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Abstract

In this paper, we apply the ARFIMA-GARCH model to the realized volatility and the continuous

sample path variations constructed from high-frequency Nikkei 225 data. While the homoskedastic

ARFIMAmodel performs excellently in predicting the Nikkei 225 realized volatility time series and their

square-root and log transformations, the residuals of the model suggest presence of strong conditional

heteroskedasticity similar to the �nding of Corsi et al. (2007) for the realized S&P 500 futures volatility.

An ARFIMA model augmented by a GARCH(1,1) speci�cation for the error term largely captures this

and substantially improves the �t to the data. In a multi-day forecasting setting, we also �nd evidence of

predictable time variation in the volatility of the Nikkei 225 volatility captured by the ARFIMA-GARCH

model. A battery of speci�cation tests including the BDS, CCK, and Hong-Li tests for detecting higher-

order dependence are run. The results of these tests reveal various forms of misspeci�cation remaining

in the ARFIMA-GARCH model, which suggest the model can be further improved upon.

JEL classi�cation: C22, C53, G15.

Keywords: ARFIMA-GARCH, Volatility of realized volatility, Realized bipower variation, Jump

detection, BDS test, Hong-Li test, High-frequency Nikkei 225 data



1 Introduction

Volatility plays key roles in the theory and applications of asset pricing, optimal portfolio allocation, and

risk management. This fact, together with the development of econometric tools for volatility analysis

and empirical evidence for the predictability of the volatility of numerous markets, spurred the phenomenal

growth of the volatility literature as well as the birth of an entire �nancial risk management industry during

the last quarter century. It is well-documented by now that time-variation in �nancial market volatility is to

some extent predictable but stochastic, hence volatility itself is volatile. This paper empirically investigates

whether the volatility of the Japanese stock market volatility is predictably time-varying. The obtained

empirical results indicate that it is indeed time-varying with some predictable component.

The pace of progress at the frontier of volatility research has had at least four notable upsurges. The

�rst followed the invention of the ARCH model by Engle (1982) and led to the development of the �rst set

of econometric procedures for the empirical analysis of time-varying volatility (see e.g. Bollerslev et al.

1994), and our deeper understanding of the empirical properties, e.g., volatility clustering, leverage effects

in volatility, and fat-tails, of many �nancial time series. The second wave centered around the stochastic

volatility (SV) modeling, which capitalized on and often contributed in turn to the concurrent development

in the Bayesian statistical analysis using the Markov chain Monte Carlo procedure (see e.g. Shephard 2005).

This paper mainly concerns modeling and forecasting of the volatility of the realized volatility, and is part

of the currently continuing third upsurge involving realized volatility measures, which was ignited by the

recent availability of intraday �nancial data collected near or at the tick-by-tick frequency and the need to

harness such high-frequency data fraught with microstructure noise and apparent short-term seasonalities

before the rich information contained can be tapped into. The seminal paper by Andersen and Bollerslev

(1998) de�ned the sum of squared intraday returns as the realized volatility (RV) for the day, and proposed

to use it as a proxy for the ex post realization of the daily volatility. The squared daily return, typically

used as a measure of the ex-post daily volatility in earlier volatility prediction studies, is a very noisy, albeit

unbiased, proxy for the conditional variance. On the other hand, under ideal conditions in the absence

of microstructure effects, the RV not only is an unbiased and much less noisy measure of the conditional

variance but also converges in probability to the integrated variance over the measurement period as the

sampling frequency increases to in�nity if the asset price follows a diffusion process. Hence, RV may be
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considered an almost observable measure of volatility. A further case for the RV can be made based on the

work of Hansen and Lunde (2005a) and Patton (2005), who showed how the use of noisy proxies for the

ex-post volatility such as the squared daily return may lead to a choice of an inferior volatility prediction

model.

In a milestone paper, Andersen et al. (2003) used a Gaussian fractional VAR model, i.e., vector-

ARFIMAmodel with MA order zero, for directly modeling and forecasting several exchange rate RV series,

building on earlier empirical investigations that had found long-range dependence and approximate normal-

ity of the daily log RV time series constructed from high-frequency intraday data of exchange rates (e.g.

Andersen et al. 2001a) and stock prices (e.g. Andersen et al. 2001b). They provided compelling em-

pirical evidence for the superiority in predictive accuracy of this direct �reduced-form� daily RV modeling

approach over the daily returns approach with short- or long-memory GARCH-type models. Earlier papers

including Andersen et al. (1999), Blair et al. (2001) and Martens (2001) that explored how to take ad-

vantage of intraday data within the GARCH framework also underlie the shift of the focus of the volatility

literature to this approach. Ebens (1999) was also among the �rst to apply the ARFIMA model directly

to RV time series. His ARFIMAX model for the RV of the DJIA index portfolio returns incorporated

terms to capture the leverage effect, a well-documented stylized fact about equity returns. Koopman et al.

(2005) conducted an extensive forecast performance comparison study of the ARFIMA model for the RV

series of the S&P 100 stock index and the unobserved components RV (UC-RV) model of Barndorff-Nielsen

and Shephard (2002) as well as more traditional GARCH-type and SV models based on daily returns and

their implied-volatility-augmented versions, and reported that the ARFIMA model outperformed the other

models although the performance of the UC-RV model was nearly as good.

Corsi (2004) proposed the heterogeneous autoregressive (HAR) model for the RV as an alternative to the

ARFIMA model. The HAR-RV model employs a few predictor terms that are past daily RVs averaged over

different horizons (typically a day, a week, and a month), and is capable of producing slow-decay patterns

in autocorrelations exhibited by many RV series. Because of the ease in estimation and extendability of

the baseline model, the HAR model has quickly become popular for modeling the dynamics of RV and

other related volatility measures. Corsi et al. (2005), after �nding strong conditional heteroskedasticity

and non-Gaussianity in the ARFIMA and HAR residuals of the RV of the S&P 500 futures, introduced

the HAR-GARCH-NIG model, which augments the basic HAR model with NIG (normal inverse Gaussian)

distributed standardized innovations having a GARCH volatility dynamic structure. Subsequent papers

by Bollerslev et al. (2005) and Andersen et al. (2007a) also formulated the HAR errors as a GARCH

process. Note that when the time series being modeled measures volatility, its volatility is related to the
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volatility of volatility of the primitive price process. The volatility of volatility of an asset price process

is an important determinant of the tail property of the distribution of the asset's return, precise modeling of

which is crucial, for example, for managing the extreme risk of a portfolio involving the asset, or pricing

and hedging of out-of-the-money options written on the asset. Furthermore, a suite of volatility options

and futures at the Chicago Board of Options Exchange (CBOE) and the CBOE Futures Exchange (CFE)

written on U.S. equity market volatility indices, as well as a variety of over-the-counter volatility derivatives

on major indices around the world, have been traded actively in recent years. For each of these products,

the underlying is itself some measure of market volatility. As far as these volatility derivative products are

concerned, the volatility of volatility is a second-moment property, rather than a fourth-moment property, of

each of the respective underlying processes, and hence potential payoffs to accurate volatility-of-volatility

modeling may be substantial.

In this paper, we use the ARFIMAmodel with the GARCH(1,1) speci�cation for the error term (ARFIMA-

GARCH), to empirically investigate the dynamic behavior of the volatility of the daily RV of the Nikkei 225

index. The Nikkei 225 is the most widely watched indicator of the overall moves of the Japanese stock

market, one of the largest in the world in terms of capitalization and trading volume. Shibata (2004, 2008),

Shibata and Watanabe (2004), Watanabe (2005), Watanabe and Sasaki (2006), Watanabe and Yamaguchi

(2006) among others studied the RV of the Nikkei 225 index or index futures, and reported empirical �nd-

ings similar to those obtained for other major markets1. Although neither a volatility index calculated and

disseminated on a real-time basis by a major �nancial organization nor an exchange-traded volatility deriva-

tive has been introduced for any of the Japanese equity indices, Japanese-equity-related volatility derivatives

have recently been traded actively over-the-counter. Several papers applied the ARFIMA-GARCH model

to lower frequency macroeconomic and �nancial time series (e.g. Baillie et al. 1996, Ling and Li 1997,

Ooms and Doornik 1999), and a large number of papers in the RV literature employ the ARFIMA model

without a conditionally heteroskedastic error speci�cation to �t daily RV series (e.g. Oomen 2001, Giot

and Laurent 2004 as well as those already referenced above). To the author's knowledge, this paper is the

�rst to apply the ARFIMA-GARCH model to RV time series. Although several recent RV studies used the

HAR-GARCH in place of the ARFIMA-GARCHmodel primarily for ease of estimation, it is not dif�cult to

estimate a low-order ARFIMA or ARFIMA-GARCH(1,1) model by the conditional sum of squares (CSS)

estimator either. The CSS may be considered an approximate Gaussian maximum likelihood estimator

with all pre-sample innovations of the series set to zero or the unconditional mean. One advantage of the

1See also Takahashi et al. (2007), which applied their novel Bayesian SV approach that uses both trading-hour RV and daily

returns to the TOPIX, another widely watched index representing the Japanese stock market.

3



ARFIMA model is that it has the fractional integration parameter d explicitly incorporated into the model,

allowing one to estimate it jointly with the other parameters, a feature not shared by the HAR model, which

is not formally a long-memry model.

Another notable recent development in the RV literature is the approach due to Barndorff-Nielsen and

Shephard (2004, 2006a) of decomposing the RV into the contribution of continuous sample path variations

and that of jumps. Extending the theory of quadratic variation of semimartingales, Barndorff-Nielsen

et al. (2006a) provided an asymptotic statistical foundation for this decomposition procedure under very

general conditions; See also an exposition paper by Barndorff-Nielsen et al. (2006b). Andersen et al.

(2007a) used the HAR framework to study the roles of these two distinct components in RV prediction while

Andersen et al. (2007b) documented improvements in the RV forecasting accuracy achieved by modeling

these components separately. In light of these results, we estimate and remove the jump contributions

from the daily Nikkei 225 RV using the Barndorff-Nielsen procedure modi�ed by Andersen et al. (2007),

and study the continuous sample path variations as well as the raw realized volatility. Removal of the

estimated jump component did not affect our empirical results very much, but given the recent interest in the

literature in this methodology, we document both results. We �nd strong empirical evidence of conditional

heteroskedasticity in the ARFIMA errors, and some evidence of predictability of the time variation in the

volatility of the Nikkei 225 realized volatility.

The pace of progress in realized volatility research is yet to quiet down, but it is worth brie�y mentioning

before closing the introductory section that another new sub-area of active research has already emerged,

triggered by the introduction of volatility indices by several major exchanges. This strand of the literature,

which may be called the fourth wave of volatility research, studies the empirical properties of volatility

indices directly, rather than treating volatility as a latent process and attempting to conduct inferences about

it through GARCH-type models or SV models applied to daily asset returns data. By far the most prominent

of the volatility indices is the CBOE Volatility Index (VIX). The VIX index is a measure of the market's

expectation of the S&P 500 index volatility over the next 30 days implied by the prices of some of the

S&P 500 options traded at the CBOE. As mentioned above, the CBOE and its futures exchange (CFE)

already offer volatility options and futures based on some of their volatility indices, and obviously the

statistical properties of the levels of these indices are of interest on their own right. Moreover, to the extent

that the stock and options markets are integrated, the VIX as well as other indices formulated in a similar

fashion may be regarded as the latent volatility of the underlying index turned into an essentially observable

quantity. As is the case with the RV and related measures, this observability makes it possible to explore

�ner structures of volatility processes. Going beyond the analytically tractable class of af�ne jump diffusion
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models, Bakshi et al. (2006), Dotsis et al. (2007), and Duan and Yeh (2007) among others estimated the

constant-elasticity-of-variance(-of-variance) and other continuous-time volatility models using daily VIX

data and their empirical results are broadly in line with the predictable variation of the volatility of the

Nikkei 225 realized volatility that we document in this paper.

The remainder of the paper is organized as follows. Section 2 brie�y reviews the results from the theory

of bipower variation and jump component extraction. Section 3 describes the data and summary statistics.

Section 4 reviews the ARFIMA-GARCH model and reports estimation and forecasting results. Section 5

concludes.

2 Realized variance, realized bipower variation, and jump component ex-

traction

The starting point of the realized volatility research is the recognition of the well-known result in the theory

of continuous-time stochastic processes that the volatility of a process would be completely known if we

observed a continuous record of the sample path of the process. Although in reality we do not obtain

a continuous record and only observe the realized sample path of the process at discrete points in time,

the sum of squared increments of the process approaches the integrated variance as the return measurement

intervals shrink to zero. More precisely, if the process is a continuous semimartingale, under mild regularity

conditions,

RVt :=

1=�X
j=1

jrt+j�;�j2
p!
Z t+1

t
�2sds as � # 0 (1)

where rt+j�;� is the increment over the interval [t+ (j � 1)�; t+ j�] (in our context, the process is the

log of the Nikkei 225 index level process so that rt+j�;� is the log return), �t is the diffusion coef�cient

(instantaneous volatility) of the process, time t has a daily unit so that RVt is the tth day realized variance2.

We will hereafter use the term realized volatility (RV) to refer both toRVt de�ned in (1) and more loosely to

other related measures such as the realized bipower variation de�ned below3. If the process is a semimartin-

gale with �nite-activity jumps, i.e., only a �nite number of jumps occurring in any �nite time interval, such

as Poisson jumps, then the realized variance converges to the quadratic variation, which can be decomposed

2Stock exchanges (the Tokyo Stock Exchange in our case) are not open 24 hours a day. Strictly speaking, time t here is used in

two different ways: when we refer to the tth day RV and when we divide the trading hours [t; t + 1] of a particular day into 1=�

intervals. Our notation here also glosses over the existence of a lunch break.

3Some authors preserve the term realized volatility strictly for
p
RVt; and call RVt the realized variance.
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into the integrated variance (the continuous sample path variation) and the sum of squared jump sizes:

RVt
p!
Z t+1

t
�2sds+

X
t<s�t+1

�2s as � # 0 (2)

where �s is the size of the jump occurring at time s. Barndorff-Nielsen and Shephard (2004, 2006c) showed

that even in the presence of jumps the realized bipower variation

BVt :=
�

2

1=�X
j=2

jrt+j�;�j
��rt+(j�1)�;��� p!

Z t+1

t
�2sds (3)

holds under mild conditions, and proposed to use

RVt �BVt
p!

X
t<s�t+1

�2s (4)

or

J�t := (RVt �BVt)
+ (5)

as an estimator for the sum of realized squared jumps
P
t<s�t+1 �

2
s . J�t is known to take non-zero, small

values very frequently due to measurement errors and due possibly to the presence of jumps of in�nite-

activity types. Based on the asymptotic distributional theory for these quantities developed by Barndorff-

Nielsen and Shephard (2004, 2006c) and Barndorff-Nielsen et al. (2006a) and an extensive simulation study

by Huang & Tauchen (2005), Andersen et al. (2007a) introduced what they call a shrinkage estimator for

the jump contribution

Jt := I (Zt > �a) � (RVt �BVt) (6)

where I is an indicator function, Zt :=
(RVt�BVt)RV �1tq

((�=2)2+��5)max(1;TQtBV �2t )�
is asymptotically standard nor-

mally distributed, �1 :=
p
2=�; �a := � (a) is the standard normal distribution function, and the (stan-

dardized) realized tripower variation

TQt := �
�14�1�3=2�

�
7

6

��3 1=�X
j=3

jrt+j�;�j4=3
��rt+(j�1)�;���4=3 ��rt+(j�2)�;���4=3 p!

Z t+1

t
�4sds as � # 0

(7)

The last convergence result holds even in the presence of jumps. a is usually set to values such as .999

so that Jt picks up only "signi�cant" jumps. With Jt; another estimator of the continuous sample path

variation:

Ct := RVt � Jt (8)

may be used in place of BVt.
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In this paper, we use the microstructure-effects-robust versions of BVt and TQt; due also to Andersen

et al. (2007a). In these versions, the summands are respectively (1� 2�)�1 jrt+j�;�j
��rt+(j�2)�;��� and

(1� 4�)�1 jrt+j�;�j4=3
��rt+(j�2)�;���4=3 ��rt+(j�4)�;���4=3, skipping an interval of length � in sampling

short-period returns. The de�nitions of Jt and Ct are modi�ed accordingly as well.

3 Data and summary statistics

3.1 Calculation of �ve-minute returns from minute-by-minute Nikkei 225 data and RV

measures

Nihon Keizai Shinbun, Inc. (Nikkei) computes and disseminates the Nikkei 225 index once every minute

during the trading hours of the Tokyo Stock Exchange (TSE) (09:00-15:00 with a 11:00-12:30 lunch break)4.

In this paper, we use minute-by-minute Nikkei 225 index data provided directly by Nikkei and maintained

by the Center for Advanced Research in Finance at the University of Tokyo. The sample period spans March

11, 1996 through August 31, 2007. From the minute-by-minute data, we construct a series of �ve-minute

log differences multiplied by one hundred, which we call "�ve-minute (percentage) returns." This choice

is made to strike a balance between alleviating the microstructure-related noise and increasing the precision

of volatility measurement, following the standard practice of the RV literature in handling high-frequency

intraday data from highly liquid markets. Andersen et al. (2000) and the other empirical papers dealing

with the RV of the Nikkei 225 cash or futures referenced in the introduction also used �ve-minute returns.

For further discussions of the miscrostructure-related issues, see Hansen and Lunde (2005a) and references

therein.

The of�cial minutely Nikkei 225 index starts at 09:01 for the morning session, and the �rst �ve-minute

return in a given day that we calculate is for the 09:05-09:10 interval as in Andersen and Bollerslev (2000).

Removal of the �rst four observations partially alleviates possible effects of the sluggish response of the

Nikkei 225 to the information accumulated overnight (or over a weekend or holiday) on volatility measure-

ment. Given the TSE trading rules, the 9:05 index value is unlikely to have fully impounded all overnight

information in it when overnight domestic and overseas events move the overall Japanese stock market up

or down by a large amount relative to the previous close5, and again our choice here is an attempt for a

4Most of the major TSE-listed companies are dually listed on the Osaka Securities Exchange (OSE), which closes at 15:10. The

OSE is the only domestic exchange where the Nikkei 225 futures and options are traded. Nikkei, however, calculates the Nikkei

225 index based on electronic data feed from the TSE with generally higher volumes in individual stock trading.

5The TSE trading rules limit the range of prices at which shares of each individual stock is allowed to trade. For each stock,
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balance between higher precision and lower bias. For the afternoon session, the index starts at 12:31. Since

the effect of the TSE trading rules hampering the Nikkei 225 index from quickly re�ecting the information

accrued over a lunch break is likely to be much milder, the 12:31-12:35 interval is retained and used in our

calculation of the �rst �ve-minute return.

For the end price of the last �ve-minute return calculation of each session, we use the closing price of

the session. Due to such factors as delayed arrival of individual stock price data from the TSE and the

real-time nature of the Nikkei 225 calculation and dissemination, the �nal few observations of each session

are occasionally marked by time stamps up to several minutes later than 15:00 (11:00). For sessions with

such observations as well, we use the last recorded observation of the session for closing the last �ve-minute

interval. In total, there are 53 �ve-minute returns for a typical trading day, 23 from the morning session

and 30 from the afternoon session. We exclude sessions from half trading days including the �rst and last

trading days of each year from our sample, retaining 2,802 trading days.

We then calculate RVt for each day using all �ve-minute returns from the day. For the other associated

measures such as BVt involving lagged returns, we do not treat the morning session's last few and the

afternoon session's �rst few as consecutive observations since there is an intervening lunch break. This

entails a loss of several more �ve-minute return observations for these measures. RV �t := RVt + R2n;t +

R2l;t may be used to de�ne the RV for the day, where Rn;t is the previous-day-close-to-open (15:00-9:05)

overnight return and Rl;t is the lunch break (11:00-12:30) return6. Since the TSE is open only 4.5 hours

a day, however, it would be a stretch to treat RV �t an observed realization of the volatility for the whole

day. We therefore concentrate on RVt and related measures calculated from �ve-minute returns when

investigating the behavior of the volatility of volatility.

3.2 Properties of the realized volatility and related measures

Summary statistics for various returns, RV measures, and their log and square-root transformations are

presented on Tables 1. In addition to the sample skewness and kurtosis, the Jarque-Bera (JB) statistic is

this range is initially set around the reference price based on the last execution price, and when no trade takes place within it for

�ve minutes due to an order imbalance, it is given a shift of a predetermined size once every �ve minutes until a trade takes place.

The TSE announces either the upper or the lower end of the range as the "special quote." The special quotes of the constituent

individual stocks, if there are any, are used in place of the more stale last transaction prices in the calculation of the Nikkei 225

index.

6In their empirical analysis of the Nikkei 225 futures RV, Shibata and Watanabe (2004) used RV �
t and several other measures

with more sophisticated weighting schemes that extend Martens (2002).
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presented for each series. It is designed to jointly measure the deviations of the sample skewness and

kurtosis from their respective population values, zero and three, under normality. For an i:i:d: normal

series, the JB statistic is asymptotically distributed �2 (two degrees of freedom). The simulation work

of Thomakos and Wang (2003) has shown, however, that the JB statistic grossly overrejects the null of

normality if the data are a sample path of a long-memory process. Hence, it should be treated here as an

informal descriptive statistic.

For checking temporal dependence, the �rst-order sample autocorrelation and the Ljung-Box statistics

of orders 5, 10, and 22 (corresponding to roughly one week, two weeks, and a month) for no serial cor-

relations up to their respective orders are shown for each series. Since the usual Bartlett's standard error,

T�1=2 = 0:01 9; is biased under heteroskedasticity, the heteroskedasticity-adjusted standard error for the

�rst-order autocorrelation and Ljung-Box statistics due to Diebold (1988) are also presented. Previous em-

pirical studies have documented that daily volatility measures such as the daily return squared, the absolute

daily return, and various daily RV measures of �nancial time series appear to have long-memory properties.

For long memory processes, the in�uence of shocks does not last forever unlike in the case of integrated

processes, but decays very slowly relative to the geometrically fast decay for short-memory processes. For-

mally, there are several de�nitions of long memory. A usual de�nition of long memory for a covariance

stationary time series, which we adopt in this paper, is that

1X
k=�1

j
 (k)j =1 (9)

holds where 
 (k) is the kth order autocovariance. Another de�nition of long memory for a covariance

stationary process is that 
 (k) decays hyperbolically, i.e.,


 (k) � k2d�1l (k) (10)

as k ! 1, where l is some slowly varying function and d < 1=2 is called the long-memory parameter.

If the process is a covariance stationary one satisfying some regularity conditions, (10) with d 2 (0; 1=2)

implies (9). For a review of alternative de�nitions and their relations to each other, see e.g. Palma (2007).

Before estimating the ARFIMA and the ARFIMA-GARCH models for the RV series, we estimate

the long-memory parameter d for our various series via two popular semiparametric estimators bdGPH ;bdRobinson, due respectively to Geweke-Porter-Hudak (1983) (GPH) and Robinson (1995a), with the band-
width parameter m set at m = T 0:7 where T is the sample size. The asymptotic standard errors for bdGPH
and bdRobinson are respectively �=p24m and 1= (2pm), and hence the latter is asymptotically more ef�cient
for a given m. d is equal to the d in the fractional differencing parameter d if the process is a fractionally
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integrated process, reviewed in the next section, and its de�nition can be extended to the nonstationary re-

gion d � 1=2. The region of the true d over which bdGPH and bdRobinson are consistent and asymptotically
normal extends beyond 1=2. For these properties, neither bdGPH nor bdRobinson requires Gaussianity, and
the latter does not require conditional homoskedasticity. See Robinson (1995b), Velasco (1999), Deo and

Hurvich (2001), and Robinson and Henry (1999).

Summary statistics for Rt, Rn;t, Ram;t (9:05-11:00 returns), Rl;t, and Rpm;t (12:30-15:00 returns) are

presented on the top part of Table 1. All of these log return series have means insigni�cantly different from

zero and exhibit evidence for nonnormal unconditional distributions (in particular Ram;t) and little evidence

for the presence of autocorrelations except that there is some weak evidence of autocorrelations in Rl;t and

Rpm;t:

Looking at the summary statistics for RVam;t (the morning RV component), RVpm;t (the afternoon RV

component) andRVt = RVam;t+RVpm;t; their unconditional distributions all seem to be highly nonnormal

with very large positive values of sample skewness and kurtosis. The LB statistics indicate that each of

the three series is highly signi�cantly serially correlated. The values of the �rst-order sample autocorre-

lations, 0.429 (RVam;t), 0.355 (RVpm;t), and 0.544 (RVt), are at medium-persistent levels and well below

one, but the values of bdGPH (.460 for RVam;t; .364 for RVpm;t; and .470 for RVt with standard errors

.040) and bdRobinson (0.454 for RVam;t; 0.376 for RVpm;t; and 0.468 for RVt with standard errors .0311) are
signi�cantly positive but below the stationary/nonstationary border of 1/2 for all three, indicating that auto-

correlations decay slowly for these series. Note, however, that for RVt and RVam;t, bdGPH and bdRobinson
are within two standard errors from 1/2.

Deviations from normality seem to be vastly reduced by the square-root transformation, but remain

large. The log transformation brings down the sample skewness and kurtosis values for each series even

further and close to zero (-.177 for RVam;t; -.182 for RVpm;t, and -.130 for RVt) and three (3.272 for

RVam;t; 3.260 for RVpm;t, and 3.234 for RVt) respectively. Each of these two transformations increases

the values of the �rst-order sample autocorrelation, LB statistics, and the two semiparametric estimates of

d. For example, for RVt; the �rst-order sample autocorrelation increases to .663 (
p
RVt) and .713 (lnRVt),

and bdGPH ; bdRobinson increase to values in excess of 1/2 (557, .524 for pRVt and .584, .533 for lnRVt).
Other than our point estimates of d being in the nonstationary region, these results are roughly in line with

earlier empirical �ndings about RV measures constructed from high-frequency intraday exchange rate and

stock returns data, which led to the popularity of the Gaussian ARFIMA model; See e.g. Andersen et al.

(2003).

Additionally, summary statistics for RVNW;t; RVHL;t; RVNWHL;t and their respective transformed ver-
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sions are shown on Table 1. RVNW;t := RVNW;am;t + RVNW;pm;t where RVNW;am;t and RVNW;pm;t are

respectively the Newey-West-type estimates of the morning-session and afternoon-session RVs. RVHL;t

(RVHLNW;t) weights the four componentsR2n;t,RVam;t; R2l;t; RVpm;t (R
2
n;t; RVNW;am;t; R

2
l;t; RVNW;pm;t)

more ef�ciently. All of these estimators are due to Hansen and Lunde (2005a, 2005b). RVNW;t behaves

similarly to RVt and Ct; and we do not further report their dynamic properties in this paper. We do not

further investigate RVHL;t or RVNWHL;t for the same reason we do not study RV �t :

Turning next to the Barndorff-Nielsen decomposition of RVt into the contribution of squared jumps and

that of continuous sample path variations, we set a = :999 in (6). Again, we present separate results for the

morning, the afternoon, and the whole daily trading hours, but focus on the whole-trading-day statistics in

our brief discussion. Summary statistics of the square-root and log (ln (1 + Jt) for Jt) transformed series

are also presented on Table 1. The sample mean of I (Zt > �a) ; which is an estimate of the unconditional

jump probability over the trading hours of a day, is .159, implying a little more than one jump occurrences

per week7. On average, the jump contribution Jt comprises about 4% (= :045=1:087) of the RV over

trading hours. Not surprisingly, given the results of previous studies on the S&P 500 futures and other

�nancial time series (e.g. Andersen et al. 2007a, Andersen et al. 2007b), Jt is distinctly less persistent

although the unobserved conditional jump probability series (as opposed to the realized jump series Jt)

might be more persistent. And the standard deviation of Jt (.154) is not negligible relative to that of Ct

(1.03). Hence, using Ct; purged of the jump component with a different dynamic behavior, may reveal a

higher-resolution picture of the dependence structure of Ct: For our analysis via the ARFIMA-GARCH

model, we use Ct as well as RVt: It turns out, however, that the ARFIMA-GARCH estimation results for

Ct are similar to those for RVt:

4 Modeling and forecasting the conditional mean and the conditional vari-

ance of the RV with the ARFIMA-GARCH model

4.1 The ARFIMA-GARCH model and its estimation

The ARFIMA model, introduced by Granger and Joyeux (1980), and Hosking (1981), is a natural extension

of the ARIMA model for parsimoniously modeling time series with long memory. An ARFIMA(p; d; q)

process fYtg may be de�ned as a causal solution to

� (L) (1� L)d (Yt � �) =  (L) "t (11)

7Using a less stringent value a = :99, the estimated jump probability becomes .296, or an average once per 3.38 trading days.
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where � 2 R, � (L) = 1 � �1L � � � �� �pL
p;  (L) = 1 +  1L + � � �+  qL

q are respectively the

AR and MA operators, sharing no common roots, (1� L)d is the fractional differencing operator, and

f"tg � WN
�
0; �2

�
; 0 < �2 < 1. If all roots of � (z) and  (z) lie outside of the unit disk and

d 2 (�1; 1=2) holds, then there is a unique covariance stationary solution which is invertible8. It can be

shown that the autocovariance function of this solution satis�es


 (k) � jkj2d�1 c (12)

as jkj ! 1 where c is a constant (see e.g. Palma 2007, p.48). In particular, it exhibits long memory if

d > 0: Hence, the fractional integration parameter d in (11) corresponds to the long-memory parameter d

in (12). Also of note is that an ARFIMA process with d � 1=2 is nonstationary but still mean-reverting as

long as d < 1 (See Baillie 1996, p.21). If d 2 [1=2; 1) ; we may interpret fYtg as a process, starting from

some �nite past and satisfying (11), which becomes a stationary ARFIMA(p; d � 1; q) process after being

differenced once.

Following Ding et al. (1993) that found extremely slow decay patterns in the sample autocorrelation

functions of daily volatility measures such as absolute returns, features meant to capture the long-range

dependence in volatility have been incorporated into GARCH-type models (e.g. the FIGARCH model) and

stochastic volatility models; see e.g. Baillie et al. (1996a), Bollerslev and Mikkelsen (1996), Breidt et al.

(1998), Deo and Hurvich (2003). Since the daily RV time series appears to have long-memory properties

and is a series of observed quantities, the ARFIMA model is a natural modeling choice. Baillie et al.

(1996b) extended the ARFIMA model to include a GARCH speci�cation for conditional heteroskedasticity

and used it to analyze the in�ation rate time series from the G7 and three other high in�ation countries. See

also Hauser and Knust (1998, 2001) for applications of the ARFIMA model with ARCH errors. In this

paper, we apply the ARFIMA-GARCH(1,1) model in which ht := Et�1
�
"2t
�
; the conditional variance of

"t with respect to the sigma-�eld � (Yt�1; Yt�2; � � � ) ; is given the following formulation:

ht = ! + �ht�1 + �"
2
t�1 (13)

For the stationary ARFIMAmodel with Gaussian homoskedastic errors, Sowell's (1992) algorithm for exact

maximum likelihood estimation is available. For the ARFIMA-GARCH model, however, no closed-form

expression for the exact likelihood function is available. Hence, we employ the conditional sum of squares

8Bondon and Palma (2007) recently proved invertibility for d > �1, relaxing the condition d > �1=2 often cited in the

literature.
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(CSS) estimator: b� := argmax
�

L (�) (14)

where � :=
�
�; �01

�0
; �1 :=

�
�1; � � � ; �p;  1; � � � ;  q; d; !; �; �

�0 and
L (�) := �1

2

TX
t=1

�
lnht (�) + Zt (�)

2
�

(15)

Zt (�) := "t (�) =
p
ht (�)

"t (�) :=  (L)�1 � (L) (1� L)d (Yt � �)

ht (�) = ! + �ht�1 (�) + �"t�1 (�)
2 (16)

with the presample values of Yt � �; t = 0;�1;�2; � � � set to zero and h1 (�) set to some initial value.

If d � 1=2, Yt does not have an unconditional mean and � cannot be interpreted as such. For this case,

(1� L)d (Yt � �) = (1� L)d�1�Yt but note that �Y1 = Y1 � Y0 = Y1 � � under our choice of the

presample values so that � does not disappear. We equate h1 (�) to the value of the sample variance as

is often done in the estimation of GARCH-type models. In estimation, we do not impose d < 1=2 (plus

� + � < 1 for the GARCH speci�cation) necessary for covariance stationarity. We estimate the ARFIMA

with a homoskedastic speci�cation, i.e., ! = �2; � = � = 0; by the CSS estimator as well for comparability

of results across homoskedastic and GARCH speci�cations. The objective function maximized by the CSS

estimator is essentially the Gaussian maximum likelihood (without the constant�T
2 ln (2�) ) for the AR(1)

representation of the ARFIMA-GARCHmodel with the conditional distribution of "t speci�ed asN (0; ht),

conditional on the presample values and h1. Hence, the CSS estimator for the ARFIMA-GARCH model is

a long-memory analogue of what we usually refer to as the (quasi-)maximum likelihood estimator, (Q)MLE,

in the short-memory ARMA-GARCH setting. Note that the exact likelihood is not available in closed form

for the latter case either. Extending the results of Beran (2004) for the ARFIMA model, Ling and Li (1997)

showed that the CSS estimator is
p
T -consistent and asymptotically normal for the ARFIMA (p; d; q)-

GARCH(P;Q) model. Their results are also valid for the nonstationary case in which the true value of d is

larger than 1/2. This is a desirable property particularly because d estimates are found to be near or greater

than 1/2 in our semiparametric estimation as well as other studies of �nancial time series data, and is another

justi�cation for using the CSS estimator. Of course, one could work with a differenced series, but with

estimated d near the boundary 1=2, one cannot be con�dent about the appropriateness of such a procedure

Ling and Li (1997) derived
p
T -consistency for b�1 assuming that � is known. Hence, strictly speaking,

their results are not applicable to b�: However, it seems reasonable to expect that �T 1=2�db�; T 1=2b�01�0 has
a Gaussian limiting distribution as long as the other conditions of Ling and Li (1997) are satis�ed and
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d < 1=2 9. Another caveat is that the asymptotic results of Ling and Li (1997) are based on the assumption

E
�
"4t
�
<1. If f"tg follows a GARCH(1,1) process and the standardized error sequence

n
Zt := "th

�1=2
t

o
is i:i:d: with � := E

�
Z4t
�
< 1; this condition amounts to ��2 + 2�� + �2 < 1. Our estimation results

indicate that a covariance staionarity condition � + � < 1; let alone the more stringent condition � < 1,

may not be satis�ed by some of the series we study. However, this is not likely to invalidate estimation

and inference based on Ling and Li (1997). Hansen and Lee (1994) established (local) consistency and

asymptotic normality of the Gaussian QMLE for the GARCH(1,1) model when the true values of �; � may

not be in the covariance stationarity region � + � < 1 but are in the strict stationarity region satisfying

E
�
ln
�
� + �Z2t

��
< 0. Jensen and Rahbek (2004), focusing on the estimation of (�; �) and working

with a different set of assumptions on fZtg proven that the consistency and asymptotic normality results of

Hansen and Lee (1994) extend to the case of conditional variance explosionE
�
ln
�
� + �Z2t

��
> 0. Unlike

in our case, however, they both assumed Yt = �+"t with either � a constant to be estimated jointly with the

other parameters (Hansen and Lee 1994) or � = 0 known (Jensen and Rahbek 2004). To our knowledge,

rigorous asymptotic theory for the ARFIMA-GARCH model with � + � � 1 is not yet available in the

literature.

Given the strong evidence to be reported shortly against conditional normality of the standardized error

Zt except when Yt is lnRVt or lnCt, we also present the robust standard errors of Bollerselv andWooldridge

(1992) interpreting our estimator as a QMLE. For the models with the GARCH speci�cation, the Bollerslev-

Wooldridge standard errors are robust to distributional misspeci�cation of Zt under correct speci�cation of

the conditional mean and variance and regularity conditions. We use the BIC10 as our model selection crite-

ria and con�ne our search for the best model to a total of 64 models: The full ARFIMA(2,d,2)-GARCH(1,1)

model and its 63 restricted versions (at least one of the ARFIMA parameters, �1; �2;  1;  2; d; is �xed at

zero and/or no conditional heteroskedasticity (�; �) = 0). �; ! are always estimated with the other para-

meters. Let us denote, for example, the ARFIMA(2,d,0) model with the �rst-order AR coef�cient restricted

to be zero as the ARFIMA({2},d; 0). We denote the other models with second-order terms similarly.

When modeling a time series of daily currency or stock returns, the conditional mean is small relative

9For the case of d � 1=2; Ling and Li (1997) considered estimating the parameters in � (L) (1� L)d�m ((1� L)m Yt � �) =

 (L) "t with � 6= 0 unknown and estimated separately from the other paramters, wherem is the smallest positive integer such that

d�m < 1=2. Ifm = 1; this implies that fYtg has a linear time trend, which is counterintuitive in our case where Yt is a measure

of volatility.

10BIC = �2L�
�b�� + N lnT where N is the number of parameters, L�

�b�� is the value of the maximized log likelihood
function L�

�b�� = L
�b��� T ln (2�) ; and L (�) is as de�ned in (15).
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to the variance so that setting it to zero or a constant instead of �tting a more elaborate model usually does

not much affect the estimation of the volatility process. Since the RV is highly persistent, it is essential to

adequately model the conditional mean part of the RV even if one's primary interest is in the conditional

variance of the RV. Otherwise, misspeci�cation in the mean may masquerade as conditional heteroskedas-

ticity. See Diebold and Nason (1990) for a study focusing on this issue.

Recently, the HAR model proposed by Corsi (2003) has also been frequently used in the RV literature

because of its �exibility in terms of accommodating predetermined variables other than pure lagged depen-

dent variables and ease of estimation; See e.g. Andersen et al. (2007), Bollerslev et al. (2005), Forsberg

and Ghysels (2006), and Shibata (2008). The HAR model is a high-order AR model which restricts the

parameters in an intuitively appealing way, and can also be extended to have conditionally non-Gaussian,

conditional heteroskedastic error speci�cations; See Corsi et al. (2007). Although it can roughly match

slowly decaying autocorrelation patterns exhibited by observations of many RV time series, the HAR model

is formally not a long-memory process. Of course, lack of the long memory property in the formally de�ned

sense per se is not a shortcoming of the HAR model. Long memory being an asymptotic property of 
 (k)

as jkj ! 1; the concept is strictly speaking not applicable to a �nite segment of a time series anyway, and

a primary objective of using long-memory-type models is to give a parsimonious approximation to the DGP

that generates RV data with slowly decaying sample autocorrelations. For this purpose, both ARFIMA and

HAR models seem to do an admirable job. Nevertheless, it is still of interest to estimate the long-memory

parameter d in a simple uni�ed framework provided by the ARFIMA model.

4.2 ARFIMA-GARCH estimation results

Many empirical studies of time series data set aside a hold-out sample for out-of-sample performance eval-

uation. In our case, however, we already know, based on the results reported in the literature, that the

ARFIMA model would perform well as a time series model for the conditional mean for our entire sample,

and we are not running a horse race of a myriad of models in out-of-sample forecasting. Rather, our objec-

tive is simply to get a �rst handle on the time-series behavior of the volatility of the Nikkei 225 RV using the

ARFIMA-GARCH model. We do search for the best order within the ARFIMA(2,d,2)-GARCH(1,1) class,

but it is done in an attempt to adequately �lter out the conditional mean component before the volatility

of the RV can be analyzed. Remaining serial correlations in the ARFIMA residuals may lead to spurious

predictability of the volatility of the RV. Hence, we �rst use the entire sample (2802 daily observations)

available to us to estimate the full ARFIMA(2,d,2)-GARCH(1,1) model and 63 restricted versions. For

order selection, we employ the BIC.
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In applying the ARFIMA-GARCH model, we work with transformed series lnRVt; lnCt and
p
RVt;

p
Ct as well as the original seriesRVt; Ct: It should be emphasized that, although the results for all six series

are presented and discussed together and some comparisons in terms of model adequacy are made across

the two series RVt and Ct and across different transformations, each series is being investigated on its own

right, and that the BIC values and other speci�cation test statistics and forecast performance measures are

not directly comparable across the six series. It is beyond the scope of this article to address the issue of

which series should be used as the LHS variable of the ARFIMA-GARCH model in a forecast exercise with

a particular loss function11 although our results contain information relevant to this issue.

Table 3 summarizes the parameter estimation results. For brevity, only the results for the best short-

memory model, the best homoskedastic model and its GARCH(1,1) counterpart, and the best overall model

and its homoskedastic counterpart (if the best overall model is not a homoskedastic one). Table 4 presents

summary statistics and some speci�cation test statistics for the residuals of these models.

4.2.1 Estimation results for the ARFIMA model with the constant error variance speci�cation

Our estimation results for the ARFIMA model with the constant error variance speci�cation and various

order restrictions are similar to those previously reported in the literature for the RVs of the Nikkei 225 cash

index and index futures and other �nancial time series. The order selected by the BIC is the ARFIMA(0,d,1)

for all series except lnRVt: For lnRVt, the ARFIMA(2,d,0) is selected. So the effect of �ltering out the

jump component is not so large as to in�uence the ARFIMA order selection for our sample except when

log transformation is applied. The difference in the BIC values between the ARFIMA(2,d,0) and the

ARFIMA(0,d,1) is rather small (Estimation details of the latter are not reported). Note that for all series the

BIC selects an order (p,d,q) with either p > 0 or q > 0; but not both, and d not restricted to be zero.

The estimated values of d in the BIC-selected homoskedastic ARFIMA models are 0.496 (RVt), 0.519

(lnRVt), 0.539 (lnRVt), 0.494 (Ct), 0.516
�p
Ct
�
, 0.509 (lnCt). At usual levels, all of these are signi�-

cantly higher than zero, but none are signi�cantly different from the nonstationarity boundary of 1/2. Hence

it is hard to conclude from bd whether these series are nonstationary.
On Table 4, the �rst-order sample serial correlations (the Bartlett's standard errors T�1=2 = 0:019; and

the heteroskedasticity-adjusted standard errors given in parentheses) and the LB portmanteau statistics (the

�rst lines) for testing the null of no serial correlations of orders up to 5, 10, and 22 (roughly corresponding

11Suppose, for example, that our goal is to minimize the mean squared errors in forecasting RVt one-step-ahead. Since

exp (Et�1 [lnRVt]) 6= Et�1 [RVt] by Jensen's inequality, we need to speci�y more than the �rst two condtional moments of

lnRVt to produce an optimal forecast for RVt if we are to work with flnRVtg instead of directly with fRVtg :

16



to a week, two weeks, and a month) are presented on Table 4. The sample autocorrelations are smaller

than 0.01 in absolute magnitude and are hence insigni�cant at usual levels even using T�1=2 = 0:019,

which is much smaller than the heteroskedasticity-adjusted versions. The values of the LB statistics for

the residuals of the models of the raw series RVt and Ct are apparently large enough, whether or not the

degrees of freedom is reduced by the number of estimated parameters in obtaining the �2 critical values, to

indicate that serial correlations are not adequately �ltered out by the selected ARFIMA models although for

the log and square-root transformed series they are not signi�cant. However, in the presence of conditional

heteroskedasticity, the Bartlett's standard error is not a consistent estimator of the standard deviations of the

sample serial correlations, and consequently the LB statistic is not asymptotically distributed �2 (k) under

the null of no serial correlations of orders up to k. In particular, if the squared series is positively autocor-

related, the Bartlett's standard error overestimates the estimation precision of sample autocorrelations and

as a result the LB statistics overreject the null. Note that under the null of conditional homoskedasticity,

the squared ARFIMA errors are serially uncorrelated, but that under correct speci�cation of the condi-

tional mean only, the squared residuals may be serially correlated while
�b�; b�1; � � � ; b�p; b 1; � � � ; b q� may

still consistently estimate the true values. Therefore, we also report Diebold's (1988) heteroskedasticity-

adjusted LB statistics (on the second lines), according to which there is no strong evidence of remaining

serial correlations in the residuals of any of the best homoskedastic models. The reductions in the LB

statistics due to the adjustment are particularly substantial for the residuals of the models of the raw series

RVt and Ct.

Although the estimates of the long-memory parameter d; when not restricted to be zero, are signi�cantly

greater than zero and the BIC favors the long-memory models, the heteroskedasticity-adjusted LB statistics

for the residuals of the BIC-selected short-memory models are only marginally signi�cant for the raw series

RVt andCt and insigni�cant for the four transformed series. For each series, the best short-memory ARMA

model achieves this by mobilizing more AR and MA terms than the best homoskedastic long-memory

model, but yet are not quite as successful12.

The very large values of sample skewness and kurtosis of the residuals from the raw series RVt and

Ct shown on Table 4 suggest that the unconditional distributions of the error term are highly nonnormally

distributed. The square-root transformation of RVt and Ct vastly reduces the values of these measures of

nonnormality, but still far above those of a normal distribution. The log transformation bring the residual

distributions closer to normality, but the sample kurtosis values are still nearly 4.

12To save space, only the results for the BIC-selected models among the short-memory models with or without the GARCH

speci�cation are presented. The same is true, however, when the best models are selected from among the homoskedastic models.
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In sum, it appears that parsimonious ARFIMA models are reasonably successful in removing serial

correlations although some evidence of remaining serial correlations is found for the residuals of the models

of the raw series RVt and Ct.

The discrepancies between the values of the unadjusted LB statistics and those of the heteroskedasticity-

adjusted ones already indicate the presence of conditional heteroskedasticity in the form of serial correlations

in "2t : Next we directly test the null of no serial correlations in "2t : McLeod and Li (1983) showed that,

under the null of homoskedasticity, the asymptotic distribution of the sample autocorrelations in the squared

residuals b"2t is multivariate standard normal, not affected by the replacement of the unobservable errors
"t of an ARMA model by the residuals b"t. Hence, parameter estimation does not impact the asymptotic
null distribution of the LB statistic, called the McLeod-Li statistic in this context, which is �2 (k) using

sample serial correlations of k different orders in the squared residuals. The McLeod-Li statistics for

the squared residuals from the selected models are all very large, cleanly rejecting the null of no serial

correlations of orders up to 5, 10, and 22 at usual levels. With this evidence, we turn to modeling conditional

heteroskedasticity with the ARFIMAmodel augmented by the GARCH(1,1) speci�cation for the error term.

4.2.2 Estimation results for the ARFIMA-GARCH(1,1) model

We next compare all 64 versions of the ARFIMA(2,d,2)-GARCH(1,1) model including those without the

constant error variance restriction � = � = 0. For each of the six series, the BIC selects a model with

the GARCH(1,1) speci�cation, more speci�cally, the ARFIMA(2,d,0)-GARCH(1,1) for RVt;
p
RVt; the

ARFIMA(0,d,1)-GARCH(1,1) for
p
Ct; lnCt; and the ARFIMA(f2g,d,1)-GARCH(1,1) for lnRVt; Ct:

The estimation results for the selected model are shown at the bottom of the section of Table 3 for each

series, together with the results for the homoskedastic version of it. As expected from the LB statistics for

the squared residuals from the conditionally homoskedastic models, the improvement in the log likelihood

value achieved by giving the GARCH(1,1) speci�cation for the error process is substantial for each series.

Also as expected, the addition of the GARCH(1,1) speci�cation to the homoskedastic model of the same

ARFIMA order does not alter the ARFIMA parameter estimates very much in most cases, and consequently

the distributions of the residuals remain similarly nonnormal (Table 4). In spite of this, for RVt;
p
RVt;

lnRVt; Ct, the ARFIMA order changes when the GARCH(1,1) speci�cation is allowed, which is not sur-

prising since the differences in the BIC values amongst the highest BIC-ranking homoskedastic versions are

small.

As for the estimation of the GARCH equation, we �rst discuss the results for the raw series RVt; Ct:

The point estimates of the volatility-of-the-RV persistence measure � + � are in excess of the covariance
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stationarity threshold of one although not signi�cantly so. The Bollerslev-Wooldridge standard errors of

the GARCH parameters are rather large, in fact several times larger than the Hessian-based ones and renders

even b� = 0:263 insigni�cantly different from zero. The values of the sample skewness and kurtosis and the
JB normality test statistic of the standardized residuals bZt := "t �b�� =h�1=2t

�b�� (shown on Table 4) indicate
very high degrees of conditional nonnormality of the error terms of the models for the raw series RVt and

Ct
13. This at least partially explains the large discrepancies between the Bollerslev-Wooldridge standard

errors and the Hessian-based standard errors and suggest that substantial ef�ciency gains may be obtained

by adopting a non-Gaussian QMLE, but non-Gaussian QMLE requires additional conditions for ensuring

consistency under distributional misspeci�cation; See Newey and Steigerwald (1997). As a check of the

GARCH(1,1) speci�cation, we calculate the LB statistics for no correlations in the squared standardized

residuals (Table 4). Unlike in the case of the McLeod-Li test statistics for no serial correlations in the

squared raw residuals, parameter estimation affects the asymptotic distribution in this case. Bollerslev and

Mikkelson (1996) suggest a heuristic adjustment of reducing the degrees of freedom of the �2 distribution by

the number of estimated parameters. The values of the LB statistics are greatly reduced by standardization

although they are still high enough to reject the null whether the degrees-of-freedom adjustment is applied

or not (when the number of lag orders is 5, this adjustment obviously cannot be applied)14 except for the

statistic for lag orders up to 22 and Yt = RVt.

As for the four transformed series, both � and � are estimated to be signi�cantly above zero, but the

estimates of � + � do not exceed one, although for the log transformed series, it is very close to one.

For the log transformed series, � estimates are rather small, which together with � + � estimated to be

nearly one implies a slowly varying conditional mean process as shown on Figures 2a and 2b. Again, the

values of the LB statistics for the squared standardized residuals are substantially reduced from the versions

calculated for the raw squared residuals, but are still large enough to reject the null of no serial correlations.

For
p
RVt and

p
Ct; the degrees of nonnormality in the residuals are hugely reduced but not to near normal

levels. For lnRVt and lnCt; the raw residuals are not highly nonnormal to begin with, and the effects of

standardization are much smaller than in the case of the raw or square-root transformed series. Consistent

13Kulperger and Yu (2005) proved that the asymptotic distribution of the Jarque-Bera-type moment-based distributional test

statistic based on bZt rather than Zt is �2 (2) ; unaffected by parameter estimation if the conditional variance is correctly speci�ed
and fZtg is an i.i.d. sequence. For testing normality, these conditions imply that the Gaussian QMLE is the MLE. One of their

additional assumptions is that the conditional mean of the observed variable Yt is zero, which is not satis�ed by our ARFIMA-

GARCH case.

14Li and Mak (1994) proposed a more elaborate statistic that correctly accounts for this effect.
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with near normality, the discrepancies between the Bollerlsev-Wooldridge standard errors and the Hessian-

based ones are not very large for these log-transformed variables. However, the values of the JB statistic

still reject the null of normality easily.

All in all, the addition of the GARCH(1,1) speci�cation for the ARFIMA error term helps to cap-

ture much of the serial correlations in the squared residuals though not completely. We may augment

the ARFIMA model by other GARCH-type speci�cations that have proven successful in improving the

GARCH(1,1) �t in more traditional volatility (rather than the volatility-of-the-RV) prediction contexts, but

such attempts are beyond the scope of the current paper.

4.3 Further speci�cation tests

The LB statistics are for testing the null of no remaining serial correlations in the residuals and the squared

residuals, and are not designed to detect more general forms of serial dependence. Hence, we run a battery

of other tests capable of detecting nonlinear dependence. In this paper, we only attempt to model the

conditional mean by the homoskedastic ARFIMA model and the �rst two conditional moments by the

ARFIMA-GARCH model. By estimating them using the CSS, which is interpreted as the Gaussian QMLE,

we do not take a stand on neither the higher-order dependence structure nor the shape of the conditional

distribution (beyond zero mean and unit variance) of fZtg : Nevertheless, it is of interest for a variety of

reasons to test the independence and (standard) normality of fZtg jointly or one at a time assuming the other.

The dif�culty is that we observe
nbZto but not fZtg ; and the in�uence of parameter estimation may or may

not vanish in the distributions of the test statistics even asymptotically as we have discussed above in the

contexts of the LB and JB portmanteau statistics. Unfortunately, for all of the diagnostic statistics that we

employ, asymptotic theory assumes some form of mixing for fYtg and/or
p
T -consistency of the parameter

estimator for establishing invariance in the presence of parameter estimation (the "nuisance-parameter-free"

property) or justifying the adjustment when invariance does not hold whereas an ARFIMA process with

d > 0 is not mixing and b� cannot be expected to bepT -consistent. Hence, strictly speaking, the diagnostic
tests in this subsection as well as the more traditional ones used in the previous subsections remain somewhat

informal.

The values of the statistics are summarized on Table 5. The �rst columns show the values of the BDS

nonlinearity test statistics due to Brock et al. (1996), which test the null of fZtg � i:i:d: and has power

to detect higher-order dependence. All different pairs of two consecutive segments of a �xed length k

are taken from an observed time series and the number of cases in which the distance (using a particular

measure) between the two segments in a pair is shorter than a preset value � is counted. After standard-
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ization by its consistent estimator and the asymptotic standard deviation, this number becomes the BDS

statistic with (k; �), which is asymptotically distributed N (0; 1) under the null of fZtg � i:i:d. De Lima

(1996) showed that under some conditions (including a mixing condition on fYtg and
p
T -consistency of

the estimator) the BDS applied to
n
ln bZ2t o, where bZt is the standardized residual of an ARCH model, is

nuisance-parameter free (Note that if fZtg � i:i:d:; then
�
lnZ2t

	
� i:i:d holds as well). Caporal et al.

(2005) investigated by Monte Carlo simulations the �nite-sample size properties of the BSD test statistics

under GARCH(1,1) DGPs with various combinations of true parameter values (estimated by the Gaussian

QMLE) and distributions of Zt not necessarily satisfying De Lima's (1996) suf�ciency conditions and re-

ported that they are well-behaved for T � 1000. We apply the BDS test to the log standardized residuals,

and following Chen and Kuan (2005), we set � equal to 0:75 times the sample standard deviation of the

series under investigation (in our case
n
ln bZ2t o); and calculate the sample standard deviation based on the

1000 bootstrap resamples from the empirical distribution of bZt and use it for normalization. The results
for k = 2; � � � ; 5 are presented (on the �rst lines). For RVt and Ct, the null of fZtg � i:i:d: is strongly

rejected using the log squared residuals from the best homoskedastic model, but not rejected using those

from the best overall model, which has the GARCH(1,1) speci�cation, except when k = 5: For
p
RVt and

p
Ct, the null is strongly rejected for the best homoskedastic model except when k = 5 (but the rejection is

not as strong as in the case of the log transformed variables), and not rejected for any k = 2; � � � ; 5: Finally

for lnRVt and lnCt, rejection never occurs, indicating lack of power in light of serial correlations in the

squared residuals detected by the LB statistics. We also present the BDS statistics calculated with
nbZto ;

which violates one of De Lima's (1996) suf�cient conditions for invariance, (on the second lines) because

the impact of parameter estimation on the variance of the statistic is accounted for by the bootstrap although

we still presume that the asymptotic normality of the BSD statistics extend to this case, and use the standard

normal critical values for inference. The pattern is similar to the case of the log squared residuals, but the

values of the BDS statistic are much larger, rejecting the null in more cases.

We next turn to a test of time reversibility due to Chen et al. (2000) (hereafter the CCK statistic).

fZtg � i:i:d: implies time reversibility, which in turn implies that the unconditional distribution ofZt�Zt�k
is symmetric around the origin. The CCK statistic tests this symmetry and is calculated as �k=b�k; where
�k := (T � k)�1=2

PT
t=k+1 � (Zk) and b�k is a consistent estimator for the standard deviation of �k: There

are a variety of functions that can be chosen as � (�). Following Chen and Kuan (2005), we use � (x) :=


x=
�
1 + 
2x2

�
; replace the true errors with the residuals

nbZto, and calculate b�k by bootstrap similarly to
the case of the BDS statistics15, and present the results for k = 1; 2; 3 and 
 = 0:5; 1: A general tendency

15Chen and Kuan (2005) showed that, unlike in the case of the BDS statistic, the impact of parameter estimation on the CCK

21



again is that the values of the CCK statistics decrease when square-root transformation is applied to Yt and

turn insigni�cantly or marginally negative when log-transformation is applied. The CCK statistics appear

to be less sensitive to the addition of the GARCH speci�cation to the model than the BDS statistics are,

particularly for lnRVt and lnCt:

For testing the correctness of the speci�cation of the joint distribution of fYtg in its entirety, we may

use the nuisance-parameter-free Hong-Li statistics. In our Gaussian ARFIMA-GARCH case, it is equiva-

lent to jointly testing the independence and (standard) normality of fZtg (as opposed to the JB statistic that

tests the normality under the maintained hypothesis of independence). The Hong-Li statistics are based

on the observation that, under the null of correct model speci�cation in its entirety (as opposed to just the

�rst two conditional moments), the probability integral transformed series fUtg implied by the model is a

sequence of i:i:d: uniform [0; 1] random variables, and in particular the joint density of (Ut; Ut�k) should

be f (u1; u2) = 1 over [0; 1] � [0; 1]. Hong and Li (2005) showed that, under the null, a properly normal-

ized measure of the distance16 (call it the Hong-Li statistic of order k; QHL (k)) between f (u1; u2) = 1

and bf (u1; u2), a nonparametric estimate of f (u1; u2) constructed using nbUto ; is asymptotically distrib-
uted N (0; 1). Furthermore, they showed that the asymptotic distribution of (QHL (1) ; � � � ; QHL (K)) is

standard multivariate normal and hence that of a portmanteau statisticWHL (K) :=
p
K
PK
k=1QHL (K) is

N (0; 1) under the null. Noting that negative values of �HL (k) occur only under the null if the sample size is

suf�ciently large, they suggest using the upper-tailed critical values for individual �HL (k)'s and QHL (K).

For this reason, the portmanteau statistic is a scaled sum rather than a scaled sum of squares that would yield

a �2 (K) statistic. For the choice of the kernel function and the bandwidth parameter involved in nonpara-

metric density estimation, we follow Hong and Li (2005). QHL (1) ; WHL (5) ; WHL (10), WHL (22) are

shown on Table 4. The overall pattern across variables and models is similar to the case of the JB statistics

for the standardized residuals, and as expected, the null of i:i:d. normality is very strongly rejected for RVt;

Ct;
p
RVt; and

p
Ct. However, it is of note that, while all Hong-Li statistics still cleanly reject the null for

the best model for lnRVt, the statistics values are much reduced for lnCt and QHL (1) only marginally re-

jects the null for lnCt at the 5% level (Note that the upper-tailed 5% critical value is 1.645). This seemingly

contradicts the strong rejection of the normality of Zt for lnCt by the JB statistic. However, recall that the

statistic is of the same stochastic order as the CCK statistic calculated from the true fZtg provided that the parameter estimator

is
p
T -consistent. Hence, correcting the asymptotic variance based on the assumption of no parameter estimation errors is cru-

cial here, and boostrapped b�k serves the purpose. It might turn out to be the case, however, that using the ARFIMA-GARCH
standardized residuals, the effect of the error in estimating � asymptotically dominates the other terms.

16Their expression of the statistic has a typo, which is corrected in Egorov et al (2006, Footnote 11).
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JB statistic tests the normality under the maintained hypothesis of fZtg � i:i:d: whereas the Hong-Li sta-

tistics in our context test the independence and standard normality jointly. If the i:i:d: assumption does not

hold as indicated by the LB statistics for the squared standardized residuals, the JB statistic may overreject

normality.

Hong and Li (2005) proposed another set of nuisance-parameter-free statistics, which they call the �sepa-

rate inference� statistics, designed to detect possible sources of misspeci�cation whenQHL (k) orWHL (K)

reject the null of correct speci�cation. To obtain the Hong-Li separate inference statistic M (m; l) for

given m and l; we calculate cross-correlations of all orders j � 1 (up to a truncation point) in bUmt andbU jt�j and take a weighted average of the squares of them, which after normalization is asymptotically dis-
tributed N (0; 1) under the null of correct speci�cation of the entire joint density of fYtg. M (m; l) for

(m; l) = (1; 1) ; (2; 2) ; (3; 3) ; (4; 4) ; (1; 2) ; and (2; 1) are shown on Table 5. M (m;m) form = 1; 2; 3; 4

are meant to detect autocorrelations in level, volatility, skewness, and kurtosis respectively, andM (1; 2) and

M (2; 1) ARCH-in-mean and leverage effects. Note that, in our context, leverage means that the volatility

of the RV responds asymmetrically to positive and negative shocks in the RV, and hence is different from the

phenomenon of asymmetric reactions of equity market volatility to positive and negative returns17. These

M (m; l) statistics are revealing. Substantial reductions in the values of M (2; 2) in all cases are as ex-

pected. But it is rather surprising, for example, to �nd the very high value ofM (4; 4), 28.74, for the best

model of lnCt with nearly normal bZt relative to mere 0.74 for the best model of Ct with highly positively
skewed and leptokurtic bZt: Failure of the best model for lnCt at theseM (m; l) tests should be kept in mind

in predicting the entire conditional density for risk management or choosing the variable to directly target

given a loss function.

4.4 RV prediction

For one-step prediction of the RV measures, we use

bYt+1jt := b�+ tX
s=1

b�s (Yt+1�s � b�) (17)

where b� is the CSS estimate of the unconditional mean and b�s are the coef�cients in the AR(1) expansion of
the ARFIMA model, implied by the ARFIMA parameter estimates. While the Durbin-Levinson algorithm

may be applied to calculate the best linear one-step predictor based on the �nite past, the formula (17) is

17As mentioned in the introduction, some studies incorporated a speci�cation for the latter effect in time series models for the

RV by using daily returns data.
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more in line with our CSS estimator. We also evaluate the performance of the selected model for each of

the RV series in forecasting the k-day average RV, k�1
Pk
s=1 Yt+s. For this, we use k

�1Pk
s=1

bYt+sjt as
our k-day forecast where

bYt+kjt := b�+ k�1X
s=1

b�s �bYt+sjt � b��+ t�1X
s=0

b�k+s (Yt�s � b�) (18)

For evaluating predictive accuracy, we mainly look at R2 from the Mincer-Zarnowiz regression of the real-

ization of the target variable on the prediction (plus an intercept).

The results for k = 1; 5; 10; 22 are summarized on Table 5. Again, the results for RVt;
p
RVt; lnRVt

and their respective jump-free versions Ct;
p
Ct; lnCt are similar. In conformance with the previously

reported results for the RVs of the Nikkei 225 index and other �nancial time series, the log transformed

series lnRVt and lnCt appear to be most predictable, followed by
p
RVt and

p
Ct. For example, R2 is

nearly 60% when the target is the one-step-ahead lnRVt or lnCt: Although R2 tapers off as the horizon

increases, predictability of the average daily RV over the next month is still substantial (nearly 30% for

lnRVt or lnCt). Excellent performance of the ARFIMA-GARCH model can be visually con�rmed by the

time series plot (Figure 1) of the ARFIMA-GARCH �t together with the target series.

4.5 Prediction of the variance of the RV

We next evaluate the performance of the ARFIMA-GARCH model selected for each of the six series in

predicting the volatility of the RV. For one-step-ahead forecasting, we use bht+1 as the volatility-of-the-RV
forecast and b"2t+1 = �

Yt+1 � bYt+1�2 as the target, whether the object of our interest is V art (Yt+1) =
Et
�
"2t+1

�
or some other measure of the volatility of the RV. Our ARFIMA-GARCH estimation results

indicate that the variability of b"2t+1 is much higher than that of Et �"2t+1�, which would lead to an apparently
low R2 value of the Mincer-Zarnowitz regression even if the time-variation in Et

�
"2t+1

�
could be well

approximated by the ARFIMA-GARCH model. This parallels the solution by Andersen and Bollerslev

(1998) of a puzzle regarding the low R2 phenomenon prevalent in earlier volatility prediction studies based

on data sampled at daily or lower frequencies. The introduction of the RVmeasures in empirical �nance has

rendered �nancial volatility nearly observable, but here we are back in the unobservability territory. What

makes the problem even more complicated in our context is that the RV is highly predictable unlike daily

asset returns and that V ar (Et [Yt+1]) =V ar (Yt+1) seems to be large and hence the effect of the deviation ofbYt+1 from the true Et [Yt+1] due to possible model misspeci�cation, parameter estimation errors and other
factors on the Mincer-ZarnowitzR2 is potentially more serious for volatility-of-volatility prediction than for

equity or currency return volatility prediction.
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For forecasting the multi-day volatility of the RV, we use k�1
Pk
s=1

bht+sjt; where bht+sjt is the s-period-
ahead single-day conditional variance of the RV implied by the ARFIMA-GARCH, as our forecast, and the

daily squared errors averaged over the horizon,

�t (k) := k�1
kX
s=1

�
Yt+s � bYt+sjt�2 (19)

as a proxy for the target.

The right half of Table 5 summarizes the forecasting performance evaluation results for horizons 1, 5, 10,

and 22 days. As expected,R2's are in fact low, but not negligible. For brevity, we do not report the details of

the results of our multi-day-ahead single-day volatility-of-the-RV forecasting exercise, but the predictability

does not increase as we attempt to forecast further into the future. In spite of this, R2 values are higher for

multi-day average forecasts than for a one-day ahead forecast. This may happen because our target proxy

�t (k) ; being squared forecast errors aggregated over forecast horizons of a week to several weeks, is a sort

of realized volatility (of the RV). Although the sampling frequency is much coarser here, a noise reduction

effect similar to those observed in the daily volatility forecasting studies using RV measures constructed

from intraday high frequency asset returns may lead to a higher R2 in Mincer-Zarnowitz regressions with

longer-horizon targets and predictors. For
p
RVt and

p
Ct, the R2 values are respectively 3.63% and

3.55% (one-day-ahead, single-day), 8.23% and 7.60% (5 days), 6.87% and 6.50% (10 days), 5.44% and

5.27% (22 days). Presumably, the effect of decreasing predictability outweighs the noise reduction as the

horizon increases beyond a week or so. For lnRVt and lnCt; the R2 values are respectively 1.70% and

3.31% (one-day-ahead, single-day), 3.68% and 7.29% (5 days), 4.65% and 9.30% (10 days), 6.15% and

12.50% (22 days). It is not clear why the squared errors appear to be more predictable for lnCt than for

lnRVt in spite of the similar behavior of Ct and RVt observed in other respects.

5 Concluding remarks

In this paper, we investigated the volatility of the daily Nikkei 225 realized volatility. Although much of the

recent advances in volatility research has been due to the recognition that high-frequency intraday data make

daily volatility essentially observable in the form of the realized volatility and related measures, we are back

to the condition of unobservability when we move one order higher in terms of the moments from volatility

to volatility of volatility. This makes evaluation of models such as the ARFIMA-GARCH for forecasting

the volatility of the RV a dif�cult task. Nevertheless, the GARCH speci�cation for the conditional variance

of the RV added to the ARFIMA speci�cation for the conditional mean of the RV seems to capture the
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persistent time variation in the conditional variance of the Nikkei 225 RV regardless of whether we use the

raw, square-root- or log-transformed series. Filtering out the jump component from the RV using a version

of the Barndorff-Nielsen procedure does not seem to have much impact on the estimation of the ARFIMA-

GARCHmodel or the degree of predictability in the RV. However, the volatility of the RV seems to be more

predictable for the jump-free RV than the usual RV at the forecast horizon of about a month.
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GPH Robinson

R -0.007 1.423 -0.064 4.962 -7.234 7.660 451.13 -0.041 ( 0.022 ) 19.207 13.251 23.805 16.598 37.588 26.732 -0.018 -0.011
R n 0.039 0.631 0.009 3.480 -3.186 3.849 26.89 0.036 ( 0.020 ) 12.112 10.265 14.545 12.334 33.345 29.016 0.054 0.044

S.E.(ρ 1) LB (5) LB (22)

Table 1: Summary statistics: Nikkei 225 daily returns, realized volatility and related measures       

Series Mean Std.
Dev.

Skew. Kurt. Min. Max. Jarque-Bera ρ 1 LB (10) DLB (10) Long-memory dDLB (22)DLB (5)

n ( )
R am -0.025 0.802 -0.242 7.700 -7.394 5.078 2,606.19 -0.033 ( 0.022 ) 9.678 6.342 11.876 7.938 23.167 15.856 -0.048 -0.031
R l -0.026 0.164 0.015 4.905 -0.736 0.786 423.62 0.026 ( 0.024 ) 16.083 10.712 22.007 15.017 57.635 40.153 0.071 0.113
R pm 0.005 0.774 0.103 5.818 -3.675 4.881 932.38 -0.099 ( 0.025 ) 53.107 33.121 60.194 37.744 80.960 53.633 -0.107 -0.060
RV am 0.573 0.622 5.970 78.350 0.011 12.748 679,502.99 0.429 ( 0.060 ) 2,253.238 223.283 3,635.044 442.419 5,801.812 809.331 0.460 0.454
  RV am

1/2 0.691 0.309 1.587 9.207 0.103 3.570 5,674.29 0.569 ( 0.083 ) 3,862.612 214.711 6,603.898 406.563 11,267.971 803.268 0.532 0.495
  ln RV am -0.925 0.871 -0.177 3.272 -4.551 2.545 23.19 0.616 ( 0.043 ) 4,532.985 949.938 7,921.581 1,761.857 14,268.434 3,406.661 0.525 0.491
RV pm 0.514 0.595 12.096 335.024 0.015 18.941 12,938,877.08 0.355 ( 0.059 ) 1,298.273 168.714 1,981.101 390.580 2,873.448 822.065 0.364 0.376
  RV pm

1/2 0.655 0.292 1.773 13.810 0.122 4.352 15,111.33 0.535 ( 0.081 ) 3,128.317 196.911 5,208.527 373.510 8,450.013 734.922 0.504 0.472
  ln RV pm -1.028 0.866 -0.182 3.260 -4.202 2.941 23.35 0.600 ( 0.047 ) 4,070.792 710.029 7,035.733 1,290.913 12,361.541 2,405.026 0.524 0.477
RV = RV am  + RV pm 1.087 1.030 5.336 67.840 0.065 20.493 504,141.92 0.540 ( 0.071 ) 3,237.586 250.406 4,970.638 529.470 7,586.328 1,004.412 0.470 0.468

  RV 1/2 0.968 0.388 1.459 8.520 0.255 4.527 4,551.03 0.663 ( 0.097 ) 4,997.214 211.504 8,342.521 402.196 13,887.091 793.872 0.557 0.524
  ln RV -0.214 0.778 -0.130 3.234 -2.733 3.020 14.25 0.713 ( 0.030 ) 5,927.105 2,427.793 10,322.146 4,474.032 18,365.815 8,625.484 0.584 0.533
R n

2 0.399 0.628 8.937 168.634 0.000 14.812 3,240,305.54 0.062 ( 0.017 ) 88.876 81.982 159.721 133.651 241.634 221.775 0.197 0.202
  |R n | 0.508 0.376 1.192 7.069 0.000 3.849 2,596.51 0.097 ( 0.028 ) 192.320 73.951 330.598 131.412 515.651 222.424 0.261 0.250
  ln (R n

2 ) -2.149 2.195 -1.540 6.627 -16.151 2.695 2,643.12 0.050 ( 0.020 ) 58.136 44.332 104.587 79.669 175.383 133.484 0.209 0.190
2R l
2 0.028 0.054 4.178 26.776 0.000 0.618 74,150.20 0.145 ( 0.033 ) 241.331 93.607 396.055 161.320 793.223 308.027 0.278 0.255

  |R l | 0.121 0.114 1.687 6.476 0.000 0.786 2,739.04 0.175 ( 0.035 ) 397.477 122.080 713.096 233.969 1,358.050 459.849 0.288 0.302
  ln (R l

2 ) -5.279 2.438 -1.139 5.284 -19.501 -0.481 1,213.66 0.096 ( 0.030 ) 157.867 53.404 320.240 106.402 605.525 213.052 0.210 0.258
RV +R n

2+R l
2 1.514 1.321 4.040 37.141 0.082 21.151 143,704.07 0.461 ( 0.059 ) 2,475.549 257.636 3,928.348 521.401 6,076.282 980.450 0.451 0.458

  (RV +R n
2+R l

2)1/2 1.149 0.440 1.283 6.990 0.286 4.599 2,626.47 0.563 ( 0.090 ) 3701.681 179.179 6248.175 337.833 10273.433 651.265 0.542 0.502
l (RV +R 2+R 2) 0 139 0 752 0 174 3 327 2 506 3 052 26 58 0 603 ( 0 026 ) 4291 539 2415 713 7482 022 4 479 544 12918 003 8 479 105 0 571 0 505  ln (RV +R n

2+R l
2) 0.139 0.752 -0.174 3.327 -2.506 3.052 26.58 0.603 ( 0.026 ) 4291.539 2415.713 7482.022 4,479.544 12918.003 8,479.105 0.571 0.505

RV NW 1.153 1.420 5.879 61.994 0.041 21.909 422,464.73 0.467 ( 0.077 ) 2,409.258 160.784 3,494.761 357.302 4,982.016 710.337 0.427 0.445
  RV NW

1/2 0.968 0.466 1.931 10.572 0.201 4.681 8,436.53 0.563 ( 0.087 ) 3,652.271 194.090 6,029.797 378.271 9,857.148 759.299 0.490 0.504
  ln RV NW -0.267 0.894 -0.006 3.301 -3.204 3.087 10.57 0.606 ( 0.028 ) 4,327.317 2,030.833 7,633.914 3,797.857 13,702.610 7,391.286 0.527 0.507
RV HL 1.514 1.289 3.637 31.792 0.083 20.565 102,960.04 0.503 ( 0.063 ) 2,835.818 272.087 4,492.889 553.123 7,071.670 1,057.351 0.459 0.464

RV 1/2 1 150 0 438 1 184 6 272 0 288 4 535 1 904 83 0 596 ( 0 092 ) 4 050 849 189 043 6 821 396 355 864 11 373 832 690 552 0 554 0 505  RV HL
1/2 1.150 0.438 1.184 6.272 0.288 4.535 1,904.83 0.596 ( 0.092 ) 4,050.849 189.043 6,821.396 355.864 11,373.832 690.552 0.554 0.505

  ln RV HL 0.141 0.753 -0.186 3.261 -2.487 3.024 24.14 0.634 ( 0.026 ) 4,679.843 2,634.268 8,132.032 4,865.625 14,158.498 9,273.210 0.588 0.509
RV HLNW 1.580 1.512 3.405 23.229 0.051 17.863 53,190.72 0.412 ( 0.059 ) 1,833.103 220.902 2,876.402 452.062 4,335.164 867.892 0.439 0.438
  RV HLNW

1/2 1.156 0.494 1.233 5.956 0.226 4.226 1,730.24 0.476 ( 0.077 ) 2,578.344 172.929 4,344.404 326.894 7,017.121 622.922 0.505 0.475
  ln RV HLNW 0.114 0.849 -0.217 3.232 -2.978 2.883 28.29 0.495 ( 0.024 ) 2,891.338 1,889.880 5,051.168 3,470.476 8,568.755 6,304.374 0.526 0.469



GPH Robinson

I am 0.054 0.227 3.936 16.492 0.000 1.000 28,485.68 0.082 ( 0.030 ) 40.003 18.276 66.501 30.686 171.483 77.806 0.102 0.148
I pm 0.105 0.306 2.585 7.680 0.000 1.000 5,676.54 0.063 ( 0.024 ) 66.480 37.339 113.491 65.899 191.848 114.649 0.137 0.189

DLB (5)S.E.(ρ 1)

Table 1: Summary Statistics (Continued)        

Max. Jarque-BeraSeries Mean Std.
Dev.

Skew. DLB (22) Long-memory dρ 1 LB (5) LB (10) DLB (10) LB (22)Kurt. Min.

pm , ( )

I 0.159 0.390 2.325 7.663 0.000 2.000 5,063.29 0.111 ( 0.030 ) 154.403 70.207 270.145 124.120 515.364 245.012 0.214 0.231
J am 0.018 0.111 12.378 254.404 0.000 3.126 7,450,609.97 0.024 ( 0.022 ) 23.634 4.842 24.062 5.409 35.036 45.902 0.115 0.094
  J am

1/2 0.029 0.133 5.330 36.177 0.000 1.768 141,774.19 0.049 ( 0.026 ) 19.234 8.781 21.624 11.187 50.315 27.145 0.108 0.102
  ln (1+J am ) 0.015 0.077 7.480 78.774 0.000 1.417 696,469.20 0.035 ( 0.027 ) 17.319 5.526 17.777 5.924 36.053 21.733 0.094 0.088
J pm 0.027 0.108 6.936 72.084 0.000 1.819 579,666.63 -0.009 ( 0.008 ) 22.952 11.622 34.800 17.749 78.481 37.759 0.108 0.137

1/2  J pm
1/2 0.049 0.156 3.512 16.148 0.000 1.349 25,944.59 0.017 ( 0.017 ) 39.216 20.935 65.200 36.154 124.117 68.731 0.100 0.164

  ln (1+J pm ) 0.022 0.083 5.197 37.851 0.000 1.036 154,421.82 -0.003 ( 0.011 ) 28.390 13.384 44.811 21.804 97.205 45.817 0.125 0.149

J 0.045 0.154 6.750 82.923 0.000 3.126 767,042.11 0.099 ( 0.087 ) 82.202 15.450 95.866 22.705 150.284 53.468 0.152 0.156
  J 1/2 0.076 0.198 2.834 11.464 0.000 1.768 12,114.74 0.063 ( 0.030 ) 80.413 36.245 114.470 59.428 226.672 124.609 0.177 0.184
  ln (1+J ) 0.037 0.112 4.232 26.939 0.000 1.417 75,267.00 0.067 ( 0.046 ) 71.425 21.879 90.850 33.287 172.347 75.446 0.165 0.168
C 0 554 0 617 6 094 81 196 0 011 12 748 731 228 51 0 429 ( 0 060 ) 2 210 926 215 305 3 526 428 431 947 5 639 629 789 466 0 426 0 446C am 0.554 0.617 6.094 81.196 0.011 12.748 731,228.51 0.429 ( 0.060 ) 2,210.926 215.305 3,526.428 431.947 5,639.629 789.466 0.426 0.446
  C am

1/2 0.677 0.310 1.581 9.214 0.103 3.570 5,675.75 0.567 ( 0.082 ) 3,749.278 216.737 6,386.549 411.409 10,979.110 818.777 0.535 0.485
  ln Cam -0.977 0.900 -0.225 3.272 -4.551 2.545 32.28 0.609 ( 0.043 ) 4,322.297 887.450 7,584.786 1,642.283 13,818.262 3,195.502 0.540 0.482
C pm 0.488 0.592 12.327 343.571 0.012 18.941 13,612,657.54 0.349 ( 0.059 ) 1,247.790 188.381 1,891.862 415.115 2,714.858 825.181 0.368 0.373
  C pm

1/2 0.633 0.295 1.779 13.664 0.110 4.352 14,753.15 0.531 ( 0.078 ) 3,089.449 208.804 5,137.232 396.071 8,194.508 766.741 0.519 0.480
ln C -1 115 0 910 -0 210 3 215 -4 413 2 941 26 08 0 596 ( 0 048 ) 4 006 274 678 345 6 938 593 1 234 260 12 007 228 2 271 501 0 515 0 486  ln Cpm -1.115 0.910 -0.210 3.215 -4.413 2.941 26.08 0.596 ( 0.048 ) 4,006.274 678.345 6,938.593 1,234.260 12,007.228 2,271.501 0.515 0.486

C 1.042 1.021 5.426 70.160 0.056 20.493 540,350.80 0.537 ( 0.070 ) 3,177.375 250.504 4,859.086 527.560 7,371.936 995.301 0.477 0.464
  C 1/2 0.943 0.391 1.449 8.415 0.237 4.527 4,403.37 0.658 ( 0.094 ) 4,880.797 218.977 8,129.868 416.252 13,491.335 821.386 0.549 0.518
  ln C -0.278 0.811 -0.161 3.183 -2.879 3.020 16.02 0.703 ( 0.031 ) 5,698.077 2,265.783 9,909.682 4,165.279 17,598.452 7,995.639 0.577 0.523

The sample period is from March 11, 1996, through August 31, 2007 (2802 observations).　　ρ 1 and S.E.(ρ1)  in parentheses are respectively the first-order sample autocorrelations and heteroskedasticity-robust
standard errors (the usual Bartlett's standard errors are T-1/2 = 0.018).  LB(k ) are the Ljeung-Box statistics of orders up to k  and DLB(k ) are their heteroskedasticity adjusted versions.  The 5% critical values for χ2(k)
are 5.991 (k=2), 11.070 (5), 18.307 (10), 33.924 (22).  The standard errors of the GPH and Robinson estimators for the long-memory parameter d  are 0.034 and 0.031 respectively.



Table 2: ARFIMA-GARCH estimation results
LL

μ d φ 1 φ 2 ψ 1 ψ 2 σ 2, ω β α BIC
Best short-memory 0.7415 0.3592 0.5887 -0.4579 0.0136 0.7873 0.2630 -2,410.93
(2,0,{2})-G (0.0915) (0.0252) (0.0282) (0.0290) (0.0024) (0.0260) (0.0397) 4,877.42

(0.1667) (0.0375) (0.0506) (0.0438) (0.0127) (0.1291) (0.1893) 
Best homoskedastic 0.8843 0.4963 -0.2262 0.6391 -3,348.67
(0,d ,1) (0.2118) (0.0320) (0.0389) (0.0171) 6,729.09

(0.0936) (0.0865) (0.1068) (0.1352) 
GARCH ver. of 0.5751 0.5604 -0.2105 0.0106 0.8238 0.2119 -2,416.28
  best homosked. (0.2495) (0.0478) (0.0605) (0.0015) (0.0141) (0.0219) 4,880.19
(0,d ,1)-G (0.1917) (0.0859) (0.0998) (0.0068) (0.0577) (0.0819) 
Homoskedastic ver. 0.8765 0.5085 -0.2345 -0.0866 0.6381 -3,346.53
  of best overall model (0.3450) (0.0282) (0.0330) (0.0254) (0.0170) 6,732.75
(2,d ,0) (0.2259) (0.0822) (0.0928) (0.0684) (0.1344) 
Best overall 0.6332 0.6218 -0.2554 -0.1725 0.0115 0.8079 0.2340 -2,406.79
(2,d ,0)-G (0.5415) (0.0384) (0.0430) (0.0330) (0.0017) (0.0184) (0.0283) 4,869.15

(0.6374) (0.0950) (0.0901) (0.0774) (0.0085) (0.0879) (0.1299) 
Best short-memory 0.8838 0.9741 -0.6178 -0.0949 0.0033 0.8561 0.0990 -17.30
(1,0,2)-G (0.0465) (0.0055) (0.0223) (0.0232) (0.0007) (0.0209) (0.0142) 90.17

(0.0471) (0.0063) (0.0231) (0.0263) (0.0016) (0.0436) (0.0263) 
Best homoskedastic 0.8818 0.5193 -0.1898 0.0700 -250.25
(0,d ,1) (0.1215) (0.0333) (0.0436) (0.0019) 532.26

(0.1011) (0.0607) (0.0819) (0.0049) 
GARCH ver. of 0.7579 0.4979 -0.1545 0.0031 0.8590 0.0988 -14.18
  best homosked. (0.1019) (0.0304) (0.0388) (0.0007) (0.0200) (0.0140) 75.99
(0,d ,1)-G (0.0922) (0.0323) (0.0414) (0.0015) (0.0435) (0.0270) 
Homoskedastic ver. 0.8790 0.5427 -0.2061 -0.0911 0.0698 -246.75
  of best overall model (0.1191) (0.0260) (0.0306) (0.0237) (0.0019) 533.18
(2,d ,0) (0.0922) (0.0419) (0.0460) (0.0330) (0.0049) 
Best overall 0.7721 0.5346 -0.1831 -0.0988 0.0031 0.8590 0.0991 -9.68
(2,d ,0)-G (0.1210) (0.0302) (0.0355) (0.0271) (0.0007) (0.0202) (0.0143) 74.93

(0.1150) (0.0335) (0.0382) (0.0288) (0.0015) (0.0435) (0.0277) 
Best short-memory -0.1962 1.1414 -0.1597 -0.7730 0.0006 0.9874 0.0104 -1,970.04
  memory (0.0957) (0.0323) (0.0299) (0.0239) (0.0005) (0.0045) (0.0032) 3,995.65
(2,0,1)-G (0.0859) (0.0375) (0.0345) (0.0286) (0.0007) (0.0056) (0.0039) 
Best homoskedastic -0.3558 0.5388 -0.1826 -0.0913 0.2434 -1,996.23

(0.2239) (0.0257) (0.0309) (0.0239) (0.0065) 4,032.14
(2,d ,0) (0.2146) (0.0282) (0.0349) (0.0249) (0.0078) 
GARCH ver. of -0.3739 0.5316 -0.1688 -0.0849 0.0006 0.9870 0.0106 -1,963.06
  best homosked. (0.1529) (0.0257) (0.0308) (0.0239) (0.0005) (0.0048) (0.0034) 3,981.68
(2,d ,0)-G (0.0953) (0.0263) (0.0317) (0.0233) (0.0007) (0.0061) (0.0042) 
Homoskedastic ver. -0.3569 0.5553 -0.0638 -0.1993 0.2434 -1,996.23
  of best overall model (0.1610) (0.0314) (0.0210) (0.0368) (0.0065) 4,032.14
({2},d ,1) (0.1080) (0.0348) (0.0214) (0.0417) (0.0078) 
Best overall -0.3740 0.5470 -0.0623 -0.1846 0.0006 0.9871 0.0105 -1,962.95
({2},d ,1)-G (0.2582) (0.0324) (0.0217) (0.0380) (0.0005) (0.0048) (0.0034) 3,981.46

(0.2639) (0.0351) (0.0214) (0.0414) (0.0007) (0.0060) (0.0041) 

Var. Model
ARFIMA parameters GARCH paramters

RV

RV 1/2

lnRV



Table 2 (Cont.): ARFIMA-GARCH estimation results
LL

μ d φ 1 φ 2 ψ 1 ψ 2 σ 2, ω β α BIC
Best short-memory 0.7155 0.3404 0.6116 -0.4749 0.0134 0.7857 0.2595 -2,365.42
  memory (0.0932) (0.0245) (0.0267) (0.0296) (0.0023) (0.0223) (0.0320) 4,786.40
(2,0,{2})-G (0.1343) (0.0361) (0.0425) (0.0396) (0.0110) (0.0932) (0.1325) 
Best homoskedastic 0.7893 0.4941 -0.2216 0.6329 -3,335.09
(0,d ,1) (0.3326) (0.0322) (0.0394) (0.0169) 6,701.93

(0.2169) (0.0869) (0.1086) (0.1367) 
GARCH ver. of 0.4635 0.5661 -0.2375 0.0120 0.7993 0.2423 -2,366.79
  best homosked. (0.2665) (0.0500) (0.0626) (0.0018) (0.0184) (0.0274) 4,781.21
(0,d ,1)-G (0.2163) (0.1022) (0.1301) (0.0084) (0.0730) (0.1083) 
Homoskedastic ver. 0.7704 0.5163 -0.0321 -0.2371 0.6324 -3,333.97
  of best overall model (0.7140) (0.0342) (0.0211) (0.0383) (0.0168) 6,707.64
({2},d ,1) (0.8760) (0.0978) (0.0504) (0.1010) (0.1344) 
Best overall 0.5185 0.6251 -0.0966 -0.2753 0.0120 0.7966 0.2457 -2,360.72
({2},d ,1)-G (0.3330) (0.0467) (0.0267) (0.0527) (0.0019) (0.0191) (0.0284) 4,777.00

(0.2393) (0.0843) (0.0450) (0.0879) (0.0084) (0.0732) (0.1099) 
Best short-memory 0.6985 1.8988 -0.8990 -1.5908 0.5965 0.0029 0.8630 0.0982 -47.29
  memory (0.0872) (0.0175) (0.0174) (0.0298) (0.0287) (0.0007) (0.0198) (0.0138) 158.08
(2,0,2)-G (0.0661) (0.0188) (0.0188) (0.0354) (0.0342) (0.0015) (0.0415) (0.0271) 
Best homoskedastic 0.8151 0.5160 -0.1847 0.0723 -295.10
(0,d ,1) (0.1152) (0.0305) (0.0393) (0.0019) 621.94

(0.0811) (0.0515) (0.0681) (0.0050) 
GARCH ver. of 0.7145 0.4990 -0.1633 0.0027 0.8714 0.0926 -50.53
  best homosked. (0.1177) (0.0297) (0.0373) (0.0006) (0.0179) (0.0126) 148.68
(0,d ,1)-G (0.1107) (0.0306) (0.0397) (0.0013) (0.0370) (0.0248) 
Homoskedastic ver. 0.8151 0.5160 -0.1847 0.0723 -295.10
  of best overall model (0.1152) (0.0305) (0.0393) (0.0019) 621.94
(0,d ,1) (0.0811) (0.0515) (0.0681) (0.0050) 
Best overall 0.7145 0.4990 -0.1633 0.0027 0.8714 0.0926 -50.53
(0,d ,1)-G (0.1177) (0.0297) (0.0373) (0.0006) (0.0179) (0.0126) 148.68

(0.1107) (0.0306) (0.0397) (0.0013) (0.0370) (0.0248) 
Best short-memory -0.2637 1.1508 -0.1685 -0.7792 0.0002 0.9894 0.0102 -2,100.31
  memory (0.1042) (0.0322) (0.0298) (0.0240) (0.0002) (0.0032) (0.0028) 4,256.19
(2,0,1)-G (0.0945) (0.0368) (0.0337) (0.0289) (0.0003) (0.0040) (0.0036) 
Best homoskedastic -0.5282 0.5089 -0.1641 0.2731 -2,157.44
(0,d ,1) (0.3443) (0.0283) (0.0374) (0.0073) 4,346.63

(0.4589) (0.0330) (0.0465) (0.0088) 
GARCH ver. of -0.5293 0.5030 -0.1452 0.0002 0.9889 0.0105 -2,095.63
  best homosked. (0.2520) (0.0273) (0.0362) (0.0002) (0.0034) (0.0030) 4,238.89
(0,d ,1)-G (0.1958) (0.0286) (0.0398) (0.0003) (0.0046) (0.0039) 
Homoskedastic ver. -0.5282 0.5089 -0.1641 0.2731 -2,157.44
  of best overall model (0.3443) (0.0283) (0.0374) (0.0073) 4,346.63
(0,d ,1) (0.4589) (0.0330) (0.0465) (0.0088) 
Best overall -0.5293 0.5030 -0.1452 0.0002 0.9889 0.0105 -2,095.63
(0,d ,1)-G (0.2520) (0.0273) (0.0362) (0.0002) (0.0034) (0.0030) 4,238.89

(0.1958) (0.0286) (0.0398) (0.0003) (0.0046) (0.0039) 

lnC

C

The sample period is from March 11, 1996, through August 31, 2007 (2802 observations).  For each of  the six series, the
parameter estimates for the best short-memory model (top), the best homoskedastic model and its GARCH version with the
same ARFIMA order, the homoskedastic version of the best model, and the best model (bottom), selected by the BIC from
the 64 restricted versions of the ARFIMA(2,d ,2)-GARCH(1,1) model, are shown with the Hessian-based (on the first line
beneath the parameter estimates) and the Bollerslev-Wooldridge (on the second line) standard errors in parentheses, the log
likelihood (LL) and BIC values.  For C 1/2 and lnC , the best homooskedastic model and the best model have a common
ARFIMA order.  The resulting two duplicates (the GARCH version of the best homoskedastic model and the
homoskedastic version of the best model) are not omitted from Table 2.   The ARFIMA(2,d,1)-GARCH(1,1) model with the
first-order AR coefficient restricted to be zero, for example, is denoted as ({2},d ,1)-G.

GARCH paramters
Var. Model

ARFIMA parameters

C 1/2



Table 3:  Residual Diagnostic Statistics

mean std. skew. kurt. JB ρ 1 LB (5) LB (10) LB (22) ρ 1 LB (5) LB (10) LB (22) mean std. skew. kurt. JB ρ 1 LB (5) LB (10) LB (22)
Short-mem. 0.033 0.806 6.306 117.688 1,554,221.518 -0.084 53.176 82.729 126.167 0.126 118.963 120.793 133.099 0.075 0.997 3.594 31.503 100,878.194 -0.001 19.607 20.903 24.063
(2,0,{2})-G (0.075) 7.023 19.617 33.220
Homosked. 0.001 0.800 7.059 126.740 1,810,892.767 0.004 18.174 28.554 63.534 0.070 80.392 81.722 91.537 0.001 1.000 7.059 126.740 1,810,892.767
(0,d ,1) (0.059) 2.476 7.480 19.087
+ GARCH 0.005 0.803 6.556 122.018 1,673,875.665 -0.071 37.032 49.867 88.438 0.114 105.383 106.727 117.021 0.023 0.999 3.719 33.868 117,699.427 0.000 22.683 23.826 26.627
(0,d ,1)-G (0.073) 4.885 11.312 24.346
Homosk..ver.of best 0.001 0.799 6.996 125.325 1,769,826.414 -0.001 13.178 25.098 60.567 0.072 82.462 83.810 94.211 0.001 1.000 6.996 125.325 1,769,826.414
(2,d ,0) (0.060) 1.473 7.115 18.701
Best overall 0.003 0.805 6.212 115.545 1,496,806.010 -0.095 52.404 71.944 114.655 0.128 123.181 124.726 138.032 0.027 0.999 3.629 32.263 106,124.409 0.000 20.808 22.141 25.063
(2,d ,0)-G (0.075) 6.665 15.709 29.049
Short-mem. 0.008 0.265 1.685 14.567 16,946.021 -0.015 7.272 22.272 41.796 0.138 220.138 251.703 304.449 0.030 1.000 1.385 8.082 3,910.744 0.010 26.629 29.218 33.834
(1,0,2)-G (0.032) 3.882 13.162 25.380
Homosked. 0.000 0.265 1.761 14.910 18,008.312 0.006 9.366 17.903 33.033 0.128 203.585 230.174 275.851 0.000 1.000 1.761 14.910 18,008.312
(0,d ,1) (0.032) 4.726 10.283 19.831
+ GARCH 0.003 0.265 1.773 14.973 18,205.261 -0.007 10.348 19.734 35.480 0.131 202.744 228.330 274.450 0.006 1.000 1.400 8.313 4,211.003 0.012 28.392 31.175 35.567
(0,d ,1)-G (0.032) 4.970 11.098 20.941
Homosk..ver.of best 0.000 0.264 1.729 14.685 17,336.279 0.000 1.697 10.961 26.835 0.133 209.458 236.776 286.246 0.000 1.000 1.729 14.685 17,336.279
(2,d ,0) (0.032) 0.577 6.592 16.590
Best overall 0.002 0.264 1.727 14.661 17,267.676 -0.015 3.450 13.500 30.073 0.137 211.853 238.638 290.040 0.004 1.000 1.388 8.239 4,103.537 0.013 27.560 30.650 35.000
(2,d ,0)-G (0.032) 1.396 7.936 18.270
Short-mem. -0.002 0.495 0.268 3.905 129.249 -0.008 3.446 11.024 21.219 0.082 51.156 78.289 88.733 -0.004 0.995 0.304 3.707 101.444 0.038 23.449 27.811 33.160
(2,0,1)-G (0.021) 2.943 9.552 19.226
Homosked. -0.001 0.493 0.278 3.916 134.075 -0.001 0.318 4.702 13.178 0.094 57.204 82.510 92.203 -0.002 1.000 0.278 3.916 134.075
(2,d ,0) (0.021) 0.270 4.211 12.326
+ GARCH -0.001 0.493 0.280 3.913 133.913 -0.007 0.541 5.062 13.636 0.094 57.203 82.859 92.823 -0.004 0.995 0.303 3.735 105.983 0.047 25.559 30.920 36.709
(2,d ,0)-G (0.021) 0.447 4.521 12.732
Homosk..ver.of best -0.001 0.493 0.281 3.922 136.115 0.000 0.168 4.497 12.902 0.093 56.288 81.684 91.640 -0.002 1.000 0.281 3.922 136.115
({2},d ,1) (0.021) 0.145 4.007 12.044
Best overall -0.001 0.493 0.282 3.919 135.664 -0.007 0.468 4.876 13.355 0.093 56.378 82.082 92.258 -0.004 0.995 0.307 3.741 107.926 0.046 25.143 30.420 36.284
({2},d ,1)-G (0.021) 0.393 4.337 12.448
Short-mem. 0.030 0.801 6.472 122.420 1,684,532.807 -0.061 32.707 61.594 109.406 0.112 83.031 85.197 98.084 0.071 0.997 3.295 25.344 63,358.309 -0.002 31.719 33.070 36.102
(2,0,{2})-G (0.072) 5.340 17.063 30.983
Homosked. 0.003 0.796 7.167 131.645 1,956,131.830 0.003 13.625 22.272 62.813 0.070 52.801 54.189 64.745 0.004 1.000 7.167 131.645 1,956,131.830
(0,d ,1) (0.060) 2.237 6.465 19.133
+ GARCH 0.007 0.798 6.740 127.021 1,816,978.170 -0.049 23.326 34.366 77.775 0.101 70.518 72.028 83.001 0.026 0.999 3.403 27.339 74,569.180 -0.002 32.466 33.766 36.753
(0,d ,1)-G (0.070) 3.848 9.357 23.242
Homosk..ver.of best 0.003 0.795 7.098 130.267 1,914,529.203 -0.003 9.912 20.051 61.243 0.074 55.928 57.387 68.599 0.004 1.000 7.098 130.267 1,914,529.203
({2},d ,1) (0.061) 1.619 6.422 19.014
Best overall 0.004 0.799 6.483 122.088 1,675,364.830 -0.071 24.334 40.853 88.084 0.117 86.038 87.770 101.463 0.027 0.999 3.360 26.619 70,401.910 -0.002 32.707 34.055 36.937
({2},d ,1)-G (0.073) 3.563 11.070 25.013
Short-mem. 0.009 0.269 1.726 14.521 16,888.778 0.028 6.392 9.984 31.365 0.135 182.378 217.176 273.101 0.028 1.000 1.310 7.685 3,363.966 0.013 28.953 32.971 37.029
(2,0,2)-G (0.032) 3.167 5.574 18.568
Homosked. 0.001 0.269 1.712 14.590 17,050.511 0.005 7.183 11.215 28.938 0.137 179.276 214.392 268.211 0.004 1.000 1.712 14.590 17,050.511
(0,d ,1) (0.032) 3.859 6.519 17.750
Best overall 0.004 0.269 1.730 14.660 17,270.139 0.001 7.538 12.025 30.246 0.138 177.706 211.891 265.939 0.009 1.000 1.332 7.801 3,518.869 0.011 34.676 38.197 42.318
(0,d ,1)-G (0.032) 3.882 6.803 18.233
Short-mem. -0.001 0.524 0.196 3.897 111.742 -0.016 5.457 10.085 19.664 0.099 68.566 133.160 171.932 -0.003 0.987 0.250 3.636 76.444 0.033 24.887 30.485 38.184
(2,0,1)-G (0.021) 4.502 8.199 17.053
Homosked. 0.002 0.523 0.219 3.908 118.640 0.006 5.708 8.300 16.803 0.112 78.223 140.330 175.775 0.004 1.000 0.219 3.908 118.640
(0,d ,1) (0.022) 5.056 7.264 15.227
Best overall 0.002 0.523 0.221 3.908 119.116 -0.007 6.063 8.751 17.454 0.112 77.339 140.100 176.198 0.000 0.988 0.250 3.666 80.957 0.041 26.919 33.700 41.156
(0,d ,1)-G (0.022) 5.367 7.664 15.808

ln C

Squared residuals  εt
2

Var. Model

JB, ρ 1, and LB (k ) stand respectively for the Jarque-Bera statistic for nonnormality, first-order sample autocorrelation, and the Ljung-Box statistic for no serial correlations of orders up to k   (LB  for the squared residuals ε t
2 are also called the McLeod-Li

statistics).  For the residuals ε t  , the heteroskedasticity-consistent standard errors for ρ1 are given in parentheses (the usual standard error is T -1/2 = 0.018) and both the usual LB (upper lines) and the heteroskedasticity-adjusted LB (lower lines) are shown.  The
5% critical values for χ2(k ) are 5.991 (k =2), 7.815 (3), 9.488 (4), 11.070 (5), 12.592 (6), 14.067 (7), 15.507 (8), 16.919 (9), 18.307 (10), 19.675 (11), 21.026 (12), 22.262 (13), 23.685 (14), 24.996 (15), 26.296 (16), 27.587 (17), 28.869 (18), 30.144 (19), 31.410
(20), 32.671 (21), 33.924 (22).

Squared standardizd residuals Z t
2

RV

RV 1/2

ln RV

C

C 1/2

Residuals  εt Standardized residuals  Z t



Table 4:  Further specification tests

  (m ,l ) (1,2) (2,1)
k = 2 3 4 5 k = 1 2 3 k = 1 2 3  = (1,1) ARCH-m Leverage

Short-mem. -0.002 -0.456 -0.593 -3.241 4.716 5.451 1.834 2.002 3.158 3.359 139.297 300.546 418.937 613.858 -0.216 1.038 0.229 1.198 -1.363 -2.867
(2,0,{2})-G 2.408 2.557 3.411 4.695
Homosked. 12.646 12.832 13.249 -3.274 5.577 4.750 4.683 4.469 5.177 4.230 340.963 730.094 1,002.689 1,435.300 5.420 13.893 25.255 14.293 -1.095 -2.973
(0,d ,1) 18.630 21.912 25.045 28.791
+ GARCH 0.820 0.627 0.431 -2.134 4.768 5.350 3.181 3.084 2.157 2.408 140.927 301.625 418.049 611.230 -0.213 1.416 0.311 1.790 -1.088 -2.777
(0,d ,1)-G 3.782 4.491 5.406 6.766
Homosk.. ver. of best 12.913 13.312 13.865 -3.360 5.570 4.859 4.260 4.112 5.708 4.664 341.694 728.647 1,001.012 1,431.934 4.608 15.167 25.546 14.788 -1.051 -2.959
(2,d ,0) 18.488 21.731 24.901 28.667
Best overall 1.176 0.913 0.688 -2.915 5.047 5.735 1.370 1.594 3.602 3.690 134.742 287.149 399.346 585.305 -1.223 0.622 0.475 1.454 -1.190 -2.769
(2,d ,0)-G 3.363 3.613 4.375 5.659
Short-mem. -0.540 -0.796 -0.779 -2.506 2.344 2.598 0.322 -0.036 1.196 1.195 36.745 79.042 110.621 161.434 -0.880 0.517 2.622 3.203 5.156 4.152
(1,0,2)-G 1.226 1.341 1.930 2.942
Homosked. 2.822 2.822 2.672 -1.855 2.576 2.379 1.748 1.378 2.039 1.664 56.780 123.072 167.576 239.940 1.627 2.240 23.649 48.013 14.567 7.456
(0,d ,1) 9.674 12.136 14.470 17.515
+ GARCH 0.382 -0.017 -0.177 -1.761 1.996 2.260 0.939 0.468 0.842 0.932 36.962 80.971 112.648 164.097 -0.021 1.011 2.521 3.580 5.668 4.303
(0,d ,1)-G 1.904 2.136 2.663 3.627
Homosk.. ver. of best 2.706 2.640 2.549 -2.570 2.729 2.633 1.368 1.164 2.438 1.998 56.167 120.665 164.562 236.100 0.147 2.924 23.733 49.772 14.781 7.845
(2,d ,0) 9.388 11.733 14.029 17.040
Best overall 0.480 0.025 -0.130 -2.235 2.249 2.617 0.287 -0.014 1.275 1.294 37.116 78.697 109.086 159.376 -1.723 0.408 2.728 3.495 5.239 4.127
(2,d ,0)-G 1.911 2.054 2.505 3.432
Short-mem. 0.001 -0.023 0.007 -0.838 -1.434 -0.667 -2.216 -2.240 -0.673 -0.708 2.815 6.414 8.762 11.689 -0.522 3.217 0.339 3.148 7.241 25.083
(2,0,1)-G 1.677 1.914 2.292 3.199
Homosked. 0.363 0.112 -0.075 -1.691 -1.262 -0.603 -2.092 -2.083 -0.653 -0.633 4.618 9.634 13.701 18.604 -1.449 5.065 1.187 14.761 5.425 14.710
(2,d ,0) 3.512 4.171 4.577 5.629
+ GARCH 0.302 0.017 -0.240 -1.587 -1.479 -0.635 -2.171 -2.176 -0.755 -0.705 3.677 6.522 8.524 11.296 -1.754 3.674 0.207 3.904 6.812 23.126
(2,d ,0)-G 2.157 2.564 2.811 3.620
Homosk.. ver. of best 0.200 0.043 -0.098 -1.379 -1.254 -0.615 -2.134 -2.129 -0.636 -0.654 4.686 9.729 13.761 18.607 -1.478 5.049 1.253 14.583 5.440 14.461
({2},d ,1) 3.407 4.008 4.461 5.478
Best overall 0.202 -0.043 -0.210 -1.363 -1.471 -0.648 -2.207 -2.215 -0.751 -0.726 3.579 6.414 8.387 11.142 -1.836 3.754 0.261 3.799 6.632 22.747
({2},d ,1)-G 2.110 2.492 2.747 3.545
Short-mem. 1.296 1.085 0.881 -1.896 4.547 5.571 1.925 2.155 3.095 3.478 135.709 296.375 412.433 602.941 -0.188 0.690 0.117 3.569 3.368 0.896
(2,0,{2})-G 1.511 2.004 3.174 4.439
Homosked. 12.201 13.217 14.048 -2.592 5.179 4.923 4.328 4.281 4.953 4.424 342.874 740.090 1,011.522 1,441.198 4.639 13.205 22.458 8.789 -2.623 -3.358
(0,d ,1) 18.880 22.370 25.656 29.452
+ GARCH 1.947 2.557 3.709 5.024 4.290 5.353 3.055 3.098 2.163 2.664 137.079 297.039 414.158 605.267 -0.619 0.854 0.138 3.689 3.008 0.419
(0,d ,1)-G 0.913 1.159 1.304 -1.792
Homosk.. ver. of best 12.651 13.742 14.481 -2.846 5.242 5.071 3.835 3.833 5.168 4.649 341.469 735.879 1,006.099 1,433.161 4.110 14.516 22.997 9.529 -2.598 -3.352
({2},d ,1) 18.891 22.310 25.595 29.404
Best overall 1.079 1.352 1.333 -2.360 4.895 5.854 1.373 1.621 2.758 3.228 134.695 288.186 402.269 589.806 -1.831 0.251 0.233 3.754 3.202 0.737
({2},d ,1)-G 1.861 2.245 3.274 4.589
Short-mem. 0.550 0.259 0.026 -1.182 1.694 2.362 0.894 0.500 1.425 1.725 30.906 68.276 95.601 139.663 -0.358 -0.240 1.551 3.768 7.181 8.302
(2,0,2)-G 0.818 0.912 1.846 2.922
Homosked. 2.712 2.868 2.915 -1.253 2.498 2.800 1.340 1.038 2.215 2.206 52.669 116.046 158.849 226.107 0.624 1.522 23.293 45.588 5.783 0.825
(0,d ,1) 9.168 11.606 14.520 17.888
Best overall 0.351 0.288 0.094 -0.889 2.097 2.663 0.828 0.334 1.102 1.423 33.284 73.196 102.143 149.058 -1.010 0.334 1.985 4.840 10.672 13.526
(0,d ,1)-G 0.967 1.171 2.278 3.456
Short-mem. -0.249 -0.338 -0.515 -0.154 -1.229 -0.422 -2.242 -2.538 -0.341 -0.084 0.489 2.636 3.312 4.350 -0.494 2.941 -0.128 3.731 8.468 27.987
(2,0,1)-G 0.802 0.874 1.373 2.197
Homosked. 0.248 0.342 0.382 -0.153 -1.531 -0.737 -2.347 -2.481 -0.202 -0.094 3.677 8.651 11.500 15.658 -0.755 5.292 1.415 28.678 6.514 21.892
(0,d ,1) 3.291 4.015 5.097 6.344
Best overall 0.376 0.391 0.451 -0.184 -1.536 -0.754 -2.099 -2.407 -0.430 -0.215 1.725 3.017 3.681 5.178 -0.846 2.767 -0.144 4.459 10.056 28.736
(0,d ,1)-G 1.155 1.192 1.675 2.476

CCK

RV

BDS
Q HL (1) W HL (5) W HL (10)

C 1/2

ln C

Hong-Li separate inference
γ = 0.5 γ = 1.0

Line 1:   ln Z t
2

      Line 2:    Z tVar. Model
Hong-Li

(2,2) (3,3) (4,4)

RV 1/2

ln RV

C

W HL (20)



Table 5:  In-sample forecast performance evaluation

Int. Coef. R 2 χ 2 Int. Coef. R 2 χ 2

 1 0.8048 0.1245 0.8878 0.3959 8.325 7.2603 0.3977 0.2943 0.0201 103.968
 (0.0459) (0.0485) (0.0156) (0.0987) (0.0832) (0.0000) 
RV 5 0.9054 0.2291 0.7938 0.2448 17.159 4.2408 0.4836 0.2842 0.0687 177.385
(2,d ,0)-G (0.0554) (0.0560) (0.0002) (0.0906) (0.0612) (0.0000) 

10 0.9491 0.2956 0.7345 0.1765 31.805 3.9477 0.6027 0.2240 0.0598 421.560
(0.0527) (0.0521) (0.0000) (0.1161) (0.0389) (0.0000) 

22 1.0100 0.4598 0.5856 0.0885 34.744 3.6034 0.7313 0.1650 0.0562 824.011
(0.0837) (0.0711) (0.0000) (0.1392) (0.0281) (0.0000) 

 1 0.2643 0.0162 0.9856 0.5347 1.130 0.2548 0.0190 0.7189 0.0363 4.216
(0.0201) (0.0228) (0.5684) (0.0095) (0.1700) (0.1215) 

RV 1/2 5 0.3041 0.0480 0.9551 0.3856 2.959 0.1628 0.0276 0.7678 0.0823 15.915
(2,d ,0)-G (0.0316) (0.0351) (0.2278) (0.0082) (0.1349) (0.0003) 

10 0.3244 0.0822 0.9215 0.3033 4.279 0.1557 0.0395 0.7313 0.0687 21.515
(0.0424) (0.0462) (0.1177) (0.0088) (0.1116) (0.0000) 

22 0.3506 0.1751 0.8277 0.1942 6.364 0.1421 0.0524 0.7261 0.0544 18.512
(0.0694) (0.0701) (0.0415) (0.0140) (0.1528) (0.0001) 

1 0.4934 -0.0022 0.9931 0.5982 0.192 0.4122 0.0088 0.9528 0.0170 0.131
(0.0099) (0.0159) (0.9084) (0.0443) (0.1914) (0.9366) 

5 0.5675 -0.0053 0.9818 0.4691 0.394 0.2846 0.0485 0.9710 0.0368 25.042
lnRV (0.0160) (0.0297) (0.8214) (0.0440) (0.1870) (0.0000) 
({2},d ,1)-G 10 0.6065 -0.0092 0.9675 0.3947 0.589 0.2720 0.0670 1.0255 0.0465 50.321

(0.0218) (0.0438) (0.7450) (0.0493) (0.2056) (0.0000) 
22 0.6567 -0.0203 0.9222 0.2929 1.513 0.2766 0.0820 1.1473 0.0615 77.823

(0.0292) (0.0694) (0.4694) (0.0588) (0.2421) (0.0000)  
1 0.7986 0.1063 0.9014 0.3933 7.074 7.3971 0.4192 0.2631 0.0159 156.044

(0.0433) (0.0484) (0.0291) (0.1091) (0.0676) (0.0000) 
C 5 0.9006 0.2224 0.7930 0.2397 17.408 4.3643 0.5073 0.2544 0.0547 277.402
({2},d ,1)-G (0.0534) (0.0565) (0.0002) (0.0976) (0.0488) (0.0000) 

10 0.9450 0.2934 0.7273 0.1701 31.865 4.0076 0.6141 0.2062 0.0517 590.623
(0.0523) (0.0534) (0.0000) (0.1195) (0.0329) (0.0000) 

22 1.0052 0.4571 0.5727 0.0835 36.492 3.6497 0.7351 0.1543 0.0503 856.786
(0.0816) (0.0715) (0.0000) (0.1407) (0.0277) (0.0000) 

1 0.2689 0.0086 0.9951 0.5269 1.042 0.2641 0.0197 0.7190 0.0355 4.728
(0.0198) (0.0230) (0.5939) (0.0093) (0.1630) (0.0940) 

C 1/2 5 0.3090 0.0271 0.9800 0.3764 1.997 0.1706 0.0306 0.7422 0.0760 17.726
(0,d ,1)-G (0.0319) (0.0364) (0.3685) (0.0081) (0.1272) (0.0001) 

10 0.3294 0.0592 0.9490 0.2932 3.004 0.1634 0.0425 0.7081 0.0650 20.623
(0.0437) (0.0489) (0.2227) (0.0096) (0.1148) (0.0000) 

22 0.3548 0.1491 0.8573 0.1866 4.487 0.1498 0.0561 0.6952 0.0527 18.422
(0.0723) (0.0750) (0.1061) (0.0149) (0.1611) (0.0001) 

1 0.5226 0.0015 0.9979 0.5843 0.063 0.4585 0.0176 0.9062 0.0331 1.083
(0.0106) (0.0163) (0.9692) (0.0305) (0.1204) (0.5819) 

lnC 5 0.5996 0.0070 1.0080 0.4534 0.170 0.3142 0.0584 0.9345 0.0729 21.464
(0,d ,1)-G (0.0175) (0.0311) (0.9184) (0.0315) (0.1198) (0.0000) 

10 0.6386 0.0072 1.0031 0.3808 0.094 0.2987 0.0761 0.9912 0.0930 43.871
(0.0240) (0.0462) (0.9542) (0.0369) (0.1354) (0.0000) 

22 0.6885 -0.0011 0.9656 0.2813 0.224 0.3006 0.0897 1.1124 0.1250 69.770
(0.0319) (0.0750) (0.8939) (0.0468) (0.1730) (0.0000) 

In volatility prediction, the target variable is RV , RV 1/2, lnRV , C , C 1/2, or lnC (one-day-ahead, or multi-days-ahead single-
day).  In volatility-of-RV prediction, the proxy for the target is the squared prediction errors ( one-day-ahead  or multi-days
average ) from the selected model for each of the six series.  Newey-West standard errors for the OLS estimates of the
regression intercept and the coefficient are given in parentheses.  The χ 2 test statistic with p-value in parentheses is for testing
the joint hypothesis of the intercept being zero and the coefficient being one.

Mincer-Zarnowits Regression
RV prediction Volatility-of-the RV predictionVariable /

Selected
Model

Horizon
: Day (s) RMSE

Mincer-Zarnowits Regression
RMSE



Figure 1a:  The figure plots time series of daily Nikkei 225 RV, square-root RV, and log RV (the dotted
lines), along with the corresponding in-sample one-day-ahead ARFIMA-GARCH forecasts (the solid lines).
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Figure 1b: The figure plots time series of daily Nikkei 225 C , C 1/2, and lnC  (the dotted lines) where C  is the
continuous sample path component of RV , along with the corresponding in-sample one-day-ahead ARFIMA-
GARCH forecasts (the solid lines).
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Figure 2a: The figure plots time series of squared residuals (dotted lines) and one-day-ahead GARCH
conditional variance estimate (solid lines) from the ARFIMA-GARCH model for daily Nikkei 225 RV , RV 1/2,
and lnRV .
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Figure 2b: The figure plots time series of squared residuals (dotted lines) and one-day-ahead GARCH
conditional variance estimate (solid lines) from the ARFIMA-GARCH model for daily Nikkei 225 C , C 1/2,
and lnC  (the dotted lines) where C  is the continuous sample path component of RV .
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Figure 3a: The figure plots time series of squared residuals (dotted lines) and five-day-average and 22-day-average conditional variance estimates (solid lines) from the
ARFIMA-GARCH model for daily Nikkei 225 RV1/2 and lnRV .
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Figure 3b: The figure plots time series of squared residuals (dotted lines) and five-day- average and 22-day-average conditional variance estimates (solid lines) from the
ARFIMA-GARCH model for daily Nikkei 225 C1/2 and lnC .
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