηTi θ|)|E} ≤ Cτ−3

n . (22)
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Assumption U1, (22), and (5.19) of [21] imply

E
[{ n∑

i=1

KiD2i(θ)
}2]

(23)

≤ E
[ n∑

i=1

K2
i E{D2

2i(θ)|E}
]
+ E

[ ∑
|i−i′|≤m0

KiKi′E{D2i(θ)D2i′(θ)|E}
]

≤ CE
{
τ−3
n

n∑
i=1

K2
i

}
= O(τ−1

n ).

Next we evaluate
∑n

i=1KiE{B2i(θ)|E}. From Assumption U2 and the
standard calculation, we obtain uniformly in i,

E{B2i(θ)|E} = τ−2
n (ηTi θ)

2fui
(mu|E i

i−m0
)
(∂v
∂u

(Xi,mu)
)−1

+ op(τ
−2
n ). (24)

The desired result follows from (23), (24), Assumption V, and Proposition
1. Hence the proof of Proposition 2 is complete.

Proof of Proposition 3. We can establish Proposition 3 almost in the
same way as Proposition 2. Set

B3i = sign(v∗i )− sign(vi) and D3i = B3i − E{B3i|E}.

Notice that
|sign(v∗i )− sign(vi)| ≤ CI(|vi| ≤ Ch2).

Hence we have
E{|D3i|2|E} ≤ Ch2.

The above inequality and the same argument for (23) yield

h−2τ−2
n

n∑
i=1

KiηiD3i = Op((nh
6)−1/4). (25)

By some calculation, we get uniformly in i,

h−2E{B3i|E} (26)

=
(Xi − x0

h

)2

g′′(X̄i)fui
(mu|E i

i−m0
)
(∂v
∂u

(Xi,mu)
)−1

+ op(1).

The desired result follows from (25), (26), the continuity of g′′(x) at x0,
Assumption V, and Proposition 1. Hence the proof of Proposition 3 is com-
plete.
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Proof of Proposition 4. We verify this proposition by modifying the
proof of the convex lemma in Pollard [19].

From Propositions 1 and 2, we have for any fixed θ ∈ K,∣∣∣ n∑
i=1

KiB2i(θ)− θTAθ
∣∣∣ p→ 0. (27)

As in the proof of Theorem 1, choose a small positive δ3 and take δ4 s.t.
P(δ4 < L(1, 0) < 1/δ4) > 1− δ3. Then we set Ω̃δ4 = {δ4 < L(1, 0) < 1/δ4}.

On Ω̃δ4 , we can take δ-cubes on p.197 of [19] for any small positive ϵ. Then
θTAθ varies by less than ϵ in each of the δ-cubes. Since we have δ-cubes, we
can proceed exactly in the same way as on pp.197-198 of [19]. Thus from
(27) and the convexity of

∑n
i=1KiB2i(θ) and θTAθ, we have that given Ω̃δ4 ,

sup
θ∈K

∣∣∣ n∑
i=1

KiB2i(θ)− θTAθ
∣∣∣ p→ 0. (28)

Since we can choose any small δ3, we have (28) on Ω̃. Hence the proof of
Proposition 4 is complete.

Proof of Proposition 5. Set

δ∗∗i = v∗∗i − vi = (Xi − x0)g
′(x0) +

1

2

(Xi − x0

h

)2

h2g′′(X̄i), (29)

B4i = sign(v∗∗i )− sign(vi), and D4i = B4i − E{B4i|E}.

Since
|B4i| ≤ CI(|vi| ≤ Ch),

we have
E{|D4i|2|E} ≤ Ch. (30)

From (30) and the same argument as in the proofs of Propositions 2 and 3,
we obtain

h−2τ−2
n

n∑
i=1

KiD4i = Op((nh
8)−1/4). (31)

Next we consider E{B4i|E}. By some calculation, we have uniformly in i,

h−2E{B4i|E} = 2h−2δ∗∗i fvi(0|E)− h−2(δ∗∗i )2f ′
vi
(0|E) + op(1) (32)
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We evaluate the first and second terms of the RHS of (32). By some calcu-
lation, we obtain

2h−2τ−2
n

n∑
i=1

Kiδ
∗∗
i fvi(0|E) (33)

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Kig
′′(x0)fui

(mu|E i
i−m0

)
(∂v
∂u

(x0,mu)
)−1

+2τ−2
n

n∑
i=1

(Xi − x0

h

)2

Kig
′(x0)fui

(mu|E i
i−m0

)
∂

∂x

(∂v
∂u

(x0,mu)
)−1

+op(1)

We used Theorem 2.1 of [23] to evaluate
∑n

i=1{(Xi − x0)/h}Ki here.
We give a representation of f ′

vi
(0|E) by Assumptions V and U2 and some

calculation before we evaluate the second term of (32).

f ′
vi
(0|E) (34)

=
(∂v
∂u

(Xi,mu)
)−2(

f ′
ui
(mu|E i

i−m0
) + fui

(mu|E i
i−m0

)
∂

∂u

(∂v
∂u

(Xi,mu)
)−1)

.

From (29), (34), and Assumption V, we have

h−2τ−2
n

n∑
i=1

Ki(δ
∗∗
i )2f ′

vi
(0|E) (35)

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Ki

(∂v
∂u

(x0,mu)
)−2{

f ′
ui
(mu|E i

i−m0
)

+fui
(mu|E i

i−m0
)
∂

∂u

(∂v
∂u

(x0,mu)
)−1}

+ op(1).

Proposition 5 follows from (31), (32), (33), (35), and Proposition 1. Hence
the proof of Proposition 5 is complete.
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Supplemetary material
Details of (22), (24), (26), (32), and (33) are given here. This is written

for reviewers. I will remove this and make this available on the internet when

the paper is formaly published.

(22), (24), (26):

We can establish (22), (24), and 26) by combining the standard arguments

in the literature of nonparametric quantile regerssion. First put

ai =
1

2

(Xi − x0

h

)2

h2g′′(X̄i) and bi = τ−1
n ηTi θ.

and notice that ai and bi tends to 0 uniformly in i since we can assume

|Xi − x0| ≤ Ch.

(22): v∗i is defined in (9) as v∗i = vi + ai. Then

|v∗i | ≤ C|bi| ⇒ −C|bi| − ai ≤ vi ≤ C|bi| − ai.

Recall that ai/τ
−1
n = O(1) uniformly in i from Assumption H. Hence we

obtain (22) from from Assumptions V and U2.

(24): When ai ≥ 0 and bi ≥ 0, B2i(θ) is not 0 only when −ai ≤ vi ≤ −ai+bi.

Then we have

B2i(θ) = −2(vi + ai − bi)

and

−2

∫ −ai+bi

−ai

(vi + ai − bi)fvi(vi|E)dvi = b2i fvi(0|E) + op(b
2
i )

uniformly in i from Assumption V and U2. We can deal with the other cases

in the same way.

(26): When ai > 0, we have

sign(v∗i )− sign(vi) = 2I(−ai < vi < 0)

and

2(Fvi(0|E)− Fvi(−ai|E)) = 2aifvi(0|E) + op(ai)
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uniformly in i from Assumptions V and U2. We can deal with the other case

in the same way.

(32), (33):

It is not easy to establish (32) and (33).

(32): Recall that

v∗∗i = vi + δ∗∗i and δ∗∗i = O(h).

When δ∗∗i > 0, we have

sign(v∗∗i )− sign(vi) = 2I(−δ∗∗i < vi < 0)

and

2h−2(Fvi(0|E)− Fvi(−δ∗∗i |E))

= 2h−2δ∗∗i fvi(0|E)− h−2(δ∗∗i )2f ′
vi
(0|E) +O(|f ′

vi
(0|E)− f ′

vi
(δ̄∗∗i |E)|),

where δ̄∗∗i is between 0 and δ∗∗i .

Assumption V and (34) imply that

|f ′
vi
(0|E)− f ′

vi
(δ̄∗∗i |E)|

≤ C( sup
|mu−m|≤Ch

|f ′
ui
(mu|E i

i−m0
)− f ′

ui
(m|E i

i−m0
)|+ o(1))

uniformly in i. Since

lim
h→0

E{ sup
|mu−m|≤Ch

|f ′
ui
(mu|E i

i−m0
)− f ′

ui
(m|E i

i−m0
)|} = 0,

we get from [22] (for example, see Proposition 1 of this paper) that

τ−2
n

n∑
i=1

Ki|f ′
vi
(0|E)− f ′

vi
(δ̄∗∗i |E)| = op(1).

(33): First write

fvi(0|E) = fui
(mu|E i

i−m0
)
(∂v
∂u

(Xi,mu)
)−1

= fui
(mu|E i

i−m0
)(w(x0) + (Xi − x0)w

′(x0) + o(|Xi − x0|)),
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where w(x) is clearly defined in the above equation. Using the above notaion,

we have

2h−2

τ 2n

n∑
i=1

Kiδ
∗∗
i fvi(0|E)

=
2h−2

τ 2n

n∑
i=1

Ki

{Xi − x0

h
hg′(x0) +

1

2

(Xi − x0

h

)2

h2g′′(X̄i)
}

×fui
(mu|E i

i−m0
)(w(x0) + (Xi − x0)w

′(x0) + o(|Xi − x0|))

= 2τ−2
n

n∑
i=1

Kifui
(mu|E i

i−m0
)
{(Xi − x0

h

)2

g′(x0)w
′(x0) (36)

+
1

2

(Xi − x0

h

)2

g′′(x0)w(x0) + o(h2)
}

+
2h−1

τ 2n

n∑
i=1

Ki
Xi − x0

h
fui

(mu|E i
i−m0

)g′(x0)w(x0) + op(1).

We can handle the first term of (36) by using Proposition 1.

Finally we consider the second term of (36). Write

h−1

τ 2n

n∑
i=1

Ki
Xi − x0

h
fui

(mu|E i
i−m0

)

=
τ−1
n

(nh6)1/4

n∑
i=1

Ki
Xi − x0

h
{(fui

(mu|E i
i−m0

)− fu(mu)) + fu(mu)}. (37)

We can use Theorem 2.1 of [23] to show τ−1
n

∑n
i=1{(Xi − x0)/h}Ki =

Op(1). We can deal with the first term inside the braces of (37) by using a

result similar to the second element of Proposition 1.
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Table1 LAD for N(0,1) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias 0.006 0.008 0.016 0.019 0.028 0.036 0.044

MSE 0.353 0.360 0.271 0.242 0.207 0.163 0.126

SE1 0.050 0.062 0.047 0.047 0.037 0.031 0.009

N2 1874 1294 1023 850 738 677 624

N1 1263 871 672 569 508 467 428

MISE 0.163 0.143 0.125 0.102 0.100 0.093 0.086

SE2 0.005 0.007 0.006 0.004 0.006 0.004 0.003

NU 3587 2415 1817 1519 1288 1154 1066

 

 

 

x=5 

Bias 0.026 0.023 0.025 0.033 0.036 0.042 0.052

MSE 0.415 0.368 0.264 0.258 0.229 0.230 0.222

SE1 0.063 0.080 0.024 0.022 0.016 0.017 0.016

N2 2663 2121 1852 1690 1577 1503 1458

N1 2075 1714 1512 1407 1337 1287 1241

MISE 0.173 0.157 0.122 0.104 0.209 0.097 0.087

SE2 0.006 0.009 0.004 0.003 0.082 0.005 0.003

NU 4329 3237 2687 2377 2185 2057 1972

 

 

 

x=10 

Bias 0.034 0.042 0.053 0.054 0.050 0.057 0.069

MSE 0.527 0.474 0.403 0.428 0.778 0.503 0.517

SE1 0.055 0.040 0.026 0.036 0.263 0.080 0.054

N2 3629 3109 2850 2674 2575 2517 2477

N1 3072 2707 2537 2416 2348 2302 2273

MISE 0.192 0.175 0.278 0.119 0.149 0.134 0.141

SE2 0.015 0.030 0.151 0.008 0.031 0.028 0.029

NU 5218 4194 3673 3374 3177 3038 2947

 



Table2 LS for N(0,1) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias 0.009 0.012 0.025 0.035 0.048 0.059 0.071

MSE 0.252 0.241 0.165 0.123 0.113 0.109 0.081

SE1 0.054 0.055 0.049 0.028 0.023 0.023 0.007

N2 1874 1294 1023 850 738 677 624

N1 1263 871 672 569 508 467 428

MISE 0.090 0.080 0.070 0.058 0.058 0.053 0.051

SE2 0.004 0.005 0.005 0.003 0.004 0.002 0.002

NU 3587 2415 1817 1519 1288 1154 1066

 

 

 

x=5 

Bias 0.025 0.032 0.038 0.051 0.058 0.071 0.081

MSE 0.276 0.187 0.195 0.194 0.172 0.168 0.179

SE1 0.033 0.017 0.018 0.015 0.013 0.013 0.014

N2 2663 2121 1852 1690 1577 1503 1458

N1 2075 1714 1512 1407 1337 1287 1241

MISE 0.095 0.081 0.067 0.059 0.058 0.056 0.055

SE2 0.004 0.004 0.003 0.002 0.002 0.002 0.002

NU 4329 3237 2687 2377 2185 2057 1972

 

 

 

x=10 

Bias 0.040 0.045 0.057 0.061 0.070 0.075 0.095

MSE 0.360 0.397 0.351 0.356 0.425 0.423 0.441

SE1 0.032 0.041 0.027 0.030 0.067 0.069 0.046

N2 3629 3109 2850 2674 2575 2517 2477

N1 3072 2707 2537 2416 2348 2302 2273

MISE 0.096 0.115 0.070 0.068 0.089 0.091 0.092

SE2 0.004 0.035 0.003 0.004 0.028 0.028 0.028

NU 5218 4194 3673 3374 3177 3038 2947

 



Table3 LAD for t(3) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias -0.009 0.006 0.022 0.027 0.035 0.047 0.047

MSE 0.800 0.276 0.261 0.188 0.163 0.271 0.150

SE1 0.463 0.080 0.089 0.071 0.069 0.112 0.069

N2 1796 1274 984 812 734 657 618

N1 1215 846 670 565 490 440 408

MISE 0.204 0.168 0.079 0.070 0.061 0.064 0.065

SE2 0.059 0.070 0.004 0.004 0.004 0.009 0.010

NU 3537 2403 1853 1491 1302 1162 1069

 

 

 

x=5 

Bias 0.019 0.036 0.035 0.042 0.044 0.049 0.054

MSE 0.316 0.593 0.201 0.205 0.169 0.210 0.233

SE1 0.038 0.317 0.018 0.020 0.010 0.020 0.033

N2 2671 2175 1894 1748 1644 1555 1489

N1 2148 1720 1550 1438 1368 1303 1267

MISE 0.133 0.165 0.076 0.074 0.078 0.070 0.143

SE2 0.017 0.050 0.003 0.007 0.007 0.006 0.076

NU 4379 3298 2758 2459 2259 2110 1991

 

 

 

x=10 

Bias 0.009 0.024 0.031 0.016 0.023 0.041 0.052

MSE 0.363 0.402 0.401 3.104 0.554 0.648 0.725

SE1 0.021 0.031 0.031 2.700 0.129 0.163 0.179

N2 3625 3106 2860 2690 2601 2518 2460

N1 3061 2711 2532 2430 2353 2311 2268

MISE 0.156 0.105 0.085 0.070 0.088 0.084 0.079

SE2 0.021 0.006 0.005 0.002 0.018 0.017 0.012

NU 5250 4197 3692 3382 3184 3065 2973

 



Table4 LS for t(3) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias -0.003 0.013 0.029 0.041 0.049 0.061 0.071

MSE 0.576 0.161 0.201 0.165 0.148 0.144 0.143

SE1 0.389 0.026 0.079 0.075 0.074 0.074 0.074

N2 1796 1274 984 812 734 657 618

N1 1215 846 670 565 490 440 408

MISE 0.141 0.073 0.062 0.055 0.051 0.055 0.051

SE2 0.048 0.005 0.003 0.003 0.003 0.008 0.005

NU 3537 2403 1853 1491 1302 1162 1069

 

 

 

x=5 

Bias 0.019 0.034 0.040 0.054 0.062 0.070 0.083

MSE 0.279 0.258 0.179 0.153 0.152 0.184 0.192

SE1 0.039 0.055 0.020 0.010 0.009 0.022 0.023

N2 2671 2175 1894 1748 1644 1555 1489

N1 2148 1720 1550 1438 1368 1303 1267

MISE 0.093 0.128 0.065 0.057 0.066 0.061 0.117

SE2 0.005 0.050 0.003 0.002 0.007 0.006 0.062

NU 4379 3298 2758 2459 2259 2110 1991

 

 

 

x=10 

Bias 0.019 0.031 0.036 0.055 0.047 0.063 0.080

MSE 0.295 0.317 0.351 0.367 0.457 0.616 0.630

SE1 0.016 0.021 0.027 0.031 0.064 0.151 0.146

N2 3625 3106 2860 2690 2601 2518 2460

N1 3061 2711 2532 2430 2353 2311 2268

MISE 0.111 0.077 0.061 0.056 0.064 0.065 0.062

SE2 0.012 0.006 0.002 0.002 0.008 0.008 0.006

NU 5250 4197 3692 3382 3184 3065 2973

 



Table5 LAD for t(2) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias 0.009 0.002 0.013 0.022 0.030 0.033 0.043

MSE 0.972 0.391 0.273 0.231 0.229 0.209 0.179

SE1 0.326 0.075 0.042 0.033 0.035 0.028 0.024

N2 1882 1325 1033 861 758 687 632

N1 1273 882 683 577 508 453 413

MISE 0.411 0.364 0.126 0.107 0.090 0.072 0.076

SE2 0.131 0.109 0.013 0.012 0.010 0.004 0.005

NU 3588 2433 1847 1504 1326 1185 1099

 

 

 

x=5 

Bias 0.010 0.014 0.029 0.026 0.042 0.049 0.057

MSE 0.962 0.940 0.675 3.003 0.736 0.670 0.638

SE1 0.315 0.341 0.258 2.039 0.280 0.264 0.263

N2 2741 2236 1958 1804 1693 1626 1561

N1 2172 1817 1631 1511 1443 1381 1341

MISE 0.279 0.169 0.167 0.155 0.155 0.162 0.152

SE2 0.070 0.019 0.038 0.040 0.041 0.053 0.046

NU 4399 3317 2790 2477 2274 2125 2043

 

 

 

x=10 

Bias 0.030 0.003 0.018 0.028 0.037 0.044 0.048

MSE 2.172 2.986 1.155 0.676 0.975 0.472 0.483

SE1 1.109 1.746 0.315 0.111 0.437 0.045 0.047

N2 3656 3121 2870 2685 2565 2507 2455

N1 3077 2702 2532 2411 2354 2308 2271

MISE 0.348 0.213 0.190 0.111 0.121 0.106 0.097

SE2 0.095 0.060 0.055 0.010 0.026 0.013 0.009

NU 5180 4189 3684 3370 3174 3040 2939

 



Table6 LS for t(2) 

 

h n-1/4 n-1/5 n-1/6 n-1/7 n-1/8 n-1/9 n-1/10 

 

 

 

x=0 

Bias 0.004 0.009 0.022 0.039 0.049 0.058 0.069

MSE 0.579 0.384 0.290 0.232 0.206 0.194 0.177

SE1 0.089 0.052 0.030 0.022 0.018 0.017 0.016

N2 1882 1325 1033 861 758 687 632

N1 1273 882 683 577 508 453 413

MISE 0.487 0.424 0.209 0.183 0.153 0.146 0.133

SE2 0.119 0.101 0.027 0.022 0.016 0.016 0.012

NU 3588 2433 1847 1504 1326 1185 1099

 

 

 

x=5 

Bias 0.012 0.017 0.035 0.042 0.060 0.066 0.083

MSE 0.669 0.912 0.694 0.695 0.645 0.593 0.348

SE1 0.188 0.336 0.261 0.258 0.239 0.226 0.037

N2 2741 2236 1958 1804 1693 1626 1561

N1 2172 1817 1631 1511 1443 1381 1341

MISE 0.337 0.213 0.218 0.187 0.179 0.181 0.147

SE2 0.068 0.018 0.040 0.037 0.037 0.039 0.018

NU 4399 3317 2790 2477 2274 2125 2043

 

 

 

x=10 

Bias 0.025 0.006 0.027 0.045 0.061 0.066 0.070

MSE 1.217 2.277 0.943 0.710 0.704 0.686 0.806

SE1 0.381 1.251 0.210 0.105 0.149 0.148 0.187

N2 3656 3121 2870 2685 2565 2507 2455

N1 3077 2702 2532 2411 2354 2308 2271

MISE 0.376 0.378 0.231 0.200 0.194 0.192 0.212

SE2 0.060 0.099 0.026 0.023 0.021 0.023 0.036

NU 5180 4189 3684 3370 3174 3040 2939

 


