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Abstract

This paper considers a scoring auction used in procurement. In this auction,

each supplier offers both price and quality, and a supplier whose offer achieves

the highest score wins. The environment we consider has two features: the buyer

has private information and quality is multi-dimensional. We show that a scoring

auction implements the ex ante optimal mechanism for the buyer when the value

complementarity between quality attributes is sufficiently greater than the cost

substitutability. We further show how the buyer should design scoring rules.
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comments and suggestions. The support of the Global COE program and the Research Unit for Statistical
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1 Introduction

Auction rules of public procurement have changed from single-dimensional bidding to

multi-dimensional bidding. The procurement authorities have conventionally adopted

price-only auctions, in which the authorities award procurement contracts based only

on contractors’ price-bids. A weakness of price-only auction is that the procurement

authority prespecifies the quality level of product, which does not reflect technological

information held by contractors. As an alternative rule, a scoring auction becomes in-

creasingly popular. In this auction, each contractor offers both price and quality, and

these offers are evaluated using a scoring rule announced by the authority. This auc-

tion allows the authority to choose the winner based not only on price-bids but also on

quality-bids. In 2004, the European Union adopted a new public procurement directive,

which, in effect, mandates the use of scoring auctions (Asker and Cantillon, 2008).

How effectively does a scoring auction work? How should the procurement authority

design a scoring rule? They are a matter of great concern to the authorities because

public projects have significant impact on society. There are, however, some difficulty in

designing a scoring rule. For instance, consider the construction of a bridge. The author-

ity should care about many attributes of the project such as building materials, a method

of construction, a time for completion, and so on. Moreover, although each contractor

has technological information, the authority may possess superior information about the

value of each attribute. These issues render the design of scoring rule complicate.

The previous studies have confirmed the high performance of a scoring auction for

the buyer. A common feature of these models is that a buyer procures a single product

differentiated by its quality from one of suppliers, who have private information about

production costs. In a seminal article, Che (1993) shows that a scoring auction with a
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properly designed scoring rule implements the buyer’s optimal mechanism (characterized

by Laffont and Tirole (1987)). Branco (1997) extends this result to an environment

where each supplier’s production cost has a common-cost component, so that his cost is

correlated with the other suppliers’ costs. Asker and Cantillon (2008) consider a fully

general environment where both the supplier’s type and quality are multi-dimensional,

and the buyer also has private information about her taste for quality. Although their

main results are the characterization of equilibrium bidding behavior and the expected

utility equivalence theorem, they also show that the scoring auction outperforms some

other mechanisms including a price-only auction. On the other hand, they have not

examined whether a scoring auction implements the optimal outcome for the buyer. The

main reason is that it is extremely difficult to characterize the optimal mechanism when

the supplier has multi-dimensional private information. However, Asker and Cantillon

(2010) characterize the optimal mechanism in a specific environment where each supplier’s

type consists of two parameters (fixed cost and marginal cost) and each parameter is a

binary random variable. They show that the scoring auction yields a performance close to

that of the optimal mechanism, taking a numerical simulation approach. In addition to

these theoretical studies, there is experimental evidence supporting the high performance

of scoring auction compared to that of price-only auction (Bichler, 2000; Chen-Ritzo,

2005).

As explained above, it is an important research question whether a scoring auction,

which becomes increasingly prevalent in practice, implements the optimal outcome for

the buyer. This paper shows that the positive result of Che (1993) can be extended to an

environment where the buyer has private information, and quality is multi-dimensional.

We assume that each supplier’s type is single-dimensional because Asker and Cantillon
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(2010) have already obtained the negative result (i.e. a scoring auction cannot implement

the optimal mechanism) in an environment where the supplier’s type is two-dimensional.

We proceed in two steps. First, we characterize the ex ante optimal mechanism for the

buyer, following the approach in the informed-principal literature; see Myerson (1983),

Maskin and Tirole (1990), Tan (1996), and Mylovanov and Tröger (2008). Second, we

show that a scoring auction implements the ex ante optimal mechanism. We then char-

acterize the optimal scoring rules, and discuss some problems of scoring rules used in

practice.

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 derives the equilibrium bidding strategy. Section 4 shows that a scoring auction

implements the ex ante optimal mechanism. Section 5 concludes. All proofs are in the

Appendix.

2 The model

Consider a buyer who procures a single product from one of N suppliers. A (production)

contract between the buyer and a supplier i ∈ {1, ..., N} is denoted by (pi, qi) ∈ R+ ×Q,

under which the supplier i must deliver a product of quality qi = (q1i , ..., q
M
i ) ∈ Q ≡∏M

m=1[0, q̄
m] in exchange for price pi ∈ R+; for m ∈ {1, ...,M}, each qmi represents a non-

monetary attribute.1 The buyer’s taste parameter for quality is given by t ∈ [t, t̄] ⊂ R,

and the supplier i’s cost parameter for quality by θi ∈ [θ, θ̄] ⊂ R. These players’ types

t and θ = (θ1, ..., θN) are random variables which are independent across players. The

cumulative distribution function of t is given by G. The cumulative distribution function

1In this paper, bold letters denote some vectors. We say that q ≥ q̂ if qm ≥ q̂m for all m, and q ≫ q̂
if qm > q̂m for all m.
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of θi is given by F , with a density function f that is continuous and strictly positive

everywhere. Each player has private information about the realized type respectively,

but the prior probability distributions are common knowledge.

The buyer of type t obtains utility v(q, t)− p from a contract (p, q), where v(q, t) is

her valuation for a product of quality q. The supplier i of type θi earns profits p− c(q, θi)

from a contract (p, q), where c(q, θi) is his production cost. We assume that v and c

are three times continuously differentiable in all arguments. We also make the following

assumptions.2

Assumption 1. vm > 0, cm > 0, for all m.

Assumption 2. vt > 0, vmt > 0, for all m.

Assumption 3. cθ > 0, cmθ > 0, for all m.

Assumption 4. c and cm are weakly convex in θ, for all m.

Assumption 5. F
f
is increasing in θ.

Assumptions 3, 4, and 5 ensure that the function of “virtual surplus” has strictly

decreasing differences in (q, θ).

There is an auction rule (mechanism) that is feasible for the buyer: a scoring auction.

We first define a scoring rule as S : R+ × Q → R ∪ {−∞}. In a scoring auction, each

supplier offers both price and quality, and the function S assigns a score S(p, q) to each

price-quality pair (p, q). One can interpret this real-valued function as representing a

preference relation over price-quality pairs. We assume that S is continuous in (p, q)

such that S(p, q) > −∞. The buyer can set a reserve score, which is normalized to zero.

Then, a supplier i wins only if his score is nonnegative and the highest among suppliers.3

2Subscripts denote partial derivatives, i.e. vt = ∂v/∂t, vm = ∂v/∂qm, vmm′ = ∂2v/∂qm∂qm
′
. We say

that vm > 0 if vm(q, t) > 0 for all q, t. We use the same notation for other functions.
3We assume that if there is a tie, then each supplier achieving the nonnegative highest score wins

with equal probability. All results hold for any other tie-breaking rule.
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We consider a first-score (sealed-bid) format, in which the winner i is awarded a binding

contract (pi, qi) he offered in the auction; the first-score format corresponds to a first-

price format in a standard price-only auction. We focus on a quasi-linear scoring rule S,

in which the function takes a form of S(p, q) = s(q) − p. It will be shown in Section 4

that a scoring auction with properly designed quasi-linear rules implements the optimal

mechanism for the buyer. Let S ≡ {S | S is quasi-linear} be the set of feasible scoring

rules.

The auction game proceeds as follows. In the first stage, all players’ types (θ, t)

are realized, and the players are privately informed about their own types respectively.

In the second stage, the buyer publicly announces a scoring rule S ∈ S. In the third

stage, each supplier i simultaneously and independently submits an offer (pi, qi). Then,

the game ends. When a supplier i of type θi who offers (pi, qi) such that S(pi, qi) =

maxj S(pj, qj) ≥ 0 wins, he receives pi− c(qi, θi), the other suppliers receive zero payoffs,

and the buyer of type t receives v(qi, t)− pi. When no supplier wins, all players receive

zero payoffs.

In the following sections, we explore the (pure strategy) perfect Bayesian equilibrium

of the game. The buyer’s strategy is a choice of auction rule S, depending on her type

t. With a slight abuse of notation, we denote a supplier i’s bidding strategy by (pi, qi) :

[θ, θ̄] × S → R+ × Q. A supplier i’s posterior belief about the buyer’s type conditional

on the announced rule S is denoted by the cumulative distribution function GS
i on [t, t̄].

Because the players’ types are independent, no supplier updates his belief about the other

suppliers’ types in equilibrium; we also assume that this is the case in any off-equilibrium

path.

We finally identify the ex post efficient outcome: Given the realized types (θ, t), a
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supplier with the lowest type θi among θ = (θ1, ..., θN) wins the auction, and delivers a

product of the efficient quality level q̃(θi, t) ∈ argmaxq∈Q[v(q, t)− c(q, θi)] to the buyer.

We assume that v(q̃(θ̄, t), t)− c(q̃(θ̄, t), θ̄) ≥ 0.

3 Equilibrium bidding strategy

In this section, we derive the equilibrium bidding strategy.

Note that a supplier’s belief GS
i about the buyer’s type is irrelevant to his bidding

behavior; all that matters is the scoring rule S announced by the buyer. This is due to

the following two facts. First, the outcome is completely determined by the suppliers’

bids, so that the buyer with full commitment power has no chance to affect the outcome

after her announcement of the rule. Second, we consider a private-values environment,

in which the suppliers’ production costs are independent of the buyer’s type.

The following lemma characterizes a symmetric equilibrium in the auction, where

all suppliers use the same bidding strategy. We assume that no supplier uses weakly

dominated strategies. Then, we apply the technique of Che (1993) to prove this lemma.

Lemma 1. (i) For any scoring rule S, there exists a symmetric equilibrium with a cost

parameter θ̄S in which the bidding strategy (p∗, q∗) is determined by the following condi-

tions: For all θ ∈ [θ, θ̄S],

q∗(θ, S) ∈ argmax
q∈Q

[s(q)− c(q, θ)]

p∗(θ, S) = c(q∗(θ, S), θ) +

∫ θ̄S

θ

cθ(q
∗(z, S), z)

(
1− F (z)

1− F (θ)

)N−1

dz,

and for all θ ∈ (θ̄S, θ̄], (p∗(θ, S), q∗(θ, S)) is an arbitrary one which satisfies S(p∗(θ, S), q∗(θ, S)) <

0. (ii) In the above equilibrium, a supplier wins only if his cost parameter is the lowest

among (θ1, ..., θN) and lower than θ̄S.
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Using a reserve score, the buyer can effectively exclude some suppliers who are more

inefficient than a critical type θ̄S. On the other hand, the equilibrium price offer may

not be increasing in θ. This fact implies that a scoring auction with a reserve “price”

(not reserve score) may be problematic to the buyer. We will discuss the issue after

Proposition 1.

Lemma 1 implies that in equilibrium the most efficient supplier wins provided that

his type is lower than θ̄S. Let θ(N) ≡ min{θ1, ..., θN} be the lowest cost parameter (first-

order statistic), which is also a random variable. We denote the cumulative distribution

function and the probability density function of θ(N) by F(N)(θ) = 1 − (1 − F (θ))N and

f(N)(θ) = N(1− F (θ))N−1f(θ) respectively. Then, the buyer of type t’s expected utility

from announcing a scoring rule S is4

U(S | t) = F(N)(θ̄
S)Eθ(N)

[
v(q∗(θ(N), S), t)− p∗(θ(N), S) | θ(N) ≤ θ̄S

]
=

∫ θ̄S

θ

[
v(q∗(θ, S), t)− c(q∗(θ, S), θ)− cθ(q

∗(θ, S), θ)
F (θ)

f(θ)

]
f(N)(θ)dθ;

the second equality follows from the substitution of p∗(θ(N), S) and the interchange of

the integrals. We now define the virtual surplus as the function Φ(q, θ, t) ≡ v(q, t) −

c(q, θ) − cθ(q, θ)
F (θ)
f(θ)

. Its value Φ(q, θ, t) is the social surplus generated by trading a

product of quality q between the buyer of type t and a supplier of type θ, minus the sum

of information rents paid to the more efficient supplier than θ. Using this virtual surplus,

the buyer of type t’s expected utility can be rewritten as

U(S | t) =
∫ θ̄S

θ

Φ(q∗(θ, S), θ, t)f(N)(θ)dθ.

4In this paper, EY [·] represents the expectation operator with respect to the prior distributions of
random variables Y .
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When θi ≤ θ̄S, a supplier of type θi’s expected profit in the auction is given by

Π(S | θi) = (1− F (θi))
N−1[p∗(θi, S)− c(q∗(θi, S), θi)]

=

∫ θ̄S

θi

cθ(q
∗(z, S), z)(1− F (z))N−1dz.

When θi > θ̄S, a supplier of type θi’s profit is zero because his score is negative.

4 Implementation

In this section, we consider the implementation problem. The analysis proceeds in two

steps. First, we characterize the optimal mechanism for the buyer, following the approach

in the informed-principal literature; see Myerson (1983), Tan (1996), and Mylovanov and

Tröger (2008). Second, we examine the implementation of the optimal mechanism via a

scoring auction.

In a first step, we begin by considering the following mechanism-selection game. This

hypothetical game differs from the auction game in Section 2 only in that the buyer is

allowed to use any arbitrary mechanism which satisfies individual rationality. After the

players know their realized types in the first stage, the buyer announces a general mech-

anism in the second stage. In the third stage, each player (possibly including the buyer)

simultaneously and independently reports a message from the message space specified by

the mechanism; a message space must include a disagreement option which ensures zero

payoff for each player.

We introduce some definitions. A direct mechanism is an N -tuple of measurable

functions ρ = (ρ1, ..., ρN) where ρi = (Pi,Qi, Xi) : [θ, θ̄]
N × [t, t̄] → R × Q × [0, 1]. For

each profile of reported types (θ, t), a transfer schedule Pi(θ, t) specifies the expected

monetary transfer from the buyer to the supplier i, a quality schedule Qi(θ, t) specifies
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the quality level the supplier i must achieve when delivering the product, and Xi(θ, t)

specifies the trading probability between the buyer and the supplier i. A direct mechanism

(P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} is ex ante optimal (for the buyer) if it solves the following problem:

max
ρ=(Pi,Qi,Xi)i∈{1,...,N}

Et[U
ρ(t | t)]

s.t. Uρ(t | t) ≥ Uρ(t̂ | t) for all t, t̂ ∈ [t, t̄] (1)

Πρ
i (θi | θi) ≥ Πρ

i (θ̂i | θi) for all θi, θ̂i ∈ [θ, θ̄], i ∈ {1, ...N} (2)

Πρ
i (θi | θi) ≥ 0 for all θi ∈ [θ, θ̄], i ∈ {1, ...N} (3)

N∑
i=1

Xi(θ, t) ≤ 1 for all θ ∈ [θ, θ̄]N , t ∈ [t, t̄], (4)

where

Uρ(t̂ | t) =
N∑
i=1

Eθ[Xi(θ, t̂) · v(Qi(θ, t̂), t)− Pi(θ, t̂)]

Πρ
i (θ̂i | θi) =

∫ t̄

t

Eθ−i
[Pi(θ̂i,θ−i, t)−Xi(θ̂i,θ−i, t) · c(Qi(θ̂i,θ−i, t), θi)]dG(t).

The first constraint is an incentive compatibility (IC) constraint for the buyer, the second

one is an IC constraint for each supplier, the third one is an individual rationality (IR)

constraint for each supplier, and the fourth one is a condition for the trading probability.

Using the “Revelation Principle” and “Inscrutability Principle” of Myerson (1983), we

can focus on this particular mechanism (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} when finding the equilibrium

outcome in the mechanism-selection game that yields the highest ex ante utility for the

buyer. Note that in a supplier’s expected profit Πρ
i (θ̂i | θi), the expectation for the buyer’s

type is taken with respect to the prior belief G, which implies that the announcement

of a mechanism ρ conveys no information about the buyer’s type. For any separation

equilibrium in which some types of the buyer announce different mechanisms, we can find

a pooling equilibrium which is outcome-equivalent to the original equilibrium. This is

just an argument of the Inscrutability Principle.
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The next lemma characterizes the ex ante optimal mechanism. We define K ≡

max
q,m,m′,θ

cmm′θ(q, θ)F (θ)/f(θ). The proof is based on Mylovanov and Tröger (2008).

Lemma 2. Suppose that vmm′(q, t)−cmm′(q, θ) ≥ K, for all m ̸= m′. Then, the following

direct mechanism (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} is ex ante optimal:

X∗
i (θ, t) =


1 if θi < min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

t∗}

1
♯{j|θj=θi} if θi = min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

t∗}

0 if θi > min{θ1, ..., θi−1, θi+1, ..., θN , θ̄
t∗}

Q∗
i (θ, t) = Q∗(θi, t) ∈ argmax

q∈Q
Φ(q, θi, t)

P ∗
i (θ, t) = X∗

i (θ, t)

[
c(Q∗(θi, t), θi) +

∫ θ̄t∗

θi

cθ(Q
∗(z, t), z)

(
1− F (z)

1− F (θi)

)N−1

dz

]
,

where θ̄t∗ ∈ [θ, θ̄] is a cost parameter such that Φ(Q∗(θ, t), θ, t) ≥ 0 iff θ ∈ [θ, θ̄t∗].

The ex ante optimal mechanism coincides with the mechanism that would be optimal

if the buyer’s type were common knowledge. This is the “irrelevance result”, which holds

in many independent-private-values environments where the principal (buyer) has a quasi-

linear preference (Maskin and Tirole (1990), Tan (1996)). In a more general environment,

Mylovanov and Tröger (2008) provide a condition under which the irrelevance result holds.

The following lemma characterizes the optimal quality schedule Q∗(θ, t) in Lemma 2.

Lemma 3. (i) Q∗(θ, t) ≥ Q∗(θ′, t) for all θ < θ′, t ∈ [t, t̄]. (ii) Q∗(θ, t), q̃(θ, t) ∈

argmaxq[v(q, t)− c(q, θ)] for all t ∈ [t, t̄]. (iii) Suppose that v − c is supermodular in q.

Then, Q∗(θ, t) ≪ q̃(θ, t) for all θ ∈ (θ, θ̄], t ∈ [t, t̄].

This lemma has some important implications for the implementation possibilities.

First, the part (i) states that the optimal schedule Qm∗(θ, t) of non-monetary attribute

is nonincreasing in θ “for all” m. Without the supermodularity of the virtual surplus in
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quality, Qm∗(θ, t) may not be nonincreasing in θ for some m. For example, assume that

M = 2, v(q1, q2, t) = q1q2 + t(q1 + q2), c(q1, q2, θ) = (q1 + q2)2 + θ(q1 + ϵq2), ϵ > 0, and

F (θ) = (θ− θ)/(θ̄− θ) so that the virtual surplus Φ(q1, q2, θ, t) is submodular in (q1, q2).

Then, the optimal quality schedule can be Q1∗(θ, t) = (1/3)[t − (2 − ϵ)(2θ − θ)] and

Q2∗(θ, t) = (1/3)[t−(2ϵ−1)(2θ−θ)], so that Q2∗ is increasing in θ when ϵ < 1/2. Second,

the optimal transfer schedule P ∗
i (θ, t) may not be increasing in θi. For example, assume

that M = 1, v(q1, t) = tq1, c(q1, θ) = (q1)2 + (θ + 1)q1 + θ, t = 3 and F (θ) = θ. Then,

the optimal quality schedule is Q1∗(θ, t) = 1 − θ, and the critical type is θ̄t∗ = 2 −
√
3.

Assuming that N = 2, it follows from simple calculations that the transfer schedule

P ∗
i (θ1, θ2, t = 3) is given by

P ∗
i (θ1, θ2, t = 3) = X∗

i (θ1, θ2, t = 3)
−θ3i + 9θ2i − 18θi + 8

3(1− θi)
.

In this example, provided that X∗
i (θ1, θ2, t = 3) = 1, the transfer is “decreasing” in

θi ∈ [0, 2−
√
3]. Thus, the lower cost parameter the supplier has, the higher payment he

can receive in exchange for delivering the product of the higher quality.

In a second step, we examine the implementation of the ex ante optimal mechanism

via a scoring auction. We say that a scoring auction implements the ex ante optimal

mechanism if in the auction game there exists an equilibrium which is outcome-equivalent

to the ex ante optimal mechanism (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} for each realization of (θ, t). The

next proposition states that a scoring auction succeeds in the implementation.

Proposition 1. Suppose that vmm′(q, t) − cmm′(q, θ) ≥ K, for all m ̸= m′. Then: (i)

There exists a quasi-linear scoring rule St∗(p, q) = st(q) − p for each type t with which

a scoring auction implements the ex ante optimal mechanism. (ii) The scoring rule

St∗ has the following properties: st(q) ̸= st
′
(q) for all t ̸= t′, st(q) ̸= v(q, t), st(q) is

nondecreasing in qm for all m, and st(q) = −∞ if qm < Qm∗(θ̄t∗, t) for some m.
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This proposition is an extension of Che (1993). We discuss several implications. First,

the optimal scoring rule St∗ for each type t differs from the other types. Although in the

ex ante optimal mechanism the buyer is indifferent between revealing and concealing her

true type at the stage of mechanism announcement, the buyer “must” reveal her type

through her announcement of scoring rules. This is because the buyer has no chance to

affect the outcome after the announcement of a scoring rule. The optimal scoring rule

st(q)−p is, however, different from her true preference v(q, t)−p. If S(p, q) = v(q, t)−p,

then each supplier i offers the efficient quality level q̃(θi, t), which is excessive from the

buyer’s viewpoint. Second, the implementation possibilities are positively affected by the

fact that the optimal schedule Qm∗(θ, t) is decreasing in θ for all m. When Qm∗(θ, t) is

increasing in θ for some m as in the example after Lemma 3, a scoring auction may not be

able to implement the ex ante optimal mechanism. Moreover, the monotonicity implies

that the offer qm < Qm∗(θ̄t∗, t) is a signal that a cost parameter is more inefficient than

θ̄t∗. The buyer can thus exclude some inefficient suppliers based on their quality offers.

On the other hand, a quasi-linear scoring rule used in practice can be written as

S(p, q) =


s(q)− p if p ≤ p̄

−∞ if p > p̄,

where p̄ ∈ R+ is a reserve price. With this class of scoring rules, a scoring auction cannot

implement the ex ante optimal mechanism in general. A reserve price excludes efficient

suppliers rather than inefficient suppliers when the transfer schedule P ∗
i (θ, t) is decreasing

in θi as in the example after Lemma 3.

The scoring rule St∗ = st(q) − p in Proposition 1 seems complicated because the

score of each attribute qm depends on the levels of the other attributes in general (see

Appendix). However, the next proposition shows that a scoring auction with quasi-
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linear rules which are additively separable in (q1, ..., qM) implements the ex ante optimal

mechanism with additional conditions.

Proposition 2. Suppose that cmm′ = 0, vmm′ ≥ K, for all m ̸= m′, and the Hessian

of Φ is negative definite. Then: (i) There exists a quasi-linear scoring rule St∗∗(p, q) =∑M
m=1 s

m,t(qm) − p for each type t with which a scoring auction implements the ex ante

optimal mechanism. (ii) The scoring rule St∗∗ has the following properties: sm,t(qm) ̸=

sm,t′(qm) for all t ̸= t′,
∑M

m=1 s
m,t(qm) ̸= v(q, t), sm,t(qm) is nondecreasing in qm, and

sm,t(qm) = −∞ if qm < Qm∗(θ̄t∗, t).

Appendix

Proof of Lemma 1. This is a sketch of the proof. See Che (1993).

(i) First, we show that in equilibrium a supplier of type θ ∈ [θ, θ̄S] never submits a

bid (p, q) such that q ̸∈ argmaxq̂[s(q̂)− c(q̂, θ)]. Suppose to the contrary that a supplier

of type θ ∈ [θ, θ̄S] submits such a bid (p, q). Now, consider a bid (p′, q′) such that

q′ ∈ argmaxq̂[s(q̂) − c(q̂, θ)] and s(q′) − p′ = s(q) − p. The score of (p′, q′) is equal

to that of (p, q), so that both bids yield the same winning probability given the other

suppliers’ strategies. As in Che (1993), we can show that Prob[win | S(p, q)] > 0 for all

θ ∈ [θ, θ̄S). When θ ∈ [θ, θ̄S), the supplier’s expected profit from (p, q) is lower than his

expected profit from (p′, q′) because

[p− c(q, θ)]Prob[win | S(p, q)]

< [p− c(q, θ) + (s(q′)− c(q′, θ)− (s(q)− c(q, θ)))]Prob[win | S(p, q)]

= [p′ − c(q′, θ)]Prob[win | S(p′, q′)];

the inequality follows from the fact that q ̸∈ argmaxq̂[s(q̂)−c(q̂, θ)] ∋ q′, and the equality
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follows from the construction of (p′, q′). This is a contradiction because the supplier of

type θ ∈ [θ, θ̄S) has a profitable deviation. When θ = θ̄S, we can show that the bid

(p, q) is weakly dominated by (p′, q′), by the same logic as above. This contradicts the

assumption that no supplier uses weakly dominated strategies. Therefore, we can assume

without loss of generality that the symmetric equilibrium bidding strategy is given by

(p, q∗) which satisfies q∗(θ, S) ∈ argmaxq[s(q)− c(q, θ)] for all θ ∈ [θ, θ̄S].

Second, consider the following change of variables: k(θ) ≡ s(q∗(θ, S))− c(q∗(θ, S), θ)

and b ≡ s(q∗(θ, S)) − p for all θ ∈ [θ, θ̄S]. Now, k(θ) = s(q∗(θ, S)) − c(q∗(θ, S), θ) ≥

s(q∗(θ′, S))− c(q∗(θ′, S), θ) > s(q∗(θ′, S))− c(q∗(θ′, S), θ′) = k(θ′) for all θ < θ′. Hence,

k(θ) is decreasing in θ, so that the inverse of k exists. Moreover, k(θ) = maxq[s(q) −

c(q, θ)] is continuous in θ by Berge’s maximum theorem with the continuity of s(·) and

c(·). Let β : [k(θ̄S), k(θ)] → R+ denote a symmetric bidding strategy of k(θ) that is

increasing in k. When the other suppliers follow this strategy β, the expected profit of

the supplier of type θ ∈ [θ, θ̄S] who submits (p, q∗(θ, S)) can be rewritten as

[p− c(q∗(θ, S), θ)]Prob[win | S(p, q∗(θ, S))]

= [k(θ)− b]{1− F (k−1(β−1(b)))}N−1.

We can then rely on the technique of first-price auction with a boundary condition k(θ̄S) =

β(k(θ̄S)).

(ii) Because k(θ) is decreasing in θ ∈ [θ, θ̄S] and the bidding strategy β(k) is increasing

in k, a supplier wins only if his cost parameter is the lowest among (θ1, ..., θN) and lower

than θ̄S.

Proof of Lemma 2. This is a sketch of the proof.

(a) We can show that the necessary and sufficient condition for each supplier’s IC

constraint (2) is given by the following two conditions: the envelope condition and the
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monotonicity condition. We say that a direct mechanism ρ = (Pi,Qi, Xi)i∈{1,...,N} satisfies

the envelope condition if for all i and θi,

Πρ
i (θi) = Πρ

i (θ̄) +

∫ t̄

t

[∫ θ̄

θi

Eθ−i
[Xi(z,θ−i, t)cθ(Qi(z,θ−i, t), z)]dz

]
dG(t),

where Πρ
i (θi) ≡ Πρ

i (θi | θi). We say that a direct mechanism ρ = (Pi,Qi, Xi)i∈{1,...,N}

satisfies the monotonicity condition if for all i and θi, θ̂i,

∫ t̄

t

[∫ θ̂i

θi

Eθ−i
[Xi(z,θ−i, t)cθ(Qi(z,θ−i, t), z)]dz

]
dG(t)

≥
∫ t̄

t

[∫ θ̂i

θi

Eθ−i
[Xi(θ̂i,θ−i, t)cθ(Qi(θ̂i,θ−i, t), z)]dz

]
dG(t);

if both Xi(θi,θ−i, t) and Qi(θi,θ−i, t) are nonincreasing in θi for all θ−i and t, then this

condition is automatically satisfied.

(b) We solve the optimization problem for the ex ante optimal mechanism. The

supplier’s IC constraint (2) implies that Πρ
i (θi) is nonincreasing in θi because Πρ

i (θi) ≥

Πρ
i (θ

′
i | θi) ≥ Πρ

i (θ
′
i) for all θi < θ′i. Hence, the supplier’s IR constraint (3) is replaced

by Πρ
i (θ̄) = 0. Using the result (i), the IC constraint (2) and the IR constraint (3) is

replaced by both the monotonicity condition and the following condition:

Πρ
i (θi) =

∫ t̄

t

[∫ θ̄

θi

Eθ−i
[Xi(z,θ−i, t)cθ(Qi(z,θ−i, t), z)]dz

]
dG(t) for all i and θi.

At first, we ignore the monotonicity condition and the buyer’s IC constraint (1).

Substituting the supplier’s profit Πρ
i (θi), the buyer’s objective function is rewritten as

E(t,θ)

[
N∑
i=1

[Xi(θ, t)[v(Qi(θ, t), t)− c(Qi(θ, t), θi)]− Πρ
i (θi)]

]

= E(t,θ)

[
N∑
i=1

Xi(θ, t)

[
v(Qi(θ, t), t)− c(Qi(θ, t), θi)− cθ(Qi(θ, t), θi)

F (θi)

f(θi)

]]

= E(t,θ)

[
N∑
i=1

Xi(θ, t)Φ(Qi(θ, t), θi, t)

]
.
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This objective function is maximized when Qi(θ, t) and Xi(θ, t) are respectively given

by Q∗(θi, t) and X∗
i (θ, t) in the lemma. This is because Q∗(θi, t) maximizes Φ(q, θi, t)

and the maximized value is decreasing in θi. The latter follows from Φ(Q∗(θ, t), θ, t) ≥

Φ(Q∗(θ′, t), θ, t) > Φ(Q∗(θ′, t), θ′, t) for all θ < θ′; the second inequality follows from the

assumption that cθθ ≥ 0 and F/f is increasing in θ.

Finally, we show that the direct mechanism ρ∗ = (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} satisfies the

ignored constraints. It is easy to show that X∗
i is increasing in θi. Now, Φ(q, θi, t) is

supermodular in q by the assumption of the lemma, and has strictly increasing differences

in (q,−θi) from Assumptions 3, 4 and 5. It then follows from Topkis monotonicity

theorem that Q∗(θi, t) ≥ Q∗(θ′i, t) for all θi < θ′i. Thus, this direct mechanism ρ∗ satisfies

the monotonicity condition. Moreover, this direct mechanism ρ∗ satisfies the buyer’s IC

constraint (1) because

Uρ∗(t̂ | t) =
N∑
i=1

Eθ

[
X∗

i (θ, t̂)v(Q
∗(θi, t̂), t)− P ∗

i (θ, t̂)
]

=
N∑
i=1

Eθ

[
X∗

i (θ, t̂)Φ(Q
∗(θi, t̂), θi, t)

]
≤

N∑
i=1

Eθ [X
∗
i (θ, t)Φ(Q

∗(θi, t), θi, t)] = Uρ∗(t | t);

the inequality follows from the fact that Q∗(θi, t) ∈ argmaxq Φ(q, θi, t) and the construc-

tion of X∗
i (θ, t). Therefore, the buyer of type t cannot benefit from reporting t̂ ̸= t.

Proof of Lemma 3. (i) As shown in the proof of Lemma 2, Q∗(θ, t) ≥ Q∗(θ′, t) for all

θ < θ′.

(ii) Lemma 2 states that Q∗(θ, t) ∈ argmaxq Φ(q, θ, t). Now, Φ(q, θ, t) = v(q, t) −

c(q, θ)− cθ(q, θ)F (θ)/f(θ) = v(q, t)− c(q, θ) because F (θ) = 0. Hence, Q∗(θ, t), q̃(θ, t) ∈

argmaxq[v(q, t)− c(q, θ)].

(iii) Define the function v(q, t)− c(q, θ)− (1− a)cθ(q, θ)F (θ)/f(θ) where a ∈ {0, 1}.
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This function is supermodular in q because both v− c and Φ are supermodular in q, and

has strictly increasing differences in (q, a) from Assumptions 3, 4, and 5. It then follows

from Topkis monotonicity theorem that Q∗(θ, t) ≤ q̃(θ, t). If there exists an attribute m

such that Qm∗(θ, t) = q̃m(θ, t), then

0 = Φm(Q
∗(θ, t), θ, t) ≤ Φm(q̃(θ, t), θ, t) < vm(q̃(θ, t), t)− cm(q̃(θ, t), θ) = 0;

the first inequality follows from the assumption that Φ is supermodular in q, together

with the fact that Q∗(θ, t) ≤ q̃(θ, t) and Qm∗(θ, t) = q̃m(θ, t), and the second inequality

follows from the assumption that cmθ > 0. This is a contradiction, which implies that

Q∗(θ, t) ≪ q̃(θ, t) for all θ ∈ (θ, θ̄].

Proof of Proposition 1. For each qm ∈ [Qm∗(θ̄, t), Qm∗(θ, t)], let θm,t(qm) be a cost param-

eter which satisfies Φm(q
m,Q−m∗(θ, t), θ, t) = 0; given t, θm,t(qm) is uniquely determined

by this equation because the left-hand side is monotonic in θ, i.e. Φm(q
m,Q−m∗(θ, t), θ, t) >

Φm(q
m,Q−m∗(θ′, t), θ′, t) for all θ < θ′. When qm > Qm∗(θ, t), let θm,t(qm) = θ. Define

st(q) by

st(q) =


σt(max{θ1,t(q1), ..., θM,t(qM)}) if qm ≥ Qm∗(θ̄t∗, t) for all m

−∞ if qm < Qm∗(θ̄t∗, t) for some m,

where σt(·) is constructed as follows. It follows from Lemma 1 that a supplier of type

θ ∈ [θ, θ̄t∗] chooses quality q which maximizes st(q) − c(q, θ). Then, his problem is

reduced to maxθ̂∈[θ,θ̄t∗] σ
t(θ̂) − c(Q∗(θ̂, t), θ) from the construction of st(q). His produc-

tion cost c(Q∗(θ̂, t), θ) has strictly decreasing differences in (θ, θ̂) because c(Q∗(θ̂, t), θ)−

c(Q∗(θ̂′, t), θ) < c(Q∗(θ̂, t), θ′) − c(Q∗(θ̂′, t), θ′) for all θ < θ′ and θ̂ < θ̂′; the inequality

follows from the part (i) of Lemma 3 and the assumption that cmθ > 0.

Now, consider a family of curves {σ = c(Q∗(θ̂, t), θ) + h(θ)} parametrized by θ ∈
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[θ, θ̄t∗], where h(θ) is given by

h(θ) = h(θ)−
∫ θ

θ

cθ(Q
∗(z, t), z)dz;

h(θ) is an arbitrary real number which is sufficiently high. Then, let σt(θ̂) be the lower

envelope of {σ = c(Q∗(θ̂, t), θ) + h(θ)}, which is given by

σt(θ̂) = c(Q∗(θ̂, t), θ̂) + h(θ̂).

Since this lower envelope is tangent to σ = c(Q∗(θ̂, t), θ) + h(θ) at θ̂ = θ, the supplier of

type θ optimally chooses θ̂ = θ to maximize σt(θ̂) − c(Q∗(θ̂, t), θ). Hence, q∗(θ, St∗) =

Q∗(θ, t).

It follows from Lemma 1 that in equilibrium each supplier i pays the same price as

P ∗
i (θ, t) for each realization of (θ, t).

Finally, the buyer of type t has no incentive to deviate from announcing St∗ because

it also implements the optimal mechanism when the buyer’s realized type is common

knowledge.

Proof of Proposition 2. First, define sm(qm, t) as follows:

sm(qm, t) =

∫ qm

Qm∗(θ̄t∗,t)

[
vm(q,Q

−m∗(θm,t(q), t), t)− cmθ(q,Q
−m∗(θm,t(q), t), θm,t(q))F (θm,t(q))

f(θm,t(q))

]
dq

if qm ∈ [Qm∗(θ̄t∗, t), Qm∗(θ, t)]∫ Qm∗(θ,t)

Qm∗(θ̄t∗,t)

[
vm(q,Q

−m∗(θm,t(q), t), t)− cmθ(q,Q
−m∗(θm,t(q), t), θm,t(q))F (θm,t(q))

f(θm,t(q))

]
dq

if qm ∈ (Qm∗(θ, t),∞)

−∞ if qm ∈ [0, Qm∗(θ̄t∗, t)).

Second, we show that the unique maximizer of
∑M

m=1 s
m(qm, t) − c(q, θ) is equal to

Q∗(θ, t) for all θ ∈ [θ, θ̄t∗]. The first-order condition for qm is given by

vm(q
m,Q−m∗(θm,t(qm), t), t) = cm(q

m, q−m) + cmθ(q
m,Q−m∗(θm,t(qm), t), θm,t(qm))

F (θm,t(qm))

f(θm,t(qm))
,
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which is satisfied if qm = Qm∗(θ, t) for all m. Now, we show that the Hessian of∑M
m=1 s

m(qm, t)− c(q, θ) is negative definite, and thus
∑M

m=1 s
m(qm, t)− c(q, θ) is strictly

concave in q. The second-order derivative of
∑M

m=1 s
m(qm, t)− c(q, θ) with respect to qm

is given by

Φmm −

[
cmθθ

F

f
+ cmθ

(
F

f

)′

−
∑
m′ ̸=m

(
vmm′ − cmm′θ

F

f

)]
dθm,t

dqm

= Φmm

cmθ −
∑

m′ ̸=mΦmm′(∂Qm′∗/∂θ) +
∑

m′ ̸=m

(
vmm′ − cmm′θ

F
f

)
cmθ + cmθθ

F
f
+ cmθ

(
F
f

)′
−
∑

m′ ̸=mΦmm′(∂Qm′∗/∂θ)

 ;

the equality follows from the fact that

dθm,t

dqm
=

1

∂Qm∗/∂θ
=

Φmm

cmθ + cmθθ
F
f
+ cmθ

(
F
f

)′
−

∑
m′ ̸=mΦmm′(∂Qm′∗/∂θ)

.

The assumption cmm′ = 0 for all m ̸= m′, together with the supermodularity of Φ,

implies that vmm′ − cmm′θ
F
f
≥ 0. Thus, the above second-order derivative is less than

zero, so that all the diagonal elements of the Hessian of
∑M

m=1 s
m(qm, t) − c(q, θ) are

negative. The off-diagonal element is given by −cmm′ = 0 for m ̸= m′, so that the Hessian

of
∑M

m=1 s
m(qm, t) − c(q, θ) is negative definite. Lemma 1 implies that q∗(θ, St∗∗) ∈

argmaxq∈Q [
∑M

m=1 s
m,t(qm)− c(q, θ)]. Hence, q∗(θ, St∗∗) = Q∗(θ, t).

It follows from Lemma 1 that in equilibrium each supplier i pays the same price as

P ∗
i (θ, t) for each realization of (θ, t).

Finally, the buyer of type t has no incentive to deviate from announcing St∗∗ because

it also implements the optimal mechanism when the buyer’s realized type is common

knowledge.
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T. Mylovanov and T. Tröger. Optimal auction design and irrelevance of privacy of infor-

mation. 2008.

G. Tan. Optimal procurement mechanisms for an informed buyer. Canadian Journal of

Economics, 1996.

22


