Public Policy Towards Network Industries

٠

Focus of Analysis

- Regulation of *network infrastructure industries* such as railroads, electric power, telecommunications
 - Nature & extent of legal, regulatory constraints
- Decision criteria are economic efficiency
 - How to generate most total surplus
- This analysis requires understanding of:
 - Production costs
 - Demand characteristics
 - Informational constraints
 - Pricing Theory
 - Market Definition & market power...

Basic Distinction

 Government interventions in markets are of two basic types:

ex-ante (regulation) *or ex-post* (competition policy/anti-trust)

- Choice between these depends on:
 - Probability of need for restraint
 - Cost of punishment vs Cost of regulation
- Part I focuses on regulation, with more limited attention to anti-trust issues.
 - Unavoidable mixing because of "liberalization" of (portions of) most infrastructure networks.

Summary and Overview: Network Characteristics and Policy Issues

- Characteristics of Network Infrastructure Industries
 - Economies of scale and scope
 - Long-lived, sunk assets
 - Vertical integration of "monopoly" and "competitive" components
 - Multiple services and/or customer classes
 - Network externalities

- Resulting Policy Problems
 - Mark-ups over cost required to break-even
 - Recovering capital investments
 - "Unbundling" (vertical disintegration) and Access pricing
 - Price discrimination and Cross-subsidization
 - Universal Service funding

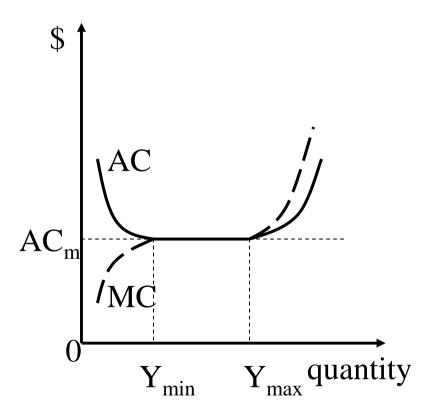
Lecture 1: Costs

Reading:

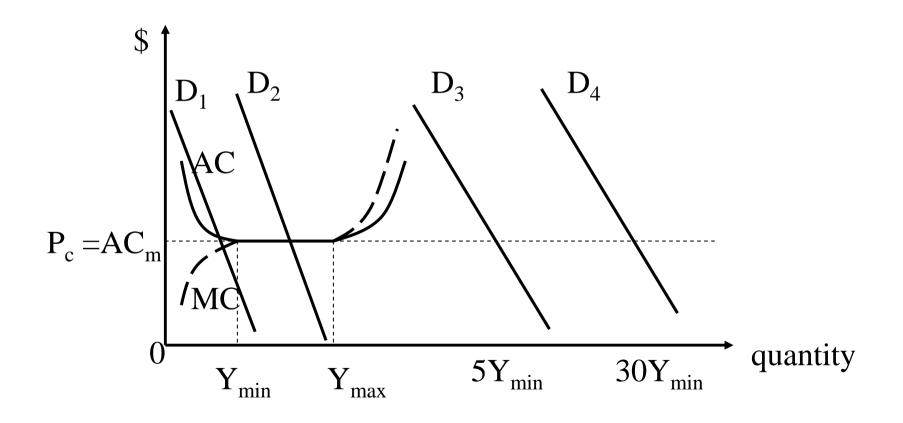
J. Panzar, "Technological Determinants of Firm and Industry Structure," Chapter 1 in the *Handbook of Industrial Organization* Cost analysis forms the basis for public policy toward network industries

- Marginal costs are the benchmark for efficient pricing
- Incremental costs and stand-alone costs form the price floors and ceilings relevant for subsidy analysis.
- Intertemporal analysis of costs essential for understanding total service long run icremental costs (TSLRIC) and other regulatory "terms of art."

Natural monopoly and economies of scale

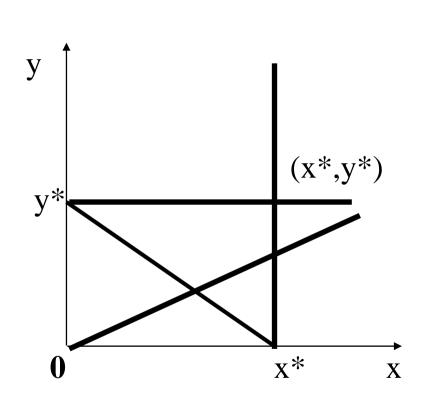

Natural Monopoly or Subaddivity of Cost: (at output level y⁰) Economies of scale: (single output)

Economies of scale through y⁰ imply NM at y⁰, but not conversely


$$C(y^{0}) \leq \sum_{i=1}^{m} C(y^{i})$$
$$\sum_{i=1}^{m} y^{i} = y^{0} \qquad m \geq 2$$
$$S(y) = \frac{AC(y)}{MC(y)} = \frac{C(y)}{yMC(y)}$$

Increasing, constant and decreasing returns to scale

- For Y < Y_{min}, AC>MC, unit costs are falling, and the firm enjoys increasing returns to scale.
- For Y_{min} < Y < Y_{max},AC=MC, unit costs are constant, and the firm experiences *constant returns to scale.*
- For Y > Y_{max}, AC < MC, unit costs are rising, and the firm experiences *decreasing returns to scale.*



"Natural" industry structure determined by demand *relative* to min efficient scale

Multi-product cost concepts for network industries

- Ray-average cost
- Incremental and stand-alone costs
- Product specific fixed costs
- Economies of scope
- Trans-ray convexity

Ray-average costs and multiproduct economies of scale

- RAC measure the behavior of costs along a ray through the origin.
- RAC reaches a minimum at the point of constant (multiproduct) returns to scale.

$$RAC(\mathbf{y}) \equiv C(\mathbf{y}) / \mathbf{a} \cdot \mathbf{y}$$
$$\frac{dRAC(t\mathbf{y})}{dt} =$$
$$RAC(t\mathbf{y}) \left[\frac{\sum_{i} y_{i}C_{i}(t\mathbf{y})}{C(t\mathbf{y})} - \frac{1}{t} \right]$$

Let t^* minimize $RAC(t\mathbf{y})$ and normalize $t^* = 1$: Then $S(\mathbf{y}) \equiv \frac{C(\mathbf{y})}{\mathbf{y} \cdot \nabla C(\mathbf{y})} = 1$ at minimum RAC

Multi-product economies of scale

- Marginal costs for individual products are well-defined
- Average costs for individual products are *not* well-defined
- S measures the behavior of costs as all outputs vary in proportion.

$$MC_{x} = \frac{\partial C(x, y)}{\partial x}$$
$$MC_{y} = \frac{\partial C(x, y)}{\partial y}$$
e.g. $AC_{x} \neq \frac{C(x, y)}{x}$
$$S(x, y) \equiv \frac{C(x, y)}{x \cdot MC_{x} + y \cdot MC_{y}}$$

Incremental and stand-alone costs

- Two product example: total costs = C(x, y).
- Stand-alone costs measure the cost of producing *only* that product: e.g., *C*(*x*,0).
- Incremental costs are the *added* costs caused by a product: e.g., $IC_x = C(x,y) C(0,y)$.
- Average Incremental Costs *are* welldefined on a per unit basis: $AIC_x = IC_x/x$

Incremental and stand-alone costs

- Stand-alone costs measure the cost of producing *only* that product: e.g., *C*(*x*,0).
- Incremental costs are the added costs caused by a product: e.g., $IC_x=C(x,y)$ -C(0,y).
- $A/C_x = IC_x/x$

Let $S \subseteq N = \{1, ..., n\}$ and $\mathbf{y} \in \mathfrak{R}^n_+$. Define \mathbf{y}_S s.t. $(\mathbf{y}_S)_i = y_i$ for $i \in S$, $(\mathbf{y}_S)_i = 0$ for $i \notin S$.

 $SAC_{S}(\mathbf{y}_{S}) = C(\mathbf{y}_{S})$ $IC_{S}(\mathbf{y}) = C(\mathbf{y}) - C(\mathbf{y}_{N-S})$

Product specific fixed costs

- Fixed costs result from a discontinuity of the cost function at the origin.
- Product-specific fixed costs result from discontinuities along axes.

Let $C(y) = F{S} + c(y)$ s.t. $S = \{i \in N : y_i > 0\}$ $c \in C^2, c(\mathbf{0}) = 0$ $T \subseteq S \iff F{T} \le F{S}$

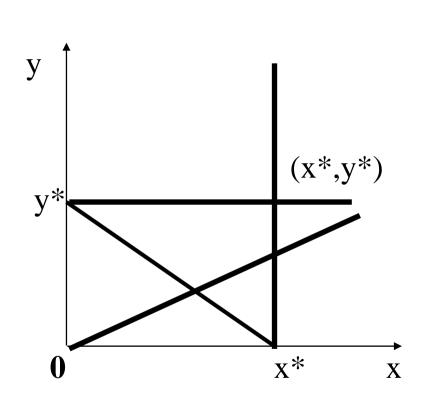
$$psfc_{S} = F\{N\} - F\{N-S\}$$

Product specific fixed costs

- Fixed costs result from a discontinuity of the cost function at the origin.
- Product-specific fixed costs result from discontinuities along axes.
- PSFC's are part of IC

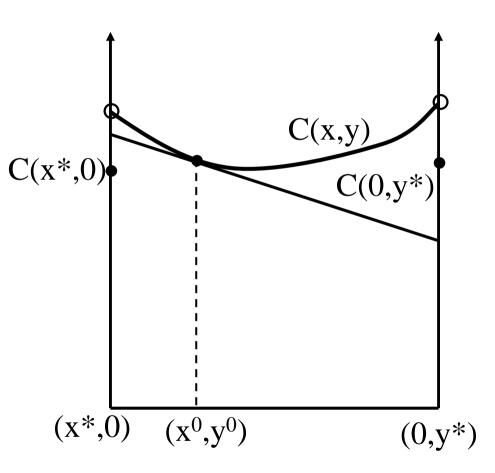
C(0,0) = 0 $C(x, y) = F + c_x x + c_y y$ $C(x,0) = F_x + c_x x$ $C(0, y) = F_y + c_y y$ $F_x, F_y \le F \le F_x + F_y$ $psfc_x = F - F_y$ $psfc_y = F - F_x$

Examples of fixed and product specific fixed costs


- Fixed costs do not vary with volume and are common to all of the firm's products:
 - General Headquarters
 - CEO's salary
- Product specific fixed costs also do not vary with volume, but can be avoid if product line shuts down
 - Divisional HQ
 - Salary of Divisional VP

Economies of scope

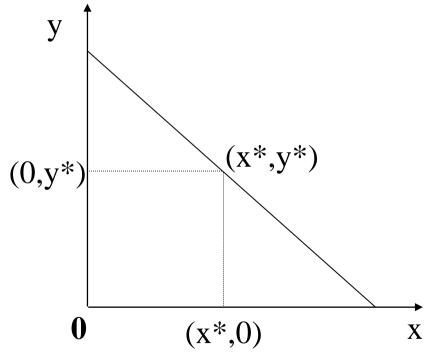
- Scope economies are present when it is cheaper to produce multiple products together:
 C(x,0) + C(0,y) > C(x,y)
- Arise from shared inputs:
 - peak load structure (day/night service)
 - shared facilities
 - joint production (wool/mutton)
- Network pricing problem: apportion benefits of economies of scope among user groups


Multi-product cost concepts for network industries

- Ray-average cost
- Incremental and stand-alone costs
- Product specific fixed costs
- Economies of scope
- Trans-ray convexity

Trans-ray behavior

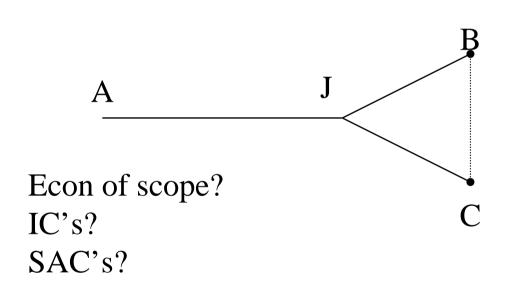
- The behavior of costs across rays reflects the extent of *complementarities*.
- Basic notion is *trans-ray* supportability
 - Does cost surface have a support at a point?
- Product specific fixed costs pose difficulties for this property
 - E.g., *without* psfc the tangent line supports the cost surface at (x⁰,y⁰) along the transray connecting points (x*,0) and (0,y*).



Complementarities and submodularity

- Weak cost complementarities are captured by the assumption C_{ii}(y)≤0 for i ≠ j.
 - Intuitively, the marginal cost of product i falls when the level of product j increases.
- A twice continuously differentiable cost function is *submodular* if it exhibits weak cost complementarities everywhere.
- More generally, a multiproduct cost function is submodular if C(y_S+y_V)-C(y_S) ≥ C(y_T+y_V)-C(y_T) for S⊆T
- Submodularity is *sufficient*, but *not necessary* for economies of scope to exist. (E.g., let S = Ø, above)

Economies of scale, economies of scope, and natural monopoly


- Surprisingly, Ec of Scale *and* Ec of Scope do not imply Natural Monopoly.
- Two types of sufficient conditions:
 - Strengthen Ec of Scale: e.g., Declining Average Incremental Costs (DAIC)
 - Strengthen Ec of Scope: e.g., trans-ray supportability
- Exercises: 2 product proofs
 - DAIC and Ec Scope \Rightarrow NM
 - Q-Convexity of Costs and Ec of Scale \Rightarrow NM

Implications of economies of scope and scale

- Economies of scale mean there will be a deficit from marginal cost pricing: S(x,y)>1⇒x·MC_x+ y·MC_y < C(x,y)
- Economies of scope mean there will be a deficit from pricing at average incremental cost:
 IC_x + IC_y = [C(x,y) C(0,y)] + [C(x,y) C(x,0)] = C(x,y) - [C(x,0) + C(0,y) - C(x,y)] < C(x,y)

Network cost example (assume JB,JC<BC<JB+JC)

"Products:" (1) (2) (3) Y_{AB}, Y_{AC}, Y_{BC}

Costs (all fixed) AJ, JB, JC, BC

Examples of cost concepts in a network

- Stand alone costs:
 - SAC₁ = AJ + JB
 - SAC₂ = AJ + JC
 - SAC₃ = BC
- Incremental costs:
 - Individual services: $IC_1 = IC_2 = IC_3 = 0!$
 - Subsets of services:
 - $IC_{1,2} = AJ + JB + JC BC$ (Why not just AJ?)
 - $IC_{1,3} = JB$
 - $IC_{2,3} = JC$

Network Economies of Scope: Several partitions to consider

- Totally separate versus joint: $C{1}+C{2}+C{3} = (AJ+JB) + (AJ+JC) + BC > AJ+JB+JC = C{1,2,3}$
- All combinations of one and two: $C\{1,2\}+C\{3\} = (AJ+JB+JC) + BC > AJ+JB+JC = C\{1,2,3\}$ $C\{1,3\}+C\{2\} = (AJ+JB+JC) + (AJ+JC) > AJ+JB+JC = C\{1,2,3\}$ $C\{2,3\}+C\{1\} = (AJ+JB+JC) + (AJ+JB) > AJ+JB+JC = C\{1,2,3\}$
- All partitions enjoy economies of scope in this example

Covering costs "fairly" using subsidy free prices

- Basic principle: No service or group of services should pay more than their stand-alone costs.
- Example: Let AJ=20; JB=JC=5 and BC=6.
- What does the *stand-alone cost test* require?
 - $P_1 \le 25$; $P_2 \le 25$; and $P_3 \le 6$
 - $P_1 + P_2 \le 30; P_1 + P_3 \le 30; and P_2 + P_3 \le 30$
 - $P_1 + P_2 + P_3 = 30$ (break-even)
- Note that "equal division" ($P_1=P_2=P_3=10$) won't work
- Notice the role played by the cost of link BC, even though it is not part of the efficient network.

Economically meaningful multiproduct cost concepts

- *Total costs* of the enterprise (C) depend on all output levels
- Marginal cost of any service i

 (MC_i) is the cost of producing one more unit of that service
- Stand-alone costs of a service i (SAC_i) are the costs of providing only that service
- Incremental costs of any service i

 (IC_i) are the added costs incurred because a service is provided

- $IC_i = C - SAC_{others}$

• AVERAGE COSTS do not exist!

• Example:

- Total and marginal costs are $C = F + c_1Q_1 + c_2Q_2 = 900 + 500 + 1000 = 2400$ $MC_1 = c_1 = 5$ $MC_2 = c_2 = 10$
- Stand-alone costs are $SAC_1=F_1+c_1Q_1=700+500=1200$ $SAC_2=F_2+c_2Q_2=500+1000=150$ 0
- Incremental costs are $IC_1 = C - SAC_2 = F - F_2 + c_1Q_1 = 400 + 500 = 900$ $IC_2 = C - SAC_1 = F - F_1 + c_2Q_2 = 200 + 1000 = 1200$

Fully distributed cost pricing

- FDC attempts to determine *the* costs of individual services
- Each service recovers the costs unambiguously assigned to it plus an allocated "fair share" of overhead costs
- Allocation rules base upon "objective criteria"
 - Volume
 - Attributable costs

- Example:
 - Output: $Q_1 = Q_2 = 100$
 - Attributable costs per unit: $c_1=5$, $c_2=10$.
 - Overhead costs:
 - F₁ = 700 if *only* service 1
 - $F_2 = 500$ if only service 2
 - F = 900 if *both* provided
 - Allocation using relative volume: $C_1 = c_1Q_1 + Q_1F/(Q_1+Q_2) = 950$ $C_2 = c_2Q_2 + Q_2F/(Q_1+Q_2) = 1450$
 - Allocation using relative attributable costs:

 $C_{1} = c_{1}Q_{1} + c_{1}Q_{1}F/(c_{1}Q_{1}+c_{2}Q_{2}) = 800$ $C_{1} = c_{2}Q_{2} + c_{2}Q_{2}F/(c_{1}Q_{1}+c_{2}Q_{2}) = 1600$

Cross-subsidization: When is a rate structure "subsidy free?"

- Total revenues equal total costs
 - If not, the *firm* is either providing or receiving a subsidy
- Revenues from a service must not exceed the *stand-alone costs* of the service
 - If they do, the service is *providing* a subsidy
- Revenues from a service must not be less than *incremental costs* of providing that service
 - If they are, the service is *receiving* a subsidy

- Total revenues equal total costs $p_1Q_1+p_2Q_2=F+c_1Q_1+c_2Q_2=2400$ $p_1+p_2=24$
- Stand-alone cost tests $p_1Q_1 \le SAC_1 = 1200$ $p_1 \le 12$ $p_2Q_2 \le SAC_2 = 1500$ $p_2 \le 15$
- Incremental cost tests $p_1Q_1 \ge IC_1 = 900$ $p_1 \ge 9$ $p_2Q_2 \ge IC_2 = 1200$ $p_2 \ge 12$

Can subsidy-free charges always be found?

- Example: 3 towns A, B, and C seeking water service
- Cost structure:
 - Any individual town can be provided at cost of 14 = C(1)
 - Any pair of towns can be served at a cost of 18 = C(2)
 - All 3 towns can be served at a cost of 30 = C(3)
- Economies of scope are present:
 - 18 = C(2) > 2C(1) = 28
 - 18+14 = C(2)+C(1) > C(3) = 30
- Joint service is efficient

- But, no subsidy-free charges exist that recover costs!
- Try symmetric charges of 10:
 - -10 < C(1) = 14
 - But, 2(10) > C(2) = 18
- To be free of subsidy requires charges r_A , r_B , and r_C such that
 - r_A \leq 14; r_B \leq 14; and r_C \leq 14

$$-r_A + r_B \leq 18$$

$$-r_A + r_C \le 18$$

- $r_B + r_C \le 18$
- But, this requires $r_A + r_B + r_C \le 27 < 30 = C(3)$

Policy problems posed by crosssubsidization

- What happens is subsidy-free prices are not established?
 - Incentives for inefficient entry are created
 - Entrants anticipate a profit by providing service to users *providing* a subsidy
 - Competitors of services *receiving* a subsidy complain
 - E.g., UPS and Deutsche Post
 - Claims often made, rarely proven
- Contrary to the example, subsidy-free prices can usually be found
 - But, doing so places restrictions on efficient cost recovery
- Most cross-subsidies are established politically, for non economic reasons
 - E.g., rail passenger service
 - Rural postal service