
Lecture 2A: Optimal Pricing I

Reading:  Braeutigam Chapter in the 
Handbook of IO



Optimal Pricing:  The Public Interest 
Framework

• What prices would a benevolent (often 
omniscient) regulator choose to set?

• Why is this an interesting or important question? 
– Information asymmetries 

– Regulatory process is political and adversarial

– Stakeholders pursue self- (not public) interest

• PI principles are “the language of discourse”
– Stakeholders attempt to argue that their interests 

coincide with the public interest in the matter at hand.



Ingredients of an Optimal Pricing Model

• Objective Function:  What is the “Public Interest” that regulatory 
policy is assumed to pursue?

• Instruments:  What policy variables are subject to regulatory control?
– Prices

– Capacity levels

– Quality controls

• Constraints:  What economic and/or political constraints limit the 
discretion of the regulator?
– Break-even constraint for the firm

– Uniform pricing constraints:  rural/urban, etc.



Issues to be addressed

• Objective function:  What is “total surplus?”

• What is marginal cost pricing?

• Why is optimal pricing aka “price discrimination in the 
public interest:”
– 1st Degree:  Full surplus extraction

– 2nd Degree:  Nonlinear pricing (asymmetric info, no resale)

– 3rd Degree:  Market segmentation



The Social Welfare Function:  where 
does it come from?

• Characteristics:
Consumer 

benefits 
measured in 
dollars

Derivative of CB 
w.r.t. price = -X

• Achieve via
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Consumer surplus as a welfare measure

• Standard objective function in the 
literature is total surplus

– Profits (producers’ surplus).

– Consumers’ surplus (area under 
demand curve).

• Convenient and intuitive because it 
yields P=MC for unconstrained 
problem.

• But, what’s the justification for 
this?

– Consumers’ surplus integral not 
generally path independent for 
market demand curves.

π (p) = p ⋅ X(p) − C(X(p))

S(p) = CS(p) + π (p)

ˆ p = argmaxp S(p)⇒

∇S(ˆ p ) = ∇CS(ˆ p ) + ∇π( ˆ p ) = 0

∇CS = −X

∇π = X + (p − ∇C) ⋅[ X j
k ]

∇S(ˆ p ) = (ˆ p − ∇C) ⋅[ X j
k ] = 0⇒

ˆ p = ∇C  if [ X j
k ]  is non singular



Social welfare function justifications

• Actually, all that’s required is that the gradient of the consumers’
benefits function equals (the negative of) the vector of market demand 
functions.

• Individuals i∈{1, …, I}
– Indirect utility functions vi(p,mi)

– Ownership share σi

– Total consumer income:  mi=yi+σiπ
• Bergsonian Social Welfare Function:

W=W(v1, v2, …, vI).



The “neutral across individuals” property

S(p) = W(v1(p,m1),v2(p,m2),  ...,vI (p,mI ))

S j = ∂W

∂vi

∂v i

∂p j

+ ∂vi

∂m
σ i

∂π
∂pj

 
 
 

 
 
 i =1

I

∑ = Wi v j
i + vm

i σ iπ j{ }
i =1

I

∑

S j = − δi x j
i + δiσ iπ j

i=1

I

∑
i=1

I

∑   where δi ≡ Wivm
i

Suppose δi = δ > 0  ∀i (What does this mean?)

S j / δ = − x j
i

i =1

I

∑ + π j σ i =
i=1

I

∑ − X j + π j = ( pk − Ck )X j
k

k =1

n

∑



Sufficient conditions for a SWF to be 
neutral across individuals

• Utilitarian social welfare function with quasi-linear preferences.
– ⇒ Wi = vi

m = 1

– But then, we could have started with CS!

• Any social welfare function with optimal income redistribution
– For any p, (some other branch of) government adjusts lump sum transfers ti to 

maximize SWF

L = W(v1(p, y1 + t1 +σ1π(p)), ..., vI (p, yI + tI +σ Iπ(p))) − γ t i
i =1

I

∑

FONCs

∂L

∂ti

= Wivm
i − γ = 0



Marginal cost pricing:  the welfare 
benchmark

• “Simple,”
unconstrained models 
should yield p=mc

• Basic results derivable 
from
– rigorous utility 

model 

– surplus 
maximization model

Π(p) = p j X j − C(X)
j

∑

TS = CB(p) + Π(p)

TS j = (pk − Ck )X j
k

k

∑ = (p − ∇C) ⋅ [ X j
l ]

m i = m i + s i Π

W = α i µ i (p0 ;p,m i )
i∈I

∑

Wj = α i µm
i [−x j

i + s i Π j ] = δ [Π j − X j ]
i∈I

∑



P=MC also required for Pareto Efficiency, 
given optimal income redistribution

L = v1(p, y1 + t1 +σ iπ(p)) + µ i v i(p, yi + ti +σ iπ(p)) − v i[ ]
i = 2

I

∑ − δ t i
i =1

I

∑

Let µ1 =1,  then Pareto Optimality requires:

∂L

∂pj

= µ i v j
i + vm

i σ iπ j[ ]
i =1

I

∑ = µ ivm
i −x j

i + σ iπ j[ ]
i =1

I

∑ = 0

∂L
∂ti

= µivm
i −δ = 0

Substitution and division by δ > 0 yields the FONCs:

∂L
∂pj

1
δ
 
 
 
 = − x j

i

i=1

I

∑ − π j σ i
i =1

I

∑ = ( pk − Ck )
∂Xk

∂p j

= 0
k =1

n

∑



Optimal Pricing under Constant Returns 
to Scale:  Peak Load Pricing

• The “Peak-Load” Problem
– Demand varies cyclically (e.g., 

daily, monthly, yearly)

– Capacity cannot be varied over the 
cycle

– Output cannot be stored

• Economic efficiency issues
– How are marginal costs defined?

– Should prices be set equal to short-
run or long-run marginal costs?

– How to recover capacity costs?

• Basic Model:
– Independent demands

Dpeak= D1(p) > D2(p) = Doff peak

– Capacity K must be sufficient to 
meet demand

K > D1(p1) > D2(p2)

– Per unit capacity costs = β
– Per unit variable costs = b

– LRMC = b + β
– SRMC = b

– Total costs
C = βK + b(D1 + D2)



Case I: Firm Peak

• Peak period price equals long-
run marginal costs
p1 = b + β

• Off-peak price equals short-run 
marginal cost
p2 = b

• Peak-period users “pay” for all 
capacity costs
(p1 - b)Q1 = βQ1 = βK

• Uniform pricing would result in 
deadweight loss

$

Q

β+b

b

K=Q1Q2
0

D2
D1



Case II:  Shifting Peak

• Output in both periods fully 
utilizes capacity
D1(p1) = D2(p2) = K

• Unequal prices:
β+b > p1 > p2 > b

(p1-b) + (p2-b) = β
• Note that

– Both prices above SRMC

– Both prices below LRMC

– Both period contribute toward 
covering capacity costs 

$

Q

β+b

b

Q2=K=Q1
0

D2 D1

p1

p2



A Cookbook for solving peak-load pricing 
problems

• Identify peak and off-peak periods

• Try setting peak price equal to b+ β, off-peak price equal to b
– If “peak” quantity greater than “off-peak” quantity at those prices, you’re done.  If 

not,

• Construct the demand for capacity schedule by adding together the inverse
demand schedules (less variable cost) for each period:

– PK(K) = (P1(K)-b) + (P2(K)-b)

– (Remember, you’re now in the shifting peak case, so K = Q1 = Q2)

• Solve for the intersection of the demand for capacity schedule with the 
marginal cost of capacity:  i.e., set PK(K) = β and solve for K

• Plug this value of K back into the inverse demand functions
p1 = P1(K) and p2 = P2(K) 



Surplus maximization formulation of 
Peak Load Pricing problem

π = pt − b( )Dt

t=1

T

∑ − βK

L = CS(p) + π(p) + λt (K − Dt (p))
t=1

T

∑

Lps
= −Ds + π s − λtDs

t

t=1

T

∑ = pt − b − λt( )Ds
t

t=1

T

∑ = 0

LK = πK + λt

t=1

T

∑ = −β + λt

t=1

T

∑ = 0

Lλs
= K − Ds ≥ 0; λs ≥ 0; λs(K − Ds) = 0



Results of the basic model

• Users in peak period(s) bear all capacity costs.

• Multiple peak periods typically result in differing prices across periods.

Let P = { s : Dt (p* ) = K * }

pt
* = b; λt

* = 0; t ∉P

pt
* = b + λt

* ; λt
* ≥ 0; t ∈P

( pt
* − b)Dt (p* ) = K * λt

*

t ∈P
∑ = βK *

t ∈P
∑



Peak Load problem with more general 
technologies 

• The traditional formulation of the peak load problem assumes a fixed 
proportions, constant returns to scale production function.

– E.g., qt = f(xt,K) = min{xt/a,K} ⇒ Vt = V(qt,K) = waqt for qt < K.

• Extend to general production function and multiple types of capital and 
variable inputs:

– E.g., qt = f(xt,K); Vt =V(qt,w,K); and V(q,w,K) = minx { wx: f(x,K) > q}

• This actually makes the problem simpler when V is “smooth:”

L = CS(p) + [ ptD
t −V (Dt,w,K)]

t=1

T

∑ − βK

Lps
= −Ds + π s = pt −Vq (Dt,w,K)( )Ds

t

t=1

T

∑ = 0

LK j
= πK j

= −β j − VK j
(Dt,w,K)

t=1

T

∑ ≤ 0; K j ≥ 0; K jLK j
= 0



Neoclassical Peak Load Pricing under 
constant returns to scale:

If the technology exhibits constant 
returns to scale, then

V is linearly homogeneous in q
and K.

V is concave in q.

From the FONCs:
Price equals SRMC in all

periods
Revenues in each period exceed 

variable costs
All periods “pay” for capacity

Firm breaks even.

Technological assumptions 
dramatically change results of 
standard model.

pt = Vq (Dt,w,K)  ∀t

ptD
t = DtVq (Dt,w,K) ≥ V (Dt ,w,K)  ∀t

TR = ptD
t

t=1

T

∑ = Dt

t=1

T

∑ Vq (Dt,w,K)

TC = V (Dt,w,K)
t=1

T

∑ + βK

= [DtVq (Dt,w,K) + K jVK j
(Dt,w,K)

j=1

n

∑ ]
t=1

T

∑ + βK

= DtVq (Dt,w,K)
t=1

T

∑ + K j VK j
(Dt ,w,K)

t=1

T

∑ + β j

 

 
 

 

 
 

j=1

n

∑

= TR



Another example:  multiple fixed 
proportion technologies

• Most electric utilities have several types of generating units

• Some have high capacity costs, but low operating costs;  others, the opposite.

• Consider J plant types: β1 > β2 > …, βJ; b1 < b2 < …, bJ

L = CS(p) + ptD
t (p) − b j q j

t

t=1

T

∑ − β jK j

j

J

∑
j=1

J

∑ + λt q j
t − Dt (p)

j=1

J

∑
 

 
  

 

 
  + γ j

t (K j − q j
t )

j=1

J

∑
t=1

T

∑
t=1

T

∑
t=1

T

∑

Lps
= pt − λt( )Ds

t

t=1

T

∑ = 0

L
qk

s = λs − bk − γ k
s ≤ 0; qk

s ≥ 0; qk
s (λs − bk − γ k

s) = 0

LKk
= γ k

t − βk = 0
t=1

T

∑  



Diagrammatic analyses
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Lecture 2B: Ramsey Pricing

Reading:  Braeutigam Chapter in the 
Handbook of IO



Ramsey Pricing: The Problem

How to set prices as efficiently as possible for a multiproduct firm when:
(i) the firm must charge a uniformtariff (price) for each output

(ii) 

(iii) the firm must break even without external governmental subsidy.

Query: How would a single product firmset its uniform price to be efficient?

Let S(p) = consumers’ benefit function (consumers’ surplus)

  i    <0        
i

C
p

y
π∂= ∀ ⇒

∂

(p) = profit = py(p) - C(y(p),w) 

W(p) = net economic benefit = S(p) + (p)       

  

π
π



p p p y p
p

y

max W(p) S   +  = -y(p) +y(p) +  py  - C y  = 0       .

     p - C  = 0

π⇒

⇒

First Best:What price is most efficient (without the breakeven constraint)?

Second Best:What price is most efficient 
imposing the breakeven constraint?

Note dual relationship between two forms 
of the second best problem:

 P 

y D 

AC 
MC P1Best 

p
max  W(p)

Subject to  > 0  .π
p

min  DWL(p)

Subject to  > 0  .π

p

2Best

max  W(p)

Subject to  > 0  p = ? ?π ⇒



Problem: Efficient Pricing with Common Costs

Common costs are shared costs, incurred in a production 
process in which the ratios of the outputs can be varied.

Example:  Railroad
Assume total cost is affine: C = F + m1y1+m2y2

Demands: p1(y1) and p2(y2)

Common cost 
way and  
structure 
(track, bridges)

F

Directly attributable 
costs for passenger 
service (e.g., pass. 

cars)  m1y1

Directly attributable 
costs for freight 
service (e.g., freight 
cars) m2y2

passenger 
service y1

freight 
service y2

Query: How to set the most efficient uniform prices p1 and p2 so 
that enable the firm to avoid financial losses?

 p1 

y1 

D1 

m1 

p2 

y2 

D2 

m2 



Problem: Efficient Pricing with Common Costs

Example:  Pipeline network
Assume total cost is affine: C = F + m1y1+m2y2

Demands: p1(y1) and p2(y2)

Query: How to set the most efficient uniform prices p1 and p2 so 
that enable the firm to avoid financial losses?

 p1 

y1 

D1 

m1 

p2 

y2 

D2 

m2 

A
B

C

DCommon Cost F

Attributable Cost for 
Customer 1 m1y1

Attributable Cost for 
Customer 2  m2y2



Ramsey Pricing Problem: Multiproduct Firm

1 N

1 2 N

Consider an N product monopoly, services  i = 1, ... , N

Prices: p = (p  , ...,p ).

Demands y(p) = y (p), y (p),..., y (p)

S(p) = consumers' benefit function (consumer surplus)  .

(p) = profit = py(p) - π

p

C(y(p),w)

W(p) = net economic benefit = S(p) + (p)

Ramsey Optimality:

max  W(p) = S(p) + py(p) - C(y(p),w)

subject to:     = py(p) - C(y(p),w)  0

π

π ≥



j
i i j j

ji i

j

Form Lagrangian

       L = S(p) + py(p) - C(y(p),w) + [py(p) - C(y(p),w)]

= S(p) + [1 + ][ py(p) - C(y(p),w)]

FONC:

yL
       = -y  + [1 + ][y  + (p  - C )  = 0    i   .

p p

  

(p  -
(1)            

λ
λ

λ
∂∂ ∀

∂ ∂∑

j j j

j j i i

 C ) y p
     i       . 

p p y 1

  

and

(2)             = 0.

λ
λ

π

∂
= − ∀

∂ +∑



Ramsey Optimality: Independent Demands

i i j j

j j j ji i i i

i i i j j j

j ji i
y ,p y ,p

i j

i i

i

(p  - C ) y p(p  - C ) y p
                  i,j       .

p p y p p y 1

(p  - C )(p  - C )
(1)            E E      i,j   

p p 1

and

(2)             = 0.

(p  - C )
 "markup" of pric

p

λ
λ

λ
λ

π

∂∂ = = − ∀
∂ ∂ +

= = − ∀
+

=

i i

i i
y ,p

i

e over MC (Lerner index)

(p  - C )
E  = "Ramsey number" for product i

p



i i

i i
i y ,p

i

(p  - C )
RN E         .

p 1

λ
λ

≡ = −
+

Ramsey Numbers

Range of values for RNi ?

Implications for optimal pricing if RNi = 0?

Implications for optimal pricing if RNi = -1?



Inverse Elasticity Rule i i j j

j ji i
y ,p y ,p

i j

(p  - C )(p  - C )
E E      .

p p
=

 
D1 

D2 

MC 

p0 

p1 

y1 

p2 

y2 

A B G H 

Suppose C = F + m(y1 + y2)    
Firm just breaks even when initial price in both markets is p0.

What area(s) on graph measure fixed cost F?

DWL at initial price?

How does the IER suggest that prices should be changed if efficiency is to be 
increased (DWL decreased) while allowing the firm to break even?



Ramsey Pricing: Numerical Example

1 2 1 2

1 1 2

2 1 2

2000 20 30         when y 0,   and y 0     .

2000 20                    when y 0,   and y0     .

2000 30                    when y 0,   and y0     .

y y

C y

y

+ + > >
= + > =
 + = >

Costs:

Demands: 1 1 2 2p  = 200 - 3y p  = 300 - 2y            .

At a Ramsey Optimum

1 1 2 2

1 1 2 2 1 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

1 2
1 2

(1)   = p y +p y -C=0

          = (200 - 3y )y +(300 - 2y )y -2000-20y -30y =0      .

(p  - C ) y p (p  - C ) y p
(2)  =

p p y p p y

1 1
       (200 - 3y - 20) - =(300 - 2y  - 30) -    .

3y 2y

π

∂ ∂
∂ ∂

   
   
   



Approximate Solution:

y1 = 57.5; p1= 27.5;       y2 = 128.9; p2 = 42.4

1570/2000

78.5%

5450 -
3880

= 1570

m2y2

= 30(128.9)

= 3880

p2y2

=128.9(42.4)

= 5450

y2

430/2000

21.5%

1580-1150

= 430

m1y1

= 20(57.5)

= 1150

p1y1

=27.5(57.5)

= 1580

y1

% common 
cost covered

Contributio
n

Attributable 
Cost

Market 
Revenue

Service



p2

p1

30

45.75

20 64.1

Profit = 0

Ramsey Optimum
(27.5,42.4)

A

165

110

Unconstrained
Profit Maximum

Ramsey Optimum Graphically



Query: What about Ramsey optimality if the regulated firm does 
not have a monopoly in all of its markets?

Examples:
Railroad competes with fringe of motor carriers or water carriers.
Telephone company with a competitive fringe
Electric power generators with fringe of nonutility generators (NUGs)
Post Office, competing in some markets against UPS, Federal Express

Illustration: A RR facing a competitive fringe of truckers
RR provides N services, yr = (y1r, ..., yNr) at prices pr = (p1r, ..., pNr)
Truckers provide same N services yt = (y1t, ..., yNt)

at prices pt = (p1t, ..., pNt)

Assume yir(pir,pit) for all i.  Services are imperfect substitutes across 
modes of transport, but demands are independent across commodity
types i.

There are supply schedules for truckers: Qit(pit) for all i.



Variations of Ramsey Optimality

I. (Totally Regulated Second Best)  Regulate all prices for RR and trucks.

max W    s.t.   Railroad Profit > 0
(pr,pt)

• Complicated pricing rules, setting 2xN prices
(or MxN prices, if M modes)

• Need information on cross elasticities of demand

• pit > MC-it. Will need to limit entry as well as regulate prices. (How?)

For reference later: shows that Ramsey prices may not be 
“sustainable” against entry.)



Another Variation

II. (Partially Regulated Second Best)  Regulate all RR prices, but let the 
market price for trucking transport be determined by supply and demand.

max W    
(pr)

s.t.    (1) Railroad Profit > 0
and   (2) Qit(pit) = yit(pit,pir) for all i. (Markets for trucking services clear.)

• Set only N prices (for the RR)

• Don’t need information on cross elasticities of demand across modes

• Get usual IER, where the elasticities of demand are the ones facing the 
RR firm.



Lecture 2C: Nonlinear Pricing

Reading:  Braeutigam Chapter in the 
Handbook of IO



Notes on Nonlinear Pricing

Definition:  A nonlinear outlay schedule is an expenditure schedule in which the 
average outlay is not constant as the number of units purchased varies.

 Total 
Outlay, E 

y 

E(y) 

e 

Average 
Outlay 
E/y 

y 

m 

E(y)/y 

Slope is m 

Example 1: E = e + my

e = fixed component

m = variable charge per unit purchased

y = number of units purchased

This affine tariff structure is often referred to as
a “two-part” tariff.

Note: Although E islinear, the outlay 
Schedule is said to be nonlinear, 
because E/y is nonlinear in y



Example 2: “Four-part” tariff   e, m1, m2, m3

 Slope m3 

Slope m2 

Slope m1 

Total 
Outlay, E 

y 

E(y) 

e 

Average 
Outlay 
E/y 

y 

y1 

E(y)/y 

y1 

y2 

y2 

Examples of Nonlinear Pricing …

1 1

1 1 2 1 1 2

1 1 2 2 1 3 2 2

                                             if 

( )                        if    .

( ) ( )   if 

e m y y y

E e m y m y y y y y

e m y m y y m y y y y

+ ≤
= + + − ≤ ≤
 + + − + − ≤



Examples of Nonlinear Pricing …

Example 3: Continuously 
varying “marginal price”

E = E(y)

Like an “infinite-part”
tariff

 Total 
Outlay, E 

y 

E(y) 

e 

Average 
Outlay 
E/y 

y 

E(y)/y 



Pareto Improving Nonlinear Outlay Schedule
Any uniform price not equal to marginal cost can be dominated by a nonlinear outlay 
schedule.
Willig, R., “Pareto Superior Nonlinear Outlay Schedules,”Bell Journal of Economics, 1978

 

DLow DHigh 

MC 

m1 

p 

yLow 

p 

y2H 

A 
B G 

E 

yHigh y1H y1L 

m2 

Illustration:
Two customers

“low” user, DL
“high user, DH

Affine Cost
C = F + (MC)(yL+yH)

m1=lowest uniformtariff allowing
the firm top break even
(area A+ area B = F)

Now introduce nonlinear tariff

1 1

1 1 2 1 1

                           if 

( )  if      .
i i H

i H iH H

m y y y
E

m y m y y y y

≤
=  + − ≤

Effects of new tariff:
1) L unaffected, no worse off
2) H consumes more, gains consumer surplus G
3) Firm profit increases by E.
4) Firm could take part of E and lower m1

to make everyone strictly better off.

Query: Is new tariff “first best?”



 

DLow DHigh 

MC 

m1 

p 

yLow 

p 

A 

B J I 
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Pareto Improvements with “n-part” tariff

Illustration:  Two customers
C = F + (MC)(yL+yH)

m1 = lowest uniformtariff allowing
the firm to break even
(area B+ area I = F)

CSL = A       CSH = H    DWL = C+J

Now charge each customer the same
two-part tariff

Fixed componente = F/2
Marginal price= b = MC
Total outlay: Ei = F/2 + byi

IF A+B+C > F/2, then L purchases service (so does H because H+I+J > A+B+C.     First best ???

Suppose A+B+C < F/2.  Can we charge L fixed component eL < eH, but still have eL + eH = F?
This form of price discrimination requires the firm to

(1) identify customer type and (2) prevent resale.

Principle: The limit on the efficiency of uniform entry fees (ei = ej for all customers) is the 
elasticity of membership in the system with respect to e.



Nonlinear Pricing with Asymmetric Information

Consumer knows his own type (large, small), but the firm does not.

If price discrimination is not implementable, try offering everyone the same set of tariff options.

Example:
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Ei 
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e1 + m1y 

e1 
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e2 

With e1 < e2 and  m1 > m2 .

Consumers will “self select” to be on the lower 
envelope of the options.
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ˆMr. H, who plans on consuming , chooses ( , ).     

ˆMr. L, who plans on consuming , chooses ( , ).     

y y e m

y y e m

>
<

This is referred to as a “self selecting two-part tariff.”



Question: Is it possible to increase total surplus by adding more 
two-part options?

Suppose we have J types of consumers.
have n tariff options in force, with e1<e2, …<en and m1>m2…..>mn.

•If (n+1)<J, then a Pareto improvement in welfare is possible by introducing another option.

Introduce (en+1,mn+1), with en+1 > en and  mn+1 > mn (and mn+1 > b = MC)
(This is a direct extension of Willig’s result. The largest customer will now buy even more and 
realize higher surplus. Profits of the firm will also increase.)

•The arguments above address Pareto superior tariffs (not “optimal” tariffs).
Suggests that an optimalself selecting two part tariff will sell output to the largest class of 
users so that marginal price (m) = marginal cost (b). Otherwise an opportunity exists for a 
Pareto improvement.

Exception: (Ordover, J. and Panzar, J., “On the Nonexistence of Pareto Superior Outlay 
Schedules, Bell Journal (1980).
If “customers” are downstream firms in a competitive industry, then it might NOT be 
optimal to set m = b for the largest customer because that generates a pecuniary competitive 
advantage for large firms.



Optimal Nonlinear Outlay Schedules

L index of consumer types       

( , )  inverse demand for consumer of type 

       0     and    0    (noncrossing assumption)

( ) = number of consumers of type   (a PDF)
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( )  the tariff schedule  [not to be confused with demand ( , )]     
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All consumers face tariff p(y)

 Price 

y 

p(y) tariff

dy 

1( , )   p y θ  

2( , )   p y θ
3( , )   p y θ

Optimal Nonlinear Tariffs (continued)

ˆ For any given , there will be a critical value of  ( ) such that    

ˆ     if ,  will not buy the  unit     

ˆ     if ,  will buy the  unit     

ˆ     if ,  is indifferent about buy

th

th

y

y

y

θ θ
θ θ θ
θ θ θ
θ θ θ

<

>

= ing the  unit     thy

2

1

3

ˆIn the graph, consider the  market.  Then .    

Consumers of type  will select out of the   market.    

Consumers of type  will select into the   market.     

The self selection cond
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Optimal Nonlinear Tariffs (continued)

[ ] [ ][ ]
( )

ˆ0

Objective: Choose ( ) to max  (total surplus), subject to 0.    

max ( , ) ( ) ( ) 1 ( ) ( )         
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Variable
profit per
unit sold

Consumer surplus in   

 market for   
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Form the Langrangean   

(Don't need costate variable  because there is no state equation.)   
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First Order Conditions for Optimal Tariff p(y)
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The FONC is satisfied if the kernel of the integral is zero at every :      
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Interpretation of the Optimal Tariff

, ( )

ˆThe number of customers who buy the  unit is  1 ( ).     

ˆThus 1 ( ) is the quantity ( ) sold in that market.

ˆ
ˆThus ( ) .      

( ) ( )

(
Elasticity in the  market:  

( )
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Thus, (*) can be written as

     

( ) 1
   An Inverse Elasticity Rule for the  market !

( ) 1

ˆNote: For the final unit purchased, , so that G( )=1.     
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Thus, in (*), ( ) .  This verifies the principle of optimality suggested earlier,

for the case in which all consumers are end users (rather than competitive enterprises).    

p y c=


