Lecture 2A: Optimal Pricing |

Reading: Braeutigam Chapter in the
Handbook of 1O



Optimal Pricing: The Public Interest
Framework

 What prices would a benevolent (often
omniscient) regulator choose to set?

 Why is this an interesting or important question?
— Information asymmetries

— Regulatory process is political and adversarial
— Stakeholders pursue self- (not public) interest

* P| principles are “the language of discourse”

— Stakeholders attempt to argue tthatr interests
coincide with the public interest in the mattehand.



Ingredients of an Optimal Pricing Model

Objective Function What is the “Public Interest” that regulatory
policy is assumed to pursue?
Instruments What policy variables are subject to regulatwontrol?
— Prices
— Capacity levels
— Quality controls
Constraints What economic and/or political constraints lithie
discretion of the regulator?
— Break-even constraint for the firm
— Uniform pricing constraints: rural/urban, etc.




Issues to be addressed

* ODbjective function: What is “total surplus?”
 Whatis marginal cost pricing?
 Why is optimal pricing aka “price discrimination the
public interest.”
— 1st Degree: Full surplus extraction

— 2nd Degree: Nonlinear pricing (asymmetric inforesale)
— 3rd Degree: Market segmentation



The Social Welfare Function: where
does it come from?

Characteristics:

Consumer
benefits
measured in
dollars

Derivative of CB
w.r.t. price = X

Achieve via

Utilitarian SWF

Redistribute
Income “in the
background”

CB" =) u'(p”p,m)

idl
H (p%p,m) =€’V (p,m)
OCBY ou S . .

— 1 = XI'V:neL =—-) x' ==X J(p)
op; %zapj %‘ | ; |
becausev! € =1evaluatedatp = p°
CB'(p) =max,{) a'y' (p°p,m +t'): > t' =0}

il idl

sa'u =a‘u=0>0
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Consumer surplus as a welfare measure

Standard objective function in the
literature istotal surplus

— Profits (producers’ surplus).

— Consumers’ surplus (area under

demand curve).

Convenient and intuitive because it
yields P=MC for unconstrained
problem.

But, what's the justification for
this?
— Consumers’ surplus integral not

generally path independent for
market demand curves.

7(p) = pLX(p) - C(X(p))

S(p) = C3(p) + 71(p)

p =argmax S(p) =

0S(p) =0CYp) +Omn(p) =0
OCS=-X

(=X +(p - 0C) X/]

0S(p) =(p-0C) IX1=0=

p =0C if [ X] is non singular



Social welfare function justifications

Actually, all that’s required is that tlgeadient of the consumers’

benefits function equals (the negative of) the vectanarket demand
functions.

Individuals {1, ..., I}

— Indirect utility functions \(p,m)

— Ownership share;

— Total consumer income: Ay,+0; N

Bergsonian Social Welfare Function:

W=W(Vi, v2, ..., V).



The “neutral across individuals” property

S(p) = W(v'(p,m),V(p,m,), ...v'(p.m))

(S o S i)

S = —ZJ,X} +25,ainj whered =Wv,_
=1 =1

Supposed =0>0 [ (What does this mean?)

I I n
§/0==) x+mp 6=-X +m =) (p -C)X
=1 I=1 k=1



Sufficient conditions for a SWF to be
neutral across individuals

Utilitarian social welfare function with quasi-éar preferences.
- =>W=v =1
— But then, we could have started with CS!

Any social welfare function with optimal income redistrition

— For anyp, (some other branch of) government adjusts lunmp sansfers, tto
maximize SWF

L =W('(p,y, +t, +o,1(p)), ..., V' (p,Y, +t, +0,T(p))) - VZti

FONCs

oL -
= =W -y=0
O‘t. 1" m y



Marginal cost pricing: the welfare
benchmark

¢ “Simple,” [(p) = Z P, X' —C(X)

unconstrained models
should yield p=mc TS= CB(p) + N(p)

e Basic results derivable

from TS :Z(pk _Ck)Xjk :(p—DC)[ﬂX}]
— rigorous utility K
model m =m' +s'I

— surplus o .
maximization model W = Z a'u(p°;p,m)
IOl
W =2 a'p,[-x; +s1,]=4M; - X]

1l



P=MC also required for Pareto Efficiency,
given optimal income redistribution

L =vi(p,y, +t, +o,1(p)) + Zﬂ‘ [vi (Y, +t +om(p)) -V’ ]— JZti

Let i/ =1, then Pareto Optimality requires:

%}_:é#i[\/ vanj] Z,u\/[x Uiﬂj]=0

A
%=V -5=0

Substitution and division by > 0 yields the FONCs:
d_ (1 '
)Z‘ZX - JZU Z(R C)%:



Optimal Pricing under Constant Returns
to Scale: Peak Load Pricing

The “Peak-Load” Problem

— Demand varies cyclically (e.g.,
daily, monthly, yearly)

— Capacity cannot be varied over the
cycle
— Output cannot be stored
Economic efficiency issues
— How are marginal costs defined?

— Should prices be set equal to short-
run or long-run marginal costs?

— How to recover capacity costs?

 Basic Model:

Independent demands

Dpeak: Dl(p) > Dz(p) = Doff peak
Capacity K must be sufficient to
meet demand

K> D,(p;) > D,(p,)
Per unit capacity costs[>

Per unit variable costs = b
LRMC =b +f3
SRMC =b
Total costs
C =PK +b(D, + D,)



Case I: Firm Peak

Peak period price equals long-
run marginal costs 4
p,=b+p $

Off-peak price equals short-ru

marginal cost ?3+br
p,=b :

Peak-period users “pay” for all p |- N

capacity costs ’
(pl' b)Q1: BQ1: BK

Uniform pricing would result in

deadweight loss




Case Il: Shifting Peak

Output in both periods fully
utilizes capacity 4
D,(p,) = Dy(p,) =K
Unequal prices:
B+tb>p >p,>Db
(p-b) + (p,-b) =P
Note that
— Both prices above SRMC
— Both prices below LRMC

— Both period contribute toward
covering capacity costs




A Cookbook for solving peak-load pricing
problems

|dentify peak and off-peak periods

Try setting peak price equal to I8+ off-peak price equalto b

— If “peak” quantity greater than “off-peak” quantiy those prices, you're done. If
not,

Construct thelemand for capacity schedule by adding together timeerse
demand schedules (less variable cost) for eacbgeri

—  F(K) = (Py(K)-b) + (P,(K)-b)

— (Remember, you're now in tishifting peak case, so K = Q= Q,)
Solve for the intersection of the demand for cégachedule with the
marginal cost of capacity: i.e., sei(R) = 3 and solve for K
Plug this value of K back into the inverse demamtttions

p; = Pi(K) and g = P,(K)



Surplus maximization formulation of
Peak Load Pricing problem

TIZZ(pt ~b)D" - K

L =CS(p) + 11(p) + Y_ A, (K — D' (p))

t=1

T T
L, =-D°+m - AD.=> (p,—b-A,)D. =0

t=1 t=1
T T

L =10 +ZAt :_IB"'Z/]t =0
t=1 t=1

L, =K-D*20; A;20; A(K-D)=0



Results of the basic model

e Users in peak period(s) bear all capacity costs.
» Multiple peak periods typically result in diffegmprices across periods.

LetP={s:D'(p) =K'}
p. =b; A =0; tOP

*

p=b+A; A, =0;t0OP
Z(lq b)D'(p) = KZA =K




Peak Load problem with more general
technologies

The traditional formulation of the peak load peril assumes a fixed
proportions, constant returns to scale productimaetion.

— E.g, g, =f(x.K) = min{x/a,K} = V' = V(q,,K) =wag for g, < K.

Extend to general production function and multigiees of capital and
variable inputs:

- E.g..q = f(x',K); V'=V(q,w,K); andV(q,w,K) = min_ {wx: f(x,K) >q}
This actually makes the problesmpler whenV is “smooth:”

L =CS(p)+ D [p,D' -V (D', w,K)] - &K

]
L,, ==-D*+1,= 2 (p, -V, (D', w,K))D{ =0

Ps
t=1

)
L, =T ==B; =D Vi (D'W,K)<0; K; 20; KL, =0

]
t=1



Neoclassical Peak Load Pricing under
constant returns to scale:

If the technology exhibits constant p =v (DL w,K) Ot
returns to scale, then

Vs linearly homogeneous o
andK.

Vis concave im.

From the FONCs: T

Price equals SRMC iall TC =) V(D' w,K)+ K
periods =

Revenues in each period exceed _ L t Y t
variable costs "Z[D Vo(D,WK) +ZKJ'VKJ (D', w,K)] + K

p.D' = D'V, (D', w,K) 2V(D',w,K) [t

T T
TR=) pD'=) D'V, (D wK)

t=1 t=1

All periods “pay” for capacity
Firm breaks even. —ZDtV (D', WK)+ZK [ZV (D, WK)+,BJ
Technological assumptions =1 \t=

dramatically change results of _TR
standard model.



Another example: multiple fixed
proportion technologies

* Most electric utilities have several types of gatieag units
 Some have high capacity costs, but low operatosgs;c others, the opposite.
« Consider J plant typeB;>3,>...,3; b;<b,<..., b

L= cs<p)+2ptD () - ZquJ Zﬁ +ZA[ZqJ D(p)]+ZZV<K -q')

j=1 t=1 t=1 j=1

T
= Z(pt - /]t)D; =0
t=1

L =A=b =) <0, 6, 20; ge(A,—b ~4) =0

.
Ly, :ZVK -5 =0
t=1



Diagrammatic analyses




Lecture 2B: Ramsey Pricing

Reading: Braeutigam Chapter in the
Handbook of 1O



Ramsey Pricing: The Problem

How to set prices as efficiently as possible fomdtiproduct firm when:
() the firm must charge a unifortariff (price) for each output

. 0C :

I = — Ui 71<0

W p ay, -

(i) the firm must break even without external gormental subsidy.

Query. How would a single product firset its uniform price to be efficient?

Let S(p) = consumers’ benefit function (consumersphis)

1(p) = profit = py(p) - C(y(p).w)
W(p) = net economic benefit = S(py# (p)



First Best:What price is most efficient (without the breakewemstraint)?

mex Wp) = $ 5 =p) p) + py 3G ¥O

= p-G =0

Second BestVhat price is most efficient
imposing the breakeven constraint?

max W(p)
p

Subjecttor >0= R =7
Note dual relationship between two forms
of the second best problem:
max W(p) min DWL(p)
p p

Subjecttorr >0 Subjecttorr >0

PlBest

AC

MC



Problem: Efficient Pricing with Common Costs

Common costs are shared costs, incurred in a production
process in which the ratios of the outputs can be varied.

Example: Railroad
Assume total cost is affine: C = F + my,+m.,y,
Demands: p,(y,;) and p,(y,)

Directly attributable passenger P1
costs for passenger | 5S¢ Y1 D1
/ service (e.g., pass.
Common cost cars) M,y Y, A AN y
way and 1
structure . . . 02
(track, bridges) Directly attributable freight D,
F "~~~ costs for freight service y,
service (e.g., freight |—
cars) Myy, mz N\
————— y2

Query: How to set the most efficient uniform prices p, and p, S0
that enable the firm to avoid financial losses?



Problem: Efficient Pricing with Common Costs
Example: Pipeline network

Assume total cost is affine: C = F + my,+m.,y,
Demands: p,(y,) and p,(y,)

Attributable Cost for

t 1 P1
Customer 1 ny, y
C m
1
A B _\ V1
P2
Common Cost F D D>
Attributable Cost for
Customer 2 ny, M AN

Query: How to set the most efficient uniform prices p, and p, S0
that enable the firm to avoid financial losses?



Ramsey Pricing Problem: Multiproduct Firm

Consider an N product monopoly, services i=.1,N\.

Prices: P=P ,..-p )

Demands  y(p) =y (P).y (P).--.ny (P)
S(p) = consumers' benefit function (canser surplus)

71(p) = profit = py(p) C(y(p).w)
W(p) = net economic benefit = S(p)# (p)

Ramsey Optimality:
max W(p) = S(p) + py(p) - C(y(p),w)

subjectto: 77 =py(p) - C(y(p)wg O



Form Lagrangian

L = S(p) + py(p) - C(y(p),w) # {p) - C(y(p),w)]
=S(p) + [1 +A ][ py(p) - C(y(p),w)]

FONC:
oL ay. .
— =y +[1HA ]y +> (p - - =00 .
om PSS Y
(p, -C,)ay, p A .
(1) J J ) 7 — Dl
; p, dpy 1+/
and



Ramsey Optimality: Independent Demands

(P -G)oy p:(pj-q)axgz_i L1
POy B Opy BA

(p -G) P -C) - _ .
1 = = =——— 0 I
@) P 50 p 5 1+ A J
and
(2) m =0.
(b -G )= "markup" of pri@ over MC (Lerner index)
P,
(pi - Cr ) T " .
E, , = "Ramsey number" for product |

P :



Ramsey Numbers

_(p-C)e __ A
RNi_ pi Eyiypi 1+ A

Range of values for RN

Implications for optimal pricing if RN= 0?

Implications for optimal pricing if RN= -17?



( Cr) :(pj'C,)E

Inverse Elasticity Rule————

Yi B .
p| pj A8
P1 D1 P2
D2
Po —
A B G H
MC
Y1 y2

Suppose C =F + m(y+vy,)
Firm just breaks even when initial price in bothrkeds is p.

What area(s) on graph measure fixed cost F?
DWL at initial price?

How does the IER suggest that prices should begguhi efficiency is to be
increased (DWL decreased) while allowing the fiorbteak even?



Ramsey Pricing: Numerical Example

Costs: 2000+ 20y, + 39, wheny 0, andy O
C =<2000+ 20y, wheny 0, angs0
12000+ 30y, wheny 0, ang»0
Demands: p, =200 - 3y Rp =300 -2y

At a Ramsey Optimum
1) =Ry +p ¥ -C=0
= (200 - 3y )y +(300 - 2y )y -20a@y,-30y, =0

(2) (pl_Cl)ayl pl:(pz 'Q)ayz Q
P, O0p Y, P, 0P, Y,

(200 - 3y - 2{) 51?] =(300 - 2y - zE))E-ly—]




Approximate Solution

y, =57.5; p= 27.5;

y=128.9;9=42.4

Service | Market Attributable | Contributio | % common
Revenue Cost n cost covered
2 P.Y; m.y, 1580-1150 | 430/2000
=27.5(57.5) = 20(57.5)
= 1580 = 1150 =430 21.5%
Y, P,Y, m,y, 5450 - 1570/2000
=128.9(42.4) | =30(128.9) | 38380
= 5450 = 3880 78.5%

= 1570




Ramsey Optimum Graphically

p
? ® Unconstrained
165 Profit Maximum
45.75 Ramsey Optimum
(27.5,42.4)
30 ® R — Profit = 0
Py

20 64.1 110



Query: What about Ramsey optimality if the regulated firm does
not have a monopoly in all of its markets?

Examples:

Railroad competes with fringe of motor carriers or water carriers.
Telephone company with a competitive fringe

Electric power generators with fringe of nonutility generators (NUGS)
Post Office, competing in some markets against UPS, Federal Express

lllustration: A RR facing a competitive fringe of truckers
RR provides N services, Y, = (Y, .- Yyy) @t Prices p, = (Pyys -5 Pyy)
Truckers provide same N services Y, = (Vi s Yni)

at prices p, = (P --» Py

Assume y. (p,.p;) for all i. Services are imperfect substitutes across
modes of transport, but demands are independent across commodity
types i.

There are supply schedules for truckers: Q,(p,) for all i.



Variations of Ramsey Optimality

|. (Totally Regulated Second Best) Regulate all prices for RR and trucks.
max W s.t. Railroad Profit >0

(pript)

» Complicated pricing rules, setting 2xN prices
(or MxN prices, if M modes)

* Need information on cross elasticities of demand
* p; > MC-,.. Will need to limit entry as well as regulate prices. (How?)

For reference later: shows that Ramsey prices may not be
“sustainable” against entry.)



Another Variation

ll. (Partially Regulated Second Best) Regulate all RR prices, but let the
market price for trucking transport be determined by supply and demand.

max W

(k)

s.t. (1) Railroad Profit >0
and (2) Q.(p:) = Yi(pi,p;) for all i. (Markets for trucking services clear.)

» Set only N prices (for the RR)
 Don’'t need information on cross elasticities of demand across modes

» Get usual IER, where the elasticities of demand are the ones facing the
RR firm.



Lecture 2C: Nonlinear Pricing

Reading: Braeutigam Chapter in the
Handbook of 1O



Notes on Nonlinear Pricing

Definition: A nonlinear outlay scheduleis an expenditure schedule in which the
average outlay is not constant as the number ¢ paorchased varies.

Example 1E = e + my

e = fixed component
m = variable charge per unit purchased
y = number of units purchased

This affine tariff structure is often referred t® a
a “two-part” tariff.

Note: Although E idinear, the outlay
Schedule is said to be nonlinear
because E/y is nonlinear iny

Total
Outlay, E

Average
Outlay
Ely

E(y)

Asm




Examples of Nonlinear Pricing ...

Example 2 “Four-part” tariff e, m, m,, m,

([e+my

=je+my, +my,(y-y,)

yEY,
y,<y<y,

e+tmy, +my(y,—y)+myfy-y,) Iify,<y

Total

Slope m

— E(y)

Outlay, E
Slope y
Slope 7/
e
y
Y1 Y2
Average
Outlay \
Ely \
NEW)y
y

y1 y2



Examples of Nonlinear Pricing ...

Total
Outlay, E E(y)
Example 3 Continuously
varying “marginal price” /
€
E =E(y)
Average
Outlay

Like an “infinite-part” Ely

tariff N EO




Pareto Improving Nonlinear Outlay Schedule
Any uniform price not equal to marginal cost cardbeninated by a nonlinear outlay

schedule.
Willig, R., “Pareto Superior Nonlinear Outlay Schiéss,” Bell Journal of Economics, 1978

lllustration p p
Two customers \ » Drign

“low” user, D \

high user, D, ™
Affine Cost A B G\ me
C = F + (MC)(Y+Y) E

MC \ \

m,=lowest_uniformtariff allowing

the firm top break even

yi YL VoH .
(area A+ area B = F) > YIH Yrigh

Effects of new tariff:

Now introduce nonlinear tariff 1) L unaffected, no worse off
2) H consumes more, gains consumer surplus G
- 3) Firm profit increases by E.
Yy y <y .
E= {ml : o 4) Firm could take part of E and loweg m
M Yy +m2(yi _y]H) if Yy <Y,

to make everyone strictly better off.

Query: Is new tariff “first best?”




Pareto Improvements with “n-part” tariff

lllustration Two customers
C=F+ (MC)(y+Yyn)

m, = lowest_uniforntariff allowing
the firm to break even
(area B+ areal = F)

CS =A C=H DWL=C+J

Now charge each customer tene
two-part tariff

Fixed componerng = F/2

Marginal price= b = MC

Total outlay E = F/2 + by

m

MC

Diow H Drigh
\ | 3
YiL Yiow Y1H YHigh

|F A+B+C > F/2, then L purchases service (so doesddlbee H+1+J > A+B+C. First best ??7?

Suppose A+B+C < F/2. Can we charge L fixed compbge< &, but still have g+ g, = F?
This form of price discrimination requires the fitm
(1) identify customer type and (2) prevent resale.

Principle: The limit on the efficiency of uniform entry fees (g = g for all customers) isthe

elasticity of membership in the system with respect to e.



Nonlinear Pricing with Asymmetric Information

Consumer knows his own type (large, small), buffitime does not.

If price discrimination is not implementable, trifaying everyone the same set of tariff options

+

Example: E= {el Y
ez + rnZy Ei
er + my
. e + mpy
Withe <e, and m>m, . %
Consumers will “self select” to be on the lower e
envelope of the options.
er
y

<>

Mr. H, who plans on consuming>y , choogesm,).
Mr. L, who plans on consuming<y , choogesm,).

This is referred to as a “self selecting two-parift.”



Question: Is it possible to increase total surpysdding more
two-part options?

Suppose we have J types of consumers.
have n tariff options in force, with€e,, ...<g, and m>m,.....>m,.

If (n+1)<J, then a Pareto improvement in welfar@ossible by introducing another option.

Introduce (e,;,Mm.,,), withe,.,>e,and m,,>m, (and m,,>b = MC)
(This is a direct extension of Willig’s result. TleFgest customer will now buy even more and
realize higher surplus. Profits of the firm wilkalincrease.)

*The arguments above address Pareto superiostaridt “optimal” tariffs).
Suggests that an optineelf selecting two part tariff will sell output tbe largest class of
users so that marginal price (m) = marginal cost@bherwise an opportunity exists for a
Pareto improvement.

Exception: (Ordover, J. and Panzar, J., “On thedxmmtence of Pareto Superior Outlay
SchedulesBell Journal (1980).

If “customers” are downstream firms in a competitivdustry, then it might NOT be

optimal to set m = b for the largest customer bsedhat generates a pecuniary competitive
advantage for large firms.



Optimal Nonlinear Outlay Schedules

@ index of consumer types 6, <6<8,

p(y,f) = inverse demand for consumer of type
p,<0 andp,> 0 (noncrossing assumption)

g(6) = number of consumers of tyge  (a PDF)
8,
[oeyo=1
6.

G(8) = CDF oné.

c = marginal cost, a constant
F = fixed cost

p(y) = the tariff schedule [not to be coskd with demang \( &, )]



Optimal Nonlinear Tariffs (continued)

Price
p(y.6,)

All consumers face tariff p(y) p(y,6,)
p(y. &)

For any givery , there will be a criticaalue of @ @) such that

~ tariff
if 6<8, 6 will not buy they™ unit Ply) tar
if 9>6, 6 will buy they" unit

if =6, 6 is indifferent about buryg they"” unit

In the graph, consider tliy"™  market. Téen o,
Consumers of typé,  will select out oktlly™ market.
Consumers of typé,  will select into tiy™ market.

The self selection corittbn definingé isp i Fpy).



Optimal Nonlinear Tariffs (continued)

Objective: Choose Y ) to ma¥  (total slug), subject tor=> O.

w [ 4
max = {j[p(yﬂ)— p(y)g@Xo+[1-G ei[p@)—c]}dy—F
olé
Consumer surplus in - Number of Number of Variable
dy™ market for consumers of CONSUMErs in profit per
consumers of typé , type6 the mark?t unit sold
..... when@ @

subject to:ﬂ:T[ rG{)pyycldy-F= 0
0
Form the Langrangedth =W + A7

(Don't need costate variable because there isat® aquation.)

&
H = {[[p(yﬁ)— p(y)]g(ﬁ)d<9+[1—G(<9)][p(y)—C]}dy—(lwl)F

O3



First Order Conditions for Optimal Tariiy)

=0
&

[[-19@)d6-| p(y.6)- p(y)| 9 @)

06
ap(y)

+ (1+/ ){(—g (é))%[ p(y)-c]+| 1-G @)]ﬂdy =0

)

The FONC is satisfied if the kernel diet integral is zero at eveyy .

A[l—e(é)}—(1+A)[p(y)—c]{g(é)%}: 0

—-C A 1-G(@
N p(y) -c _ A( ) *)
p(y) 1+/ ~ 06
9(0) —— p(y)
ap(y)




. . py)-c_ A _ 1-GO)
Interpretation of the Optimal TarlprT—lﬂ Y }()

) ——
9( )ap(y) p(Yy)

The number of customers who buy tiy& unit isG16 ().
Thus -G (9) is the quantity@ ) sold in that market.

~

90 D
Th =902
e 250

0Q_pPY) __y5_09__PWY)

Elasticity in thedy™ market = .
yin ey =00 500 0 - 9%y 1-6@)

Thus, (*) can be written as

ply)—c__ A4 1

= An Inverse Elasticity Rule for trady™  market !
p(y)  1+A By,

Note: For the final unit purchasefl=8" | so thaéG( =1

Thus, in (*),p (y )=c. This verifies the principle optmality suggested earlier,
for the case in which all consumers are end usatisgr than competitive enpgrses).



