#### Lecture 3: Regulatory Commitment and Rate of Return Regulation

Readings: Braeutigam HB Chapter Chapter 2 in David Newberry, *Privatization*, *Restructuring and Regulation of Network Utilities*, MIT Press 2000 Summary and Overview: Network Characteristics and Policy Issues

- Characteristics of Network Infrastructure Industries
  - Economies of scale and scope
  - Long-lived, sunk assets
  - Vertical integration of "monopoly" and "competitive" components
  - Multiple services and/or customer classes
  - Network externalities

- Resulting Policy Problems
  - Mark-ups over cost required to break-even
  - Recovering capital investments
  - "Unbundling" (vertical disintegration) and Access pricing
  - Price discrimination and Cross-subsidization
  - Universal Service funding

#### Issue 2: Network industries have longlived (sunk) investments

- Creates commitment problems:
  - Government cannot commit *not* to regulate the price of activities *affected with the public interest*
- Once investment is sunk, regulator has incentive to regulate price to average variable cost
  - Ex post, firm accepts this rather shut down
  - Ex ante, firm won't invest at all
- In the US, Rate of Return Regulation (RORR) evolved to solve this problem and to recover sunk costs over time through rates.

A simple model of regulatory commitment (Newberry, *Privitization, Restructuring and Regulation of Network Utilities,* MIT 2000)

- Investment sunk before prices set and revenues realized
- Costs and demand:
  - Capacity K costs r per unit
  - Variable costs *b* per unit
  - "Outside" costs *c* per unit
  - Demand inelastic and uncertain:  $D \in \{1, 1-\sigma\}$ ; Prob{D=1} =  $\rho$
  - Sales  $Q = \min\{K, D\}$
  - Allowed revenues R = R(K, Q)
  - Profits:  $\pi = R bQ rK$
- Regulator maximizes consumers' surplus: CS = cD-R, subject to firm's participation constraint  $\pi \ge 0$ .

### Time line for investment cycle without regulatory commitment

- Firm chooses sunk investment,  $K \in \{0, 1-\sigma, 1\}$
- Demand level revealed,  $D \in \{1 \sigma, 1\}$
- Regulator chooses Revenue rule:  $R(K,Q) \in \{R_K, R_Q, R_{var}\}$ 
  - Rate of return:  $R_{K} = (r + \varepsilon)K + bQ$
  - "Used and useful":  $R_Q = (r + \varepsilon + b)Q$
  - Variable cost:  $R_{var} = bQ$
- Firm chooses output level:  $Q \in \{0, \min[D, K]\}$
- Payoffs realized
  - Firm profit:  $\pi = R(K,Q) rK bQ$
  - Consumers' surplus: CS = Dc R(K,Q)

### Inefficiency of subgame perfect Nash equilibrium without commitment

- Under command decision, planner would maximize  $\rho(c-b)\min\{1,K\} + (1-\rho)(c-b)\min\{1-\sigma,K\} rK$
- Assume that \(\rho(c-b) > r\), so that \(K = 1\) is the optimal investment policy.
- Any of the payoff outcomes in which K = 1 are socially optimal.
- Optimal choice for regulator is always R<sub>var</sub>
  - Firm has incentive to produce, but sunk investment is expropriated.
- Therefore, firm chooses K = 0.

### Subgame Perfect Equilibrium *with* regulatory commitment

- Suppose the regulator can commit to a pricing rule *before* the firm makes its investment decision.
- Changes the "order of moves" and information structure of the "game."
- Threat of firm to not invest is credible
- Allows social optimum to be sustained as a SPE:
   i.e., R = R<sub>K</sub> and K = 1.
- What about *repeated* interactions between investors and regulator?

### Basic structure of investor - regulator interaction is a Prisoners' Dilemma

- Stylized oligopolistic interaction:
  - Payoff structure: c > a > b > d
    - Joint "high price" strategy: a
    - Joint "low price" strategy: b
    - Cheating: c
    - Being cheated on: d
  - Leads to "low price" Nash equilibrium
- But suppose the firms played this game over and over again, "forever?"

| Firm 2<br>Firm 1 | Low price               | High price              |
|------------------|-------------------------|-------------------------|
| Low<br>price     | ( <i>b,b</i> )          | ( <i>c</i> , <i>d</i> ) |
| High<br>price    | ( <i>d</i> , <i>c</i> ) | ( <i>a</i> , <i>a</i> ) |

## A brief introduction to *infinitely repeated* games (i.e., Supergames)

- Player strategies become extraordinarily complex
  - Spell out actions at each date based on all possible histories of the game
- Consider two relatively simple strategies
  - Strategy 1 (Myopic Nash): Set a low price, regardless of history
  - Strategy 2 (Trigger):
    - Set high price until cheated upon
    - Once cheated upon, set low price forever
- What payoffs result from interactions of these strategies?

### Math review: Discounted Present Values (DPVs) of infinite sums

• What is the DPV at interest rate *r* of an income stream of *x* received *next* period, and every period thereafter?

```
DPV = \frac{x}{(1+r)} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots
(1+r)DPV = x + x/(1+r) + x/(1+r)^2 + x/(1+r)^3 + \dots
rDPV = x
DPV = x/r
```

- Use this formula to fill in (part of) the payoff matrix of the oligopoly supergame.
- There are 4 payoff values to determine, associated with the strategy pairs: {Myopic, Myopic}, {Myopic, Trigger}, {Trigger, Myopic}, and {Trigger, Trigger}.

#### (Part of) the Supergame payoff matrix

- If both firms play Trigger, each receives a this period and forever; DPV = a+a/r.
- If both firms play Myopic, each receives *b* this period and forever;
   DPV = *b*+*b*/*r*.
- Suppose Firm 1 plays Myopic and Firm 2 plays Trigger:
  - Firm 1 receives *c* this period (as a cheater), then *b* forever: DPV = *c+b/r*
  - Firm 2 receives *d* this period (as a victim), then *b* forever: DPV = *d*+*b*/*r*
- Lower left entry of payoff matrix is the reverse.

| Firm 2<br>Firm 1 | Myopic       | Trigger      |
|------------------|--------------|--------------|
| Myopic           | b+b/r,b+b/r  | c+b/r, d+b/r |
| Trigger          | d+b/r, c+b/r | a+a/r, a+a/r |

### The Supergame may have two Nash equilibria

- {Myopic, Myopic} will be a Nash equilibrium.
- Requires that the DPV of starting out with a high price is less than the DPV of a low price forever:
   d + b/r < b + b/r</li>

 $d \leq b$ 

- This condition is satisfied in any oligopoly situation.
  - (Being cheated on is the worst possible outcome.)

- Can {Trigger, Trigger}, which involves high prices and profits *forever*, be a Nash equilibrium?
- Necessary that DPV of cheating next period be less than the DPV of maintaining high price: c + b/r ≤ a + a/r (c-a) ≤ (a-b)/r
- That is, the one time gain from cheating must be less than the DPV of the difference between the high profit and low profit payoffs forever.

#### Circularity in the valuation process

• The fundamental rate case equation:  $RR_t=sRB_{t-1}+OE_t+D_t$ 

revenue requirement = fair rate of return ON rate base value +

operating expense + depreciation expense (return OF capital)

• Fundamental circularity:

Value of rate base  $\Rightarrow$  Costs  $\Rightarrow$  Revenue  $\Rightarrow$ Rates  $\Rightarrow$  Discounted PV of cash flow  $\Rightarrow$  Value of rate base

### Depreciation as a Cost

- Two components of depreciation "cost:"
  - Reduction in productive capability of asset in place
  - Recovery OF capital investment over time
- Useful to separate these conceptually:
  - Maintenance Expense: Costs incurred to maintain productive power of asset
    - Actually incurred on a yearly basis
  - Depreciation Expense:
    - Portion of Common Cost arbitrarily allocated to each year

### Depreciation: Accounting/Regulatory versus Economic

- Accounting depreciation allocates costs of sunk facilities over their "useful life"
- Economic depreciation measures asset value changes from period to period

$$\mathbf{D} = (D_1, D_2, \dots, D_T) \ge \mathbf{0}$$
$$\sum_{t=1}^{T} D_t = P$$
$$N_t \equiv RR_t - OE_t$$
$$V_t = \sum_{\tau=t+1}^{T} \beta^{\tau-t} N_{\tau}$$
$$E_t \equiv V_{t-1} - V_t$$
$$\sum_{t=1}^{T} E_t = V_0 - V_T = P$$

#### How to break the valuation cycle?

- In competitive markets, asset values and economic depreciation charges are determined by the market
- But, under regulation, depreciation determines per period costs, which determine rates and values!
- For the resolution of this problem see:
  - Greenwald, B., "Rate Base Selection and the Structure of Regulation," *The Rand Journal of Economics*, *15,* Spring 1984, pp. 85-95.
  - Schmalensee, R., "An Expository Note on Depreciation and Profitability under Rate-of-Return Regulation," *Journal of Regulatory Economics*, *1*, September 1989, pp. 293-298.

 $Choose(D_1, D_2, ..., D_T)$  $s.t.\sum_{t=1}^{T} D_t = P$ Set  $s = r = (1 - \beta) / \beta$  $RB_0 = P$  $RR_t = SRB_{t-1} + D_t + OE_t$ Then,  $\forall t$ ,  $RB_t = V_t$  $D_t = E_t$ 

### Competition limits regulatory options and accelerates economic depreciation

- Simple 2 period example:
  - Constant marginal cost
  - Inelastic demand
  - $s = r = 0 \Rightarrow \beta = 1$
- Wide range of regulatory options w/o competition
- Suppose competition limits 2nd period price
- Cost recovery requires accelerated depreciation

$$RR_{t} = p_{t}Q = cQ + D_{t}$$

$$D_{1} + D_{2} = P$$

$$p_{t} = c + D_{t} / Q$$

$$e.g., p_{sl} = c + P / 2Q$$

$$(p_{1} - c)Q + (p_{2} - c)Q \equiv N_{1} + N_{2} = P$$

comp.per.2 price = 
$$\rho < p_{sl}$$
  
 $\Rightarrow p_2 \le \rho \Rightarrow D_2 \le (\rho - c)Q < P/2$   
 $V_1 = (\rho - c)Q$   
 $RB_1 \le V_1 \Rightarrow D_1 \ge P - (\rho - c)Q$ 

Depreciation important for *any* application of cost-based pricing

- Forward-looking cost models (FLCM) increasingly used to set maximum rates for
  - access
  - interconnection
  - Universal Service Obligations
  - as well as basic rates
- FLCM give rise to a flow of costs overtime
  - Must be annualized for use in rate-setting
    - Creates problems for capital recovery

#### FLCM and falling investment costs

- Provider obligated to provide service beginning in period 1
- Price in *each* period limited by annualized per unit FLC, based upon *current* asset prices
- Asset prices falling over time
- Implications:
  - Provider incurs a capital loss upon investment
  - Investment not recovered under forward-looking prices

- Even simpler 2 period example
   c = 0
  - $P_0$  = initial purchase price
  - P<sub>1</sub> < P<sub>0</sub> price of asset beginning of period 2
- Maximum period 1 rate:  $p_1 = P_0/2Q$
- Similarly, max per 2 rate is
   p<sub>2</sub> = P<sub>1</sub>/2Q
- DPV of investment is  $Q(p_1+p_2)-P_0=(P_1-P_0)/2<0$

### Economic depreciation principles can neatly resolve this dilemma

- Solution 1: Economic Depreciation Approach
- Incorporate capital loss into annualized unit cost
- Initial investment cost is augmented by period 1 Economic Depreciation and then annualized:

$$p_1 = P_0/2Q + (P_0 - P_1)/2Q$$
  
 $p_2 = P_1/2Q$ 

• Now

 $DPV=Q(p_1+p_2)-P_0 = P_0 - P_0 = 0$ 

- Solution 2: Real Option Approach
- Compensate the firm for giving up the option *not* to invest at time zero.
- $DPV_0 = (P_1 P_0)/2$
- $DPV_1 = p_2Q P_1 = 0$
- Value of the *real option* given by

 $OV = DPV_1 - DPV_0 = (P_1 - P_0)/2 > 0$ 

 Include OV as part of costs to be annualized.

#### Price Cap regulation

- Practice ahead of theory
- Introduced to correct the poor incentives associated with traditional "cost plus" RORR.
  - British Telecom privatisation
  - State regulators in US, one by one
  - "Enshrined" by US Telecom Act of 96
- Compared to RORR:
  - Improved incentives for cost efficiency.
  - Lower information costs
  - Poorer control of firm profits

#### Price cap regulation in practice

- Essential ingredients
  - Price index:  $P = \sum_{j} p_{jt} Q_{jt-1}$
  - Cost index:  $I = 1 + \Delta CPI$
  - Productivity offset factor: X
- Typical formula:  $P_t \leq (I X)P_{t-1}$
- Optional features
  - Bands
    - Limits on change in prices of individual services
  - Baskets
    - Separate calculations for various service categories: e.g., monopoly/competitive; basic/nonbasic; etc.

### CPI – X Issues

- What services are subject to the cap?
  - Often imposed on a basket of services
    - Allows variation subject to an index constraint
    - May not span all of the firm's activities
- What is the initial price, P<sub>0</sub>?
  - Requires cost study, just like traditional ones
- What should X be?
- For how long should this X apply?
  - i.e. what is the regulatory lag?

#### Designing a Price Cap: Policy choices

- Pricing flexibility
  - Aggregate index allows firms to make efficient adjustments in rate structure (towards Ramsey)
  - Bands and baskets protect interest groups and may limit crosssubsidization
- Cost adjustments: Exog index versus input "pass through"
  - CPI is exogenous, but may not reflect *industry* conditions
  - Input cost pass through (e.g., *fuel adjustment clauses*) dampen incentives
  - Ideally, use an *exogenous* index of *industry-level* input costs
- X factor: Exog or industry specific productivity offset

### Dynamic Effects of P-C Regime choices

- Price Cap in place for N years, then parameters all get reset
  - On what basis are they reset?
    - Experience!
- When t <<N cost cutting v. attractive
- As  $t \rightarrow N$ , firm gets ready for Cap review
  - rate of cost decline slips
  - firm mimics a high cost operation
- Trade-off involving time to review
  - Large N favors high powered incentives
  - Small N keeps profits and losses in balance

# Earnings sharing (sliding scale) regulation

- Firm keeps all profits until minimum rate of return is achieved
- Firm shares profits for intermediate rates of return
- Firm returns all profits above some maximum rate of return
- Sharing occurs through rebates rather than rate reductions
- Advantage: Provides mix of "cost plus" and "fixed price" contracts
- Disadvantage: Requires as much information as RORR

