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Abstract

Many researchers have documented that realized volatility, which is the sum of squared
intraday returns, may follow a long-memory process, but the long-memory property may
be caused by structural changes. This article develops a new method for the analysis
of long memory and structural changes jointly by combining the irreversible Markov
switching model proposed by Chib (1998) with the ARFIMA model. Since the resulting
model cannot be estimated using the maximum likelihood method, a Bayesian method
is developed using MCMC techniques. Specifically, the parameters and a state variable
representing the number of change points up to each period are sampled from their
joint posterior distribution by sampling them from their full conditional distributions
iteratively. The state variable is divided into several blocks and each block is sampled at
a time from its full conditional distribution given the parameters and the other blocks,
which mitigates the computational burden and makes the method implementable. Our
method is illustrated by applying to the realized volatility (RV) of the TOPIX between
1/7/1997 and 12/28/2006. Using the marginal likelihood, it is found that there are two
change points around 6/22/2004 and 8/4/2005. It is also found that the mean of RV is
low during these two change points. The long-memory is still detected even if structural
changes are allowed, providing evidence that the long-memory property of the RV of the
TOPIX cannot fully be attributed to structural changes.
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1. Introduction

The long-memory property has been detected in some economic time series data and the
ARFIMA (autoregressive fractionally integrated moving average) model has been applied to
such data. One representative variable is realized volatility (RV), which is the sum of squared
intraday returns in financial markets and has recently attracted the attentions of financial
econometricians as an accurate estimator of volatility (Andersen et al. (2001, 2003)). The
long-memory property may, however, be spurious and caused by structural changes. Thus,
it is important to analyze long-memory and structural changes jointly.

Chib (1998) proposes a model for the analysis of multiple structural changes by modifying
the Markov switching model proposed by Hamilton (1989). He introduces a state variable
Dy representing the number of change points up to period ¢ and assumes that D; follows
a Markov process. Let T" and N denote the sample size and the number of change points
during the sample period respectively, and D; and Dy fixed as 0 and N. Suppose that
Dy 1 = n. Then, D; takes n or n +1 when n < N — 1 and only N when n = N. Since
D; never decreases, we call this model as an irreversible Markov switching model. Chib
(1998) develops a Bayesian method for the analysis of this model using Markov chain Monte
Carlo (MCMC) techniques and proposes to select the number of change points N using the
marginal likelihood.

We combine this model with the ARFIMA model. Hamilton (1989) combines the Markov
switching model with the AR model and proposes the filter to calculate the likelihood of
this model. This filter requires us to evaluate probabilities for all possible combinations
of (Dy,Dy_1,...,Dy_,) for each period t = r + 1,...,T where r is the lag-length of AR
model, and hence the computational burden will increase with the lag-length. Since the
ARFIMA model is represented by the AR model with an infinite lag-length, the likelihood
of our model cannot be calculated using the Hamilton (1989) filter. We may approximate
the ARFIMA model by an AR model with a finite lag-length, but the Hamilton (1989) filter
is still not applicable if a sufficiently large lag-length is chosen such that the approximation
error may be negligible. Since the likelihood of our model cannot be evaluated and the
parameters of our model cannot be estimated using the maximum likelihood method, we
develop a Bayesian method for the analysis of our model. We sample the parameters and

(Do, ...Dp_q) from their joint posterior distribution and use the obtained samples for the



Bayesian posterior analysis. This sampling can be done using Gibbs sampler, which is one
of the MCMC techniques, i.e., sampling the parameters and (Ds,... Dy_1) iteratively from
their full conditional distributions.

The problem is how to sample (Dj,...D7_1) from their full conditional distribution.
Two methods are available for this sampling (Kim and Nelson (1999b) Section 9.1.1). One
is the single-move sampler where a single D; (t = 2,...,7 — 1) is sampled at a time from
its full conditional distribution with (Dy,...,D;_1, D41, ..., Dr) and the parameters given.
This method is applicable to our model but inefficient in the sense that it produces highly
autocorrelated samples and the speed of convergence to the posterior distribution is slow. The
other is the multi-move sampler where the vector (Ds, ... Dyp_1) is sampled at a time from
the full conditional distribution with the parameters given. This sampler uses the Hamilton
(1989) which is not applicable to our model as mentioned above. In this article, we propose
to divide (Ds,...,Dyp_1) into several blocks and sample each block at a time from the full
conditional distribution with the other blocks and the parameters given. This sampling can
be done by applying the multi-move sampler to each block. This sampling makes our method
feasible by mitigating the computational burden for the following two reasons. First, we need
not sample the blocks unless D, at the beginning of the next block is larger than that at
the end of the previous block. Second, the computational burden depends on the number of
periods within each block instead of the lag-length because the values of D, outside the block
are given. If the blocks are fixed over the MCMC iterations, there are some blocks which are
not sampled as long as D; at the beginning of the next block is the same as that at the end
of the previous block, which may make this method inefficient. We select the knots of blocks
randomly to accelerate the convergence to the posterior distribution.

Our method is illustrated by applying to the daily RV of TOPIX (Tokyo Stock Price In-
dex) between 1/7/1997 and 12/28/2006. Using the marginal likelihood, we find the evidence
that there are two change points around 6/22/2004 and 8/4/2005. We also find that the
mean of RV is low during these two change points. The long-memory is still detected even if
we take account of structural changes, providing evidence that the long-memory property of
the RV of the TOPIX cannot fully be explained by structural changes.

The article proceeds as follows. Section 2 explains the irreversible Markov switching

ARFIMA model for the joint analysis of long-memory and structural changes. Section 3



explains our Bayesian method for the analysis of this model. Section 4 reviews RV and
explains how we calculate the RV of the TOPIX. Section 5 applies our method to the RV of

the TOPIX and summarizes the results. Section 6 concludes.

2. Irreversible Markov Switching ARFIMA Model

We start with a definition of long-memory. Let p(h) denote the h-th order autocorrelation
coefficient of variable y;. Then, y; follows a short-memory process if Y 7> ;|p(h)| < oo and
a long-memory process if Y % |p(h)| = co. A stationary ARMA model is a short-memory
process. As h increases, the autocorrelation coefficient p(h) of the long-memory process
decays to zero more slowly than that of the short-memory process. More specifically, the
former decays hyperbolically and the latter decays geometrically.

The most widely used for a long-memory process is ARFIMA (p, d, q) model®:

(L) (1 — L) (ye — p) = O(L)uy, up ~ WN(0,07), (1)

where p is the mean of y; and W NN (0, 0?) represents a white noise with mean 0 and variance
o?. L denotes the lag operator and ®(L) = 1— ¢ L—---—¢,LP and O(L) = 1—0 L—---—0, L4
are the p-th and ¢-th order lag-polynomials. For these lag-polynomials, we assume the
stationarity and reversibility, i.e., all roots of ®(A) = 0 and ©(X) = 0 lie outside the unit
circle.

The order of integration d is allowed to take non-integer values. If d = 0, ARFIMA (p, d, q)
model collapses to stationary ARMA(p,q) model and if d = 1, it becomes ARIMA(p, 1, q)
model. If 0 < d < 0.5, y; follows a stationary long-memory process. If 0.5 < d < 1, y, follows

a nonstationary long-memory process®. (1 — L)¢ may be written as follows.

(I_L)d:sz(d—l)--l-d(d—kﬂ)(_mk )
k=1

It follows that ARFIMA model can be represented by ARMA (00, ¢) model.
To analyze long-memory and structural changes jointly, we combine the ARFIMA model
with the irreversible Markov switching model proposed by Chib (1998). Let 7' denote the

sample size and N and (T(l), N T(N)) denote the number and the points of structural changes

!See Beran (1994) for the details of long-memory and ARFIMA model.
%In this case, the above definition of long-memory is not applicable because the autocorrelation coefficients
p(h) cannot be defined.



respectively, where 1 < 7)) < 73 < ... < (M) < T For simplicity, we assume that the
only mean p may be subject to structural changes as follows.

m(o), 1<t< (1
m(l), <t <@

P = : (3)
m(N—1)7 T(N_l) S t < T(N)
m®), N <t<T

It is straightforward to extend such that the other parameters may also change. We also

assume that u; follows a normal distribution. Then, our model is represented by
®(L)(1 - L) (ye — ) = O(L)uy, ug ~ NID(0,0?) (4)

Let D, denote the number of change points up to period ¢, i.e.,

0, 0<t<sW
1, (1) <t< 2
Dy = : (5)
N —1, TN=1) < ¢ < 7(N)
N, W) <t<T

where D and Dt are fixed as 0 and V.
Following Chib (1998), we assume that D, follows an irreversible Markov process with

transition probabilities:
P(Dt = 0|Dt,1 = 0) = 700, P(Dt = 1|Dt,1 = 0) =1- 700,
P(Dt:1|Dt_1:1):7T11, P(Dt:2|Dt_1:1):l—7T11,

(6)
PDy=N-1Dy_y=N—-1)=ny_1n-1, PDy=N|Diy=N—-1)=1—-7n_1N-1,

P(Dy=N|Dy_y = N) =1.

These transition probabilities mean that D; takes n or n+ 1 if D;_1 =n < N — 1 and takes
only N if D; ; = N, which is a natural assumption for structural changes. Since D; never

decreases, we call this process “irreversible” Markov process.

3. MCMC Bayesian Analysis
Hamilton (1989) considers a Markov switching AR(p) model:
Ye = pe+ 01 (Y1 — pe-1) + o+ Gp(Yep — pe—p) +ur,  ue~ NID(0,0%) (7)
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If the lag-length p of this model is not large, it is straightforward to calculate the likelihood by
using the filter proposed by Hamilton (1989) and estimate the parameters by the maximum
likelihood method. This filter requires us to calculate probabilities for all combinations of
(D¢, Dy—1,...,Dyp) for t =1,...,N. If p is large, it is difficult to calculate the likelihood
because of the computational burden. It is impossible to apply the Hamilton (1989) filter
directly to the irreversible Markov switching ARFIMA model because the ARFIMA model
may be represented by an AR model but the lag-length is infinite unless d = ¢ = 0. To
overcome this difficulty, we resort to a Bayesian method using MCMC techniques.

In this method, we first sample the parameters and (Ds,...,Dp_1) from their joint

posterior distribution
f(d, 9, 0'27 m(o), e ,m(N),TI'O[], e ,TI'N,LNfl, DQ, e 7DT71|'!JT7 Dl, DT), (8)

where g7 = (y1,...,yr).

Then, we use the obtained samples for the Bayesian posterior analysis.

Sampling from (8) can be done by sampling iteratively from the following full conditional

distributions.
F(do, o mO, . m™ ro,. . mv_1 -1, D7y dir), (9)
F0ld, o, m©@ ... om™) meo, .. N 1N 1, D ), (10)
F(?d,0,m O, ... m™ 7o, w1 -1, D7y i), (11)
FmO, . m®™\d, 0,02 w00, - .. TN 1N 1, D1y ), (12)
F(m00s - v n—a|d, 0, 02,mO . m®) Do), (13)
f(Da,...,Dr_1]d,0,0%,m©, . ...om"™) moo, ... wn_1n—1, D1, DryGr),  (14)

where Dy = (D1,...,Dyp).

If we use the normal prior for (m(®, .. m(M), the inverse gamma prior for o2 and the
beta prior for m;; (i =0,...,N — 1), (10) and (12) are normal and (11) and (13) are inverse
gamma and beta respectively. It is straightforward to sample from these distributions.

It is not true for (9), (10) and (14). To sample from (9) and (10), we use the ARMH
(Accept-Reject Metropolis-Hastings) algorithm proposed by Tierney (1994) (see also Chib
and Greenberg (1995) and Watanabe (2001)) with the normal proposal density obtained by

applying the second-order Taylor expansion to the true log-density around its mode (see

Appendix A).



If the model is Markov switching AR model (7) and the lag-length p is not large, we
can sample from (14) efficiently using the multi-move sampler proposed by Kim and Nelson
(1998, 1999a,b). If p is large, this sampler is not applicable because it uses the Hamilton
(1989) filter. The irreversible Markov switchig ARFIMA model (4) is represented by the AR
model with infinite lag-length:

oo
Yr = e + Z Biye—i — pre—i) + e, (15)
i=0

where f; (i = 1,2,...) can be calculated depending on the lag-length p and g. For example,
if p=0 and ¢ = 1, they can be calculated sequentially as follows.

1—d-—1 .
ay=d, fy=d—-0, a; = — %1, Bi =i +0¢;i 1 (1 >2) (16)
We assume that yo = po, -..y—r = pi—r. Then, the lag-length of (15) will be ¢ — 1 as follows.

t—1

ye =t + D Bilye—i — pe—i) + uy (17)
i

If the sample size is large, the lag-length t — 1 will also be large and it is still difficult to
sample from (14) using the multi-move sampler.
Another method is the single-move sampler where a single Dy (t = 2,...,T—1) is sampled

from
F(Dy|D1, ..., D1, Dys1y..., Dpyd, 0,02,m©@ o omW™) mgo, . an i, Gr) (18)

This method is applicable to our model but inefficient in the sense that it produces highly

autocorrelated samples and the speed of convergence to the posterior distribution is slow.
Thus, we divide (Ds, ..., Dp_1) into K +1 blocks (Dg,_,+1,- .., Dg,) by selecting (k1, ...,

kx) with kg = 1 and kg1 = T — 1 where k; — kj—y > 2 for i = 1,..., K + 1. Then, we

sample each block (D, ,11,...,Dg,) at a time from the full conditional distribution:

Ff(Dk._ 415 Di,|Dr. s Dot - Dy dy 0,0%,m @ o om®™) oo, iy v 1, )
(19)
This sampling can be done by applying the multi-move sampler to each block (see Appendix
B). This method mitigates the computational burden for the following reasons. First, we have

only to sample the block where Dy, | < Dy, assuming that there are Dy, 1 — Dy, | change



points in this block. Second, this method makes the D; outside the block as given. Thus, we
need not calculate the probabilities for all possible combinations of (Dsy,...,Dr_1). All we
have to calculate is the probabilities for all possible combinations of (Dg,_141,...,Dg,).

We select the knots (ky, ..., kx) randomly as follows.
Ei=int[(T-1)x(i+U)/(K+2)], i=2,...,K. (20)

where U;’s are independent uniform random variables on (0,1) and int[z] denotes the integer
part of x.

These stochastic knots may accelerate the convergence to the posterior distribution by
preventing the sampled change points from staying in the same blocks over the MCMC
iterations (see Shephard and Pitt (1997) and Watanabe and Omori (2004)).

4. Realized Volatility

Since many researchers have documented that RV may follow a long-memory process (An-
dersen et al. (2001, 2003)), we illustrate our method by applying to the RV of the TOPIX.
In this section, we explain RV and how we calculate the RV of the TOPIX.

Suppose that the log-price p(s) follows the simple diffusion process:
dp(s) = p(s)dt + o(s)dW (s), (21)

where W (s) is a standard Brownian process and y(s) and o(s) are the mean and the standard
deviation of dp(s) respectively, which may be time-varying but are assumed to be independent
of dW (s). In this article, we call o%(s) volatility although o(s) is usually called volatility in
the finance literature.
Then, the true volatility for day ¢ is defined as the integral of o?(s) over the interval
(t —1,¢), i.e.,
IV, = /t o?(s)ds, (22)
t

-1
which is called integrated volatility. In this article, we define ¢ —1 and ¢ as the market closing

time on days t — 1 and ¢t respectively.

The integrated volatility is unobservable, but if we have the intraday return data (Tt—1+1 /n

Ty—142/ns - -+ Tt), We can estimate it as the sum of their squares
n
2
RV, =17 1yifn (23)
i=1
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which is called realized volatility (RV). RV; will provide a consistent estimate of IV, i.e.,

plim RV, = IV,. (24)

n—0o0

We calculate the RV of TOPIX from 1/7/1997 to 12/28/2006. The sample size is 2440.
There are two problems in calculating RV. One problem is the presence of microstructure
noise (see Campbell et al. (1997) Chapter 3). If there presents microstructure noise, equation
(24) may not be true. As the time interval of intraday returns used for calculating RV becomes
smaller, the influence of microstructure noise on realized volatility will increase. While some
methods for mitigating the effect of microstructure noise have been proposed?, we simply use
S-minute returns to calculate RV although our dataset contains 1-minute prices.

The other problem is the presence of non-trading hours. Tokyo Stock Exchange is open
only for 9:00-11:00 (morning session) and 12:30-15:00 (afternoon session) except for the first
and last trading days in every year, when it is open only for 9:00-11:00. It is impossible
to obtain high frequency returns for 15:00-9:00 (overnight) and 11:00-12:30 (lunch-time).
Using the overnight and lunch-time returns may cause a severe discretization error because
their time intervals are long. Hansen and Lunde (2005a) propose to calculate RV only when

(0)

the market is open RV, and multiply a constant c such that the sample mean of realized

volatility to the sample variance of daily returns, i.e.,

_ Y, (R~ R)

(0)
RV, =cRV,"’, c
t Zthl R[t(O)

; (25)

where R is the sample mean of daily returns*. We use this method.

Figure 1 plots the RV of the TOPIX calculated using the above method. This figure
shows that there is a low volatility period from the middle of 2004 to the middle of 2005.
What caused the low volatility in this period has not yet reached consensus although some
possible reasons are proposed such as the improvement of economic indicators and the trading
of Nikkei-linked bond. Table 1 summarizes the descriptive statistics of RV and log-RV.
According to the skewness and kurtosis in Table 1, the distribution of log-RV is much closer to

normal distribution than that of RV. Thus, we use log-RV as y; in equation (4). LB(10), which

3Methods for mitigating the effect of microstructure noise are the selection of optimal time interval of
intraday returns (Ait-Sahalia et al. (2005) and Bandi and Russell (2006, 2008)) and two (multi) scale estimator
(Zhang et al. (2005) and Zhang (2006)) and the kernel estimation (Hansen and Lunde (2006) and Barndorff-
Nielsen et al. (2008)).

“Hansen and Lunde (2005b) propose a more elaborate method.



represents the Ljung and Box statistic to test the null hypothesis of no autocorrelations up to
the 10th lag, both for RV and log-RV are large enough to reject the null hypothesis. Figure 2
plots the autocorrelation coefficients in RV and log-RV. The autocorrelations decreases with
the lag-length very slowly, providing evidence that RV and log-RV may follow a long-memory

process.

5. Estimation Results

We estimate the irreversible Markov switching model (4) setting NV = 0,1, 2, 3. Since the lag
length of p and ¢ in AR and MA parts are selected as 0 and 1 by calculating the SBIC of the
plain ARFIMA model, we concentrate on the irreversible Markov switching ARFIMA(0, d, 1)
model:

(1-— L)d(yt — ) =up —Oug_y up ~ NID(O,O’Z) (26)

The priors are set as follows.

(m@, ..., mM) ~ N (0,10 x Iny1) (27)
d~U(0,1), § ~U(-1,1) (28)

o? ~ 1G(3,0.6) (29)

mii ~ Beta(20,0.1), (i=1,...,N —1) (30)

where I represents the N 4+ 1 x N + 1 identity matrix. U(a,b) is uniform distribution in
(a,b) and IG(-,-) and Beta(,-) are inverse gammma and beta distributions respectively.

Following Kim, Morley and Nelson (2005), I impose the assumption that the periods
between the two consecutive structural change points are more than 65 days (roughly 3
months). As explained in Section 3, we divide (D, ..., Dy_1) into several blocks and sample
each block at a time. We divide (Dag, ..., D7_1) into 25 blocks.

We sample from the joint posterior distribution (8) by sampling iteratively from the full
conditional distributions (9)-(14) and (19). The first 5000 draws are discarded and then the
next 10000 are used for the Bayesian posterior analysis.

Table 2 shows the posterior means, the standard errors of the posterior means, the 95%
intervals and the convergence diagnostic (CD) statistics proposed by Geweke (1992) for each

parameters and change points. The posterior means are computed by averaging the simulated



draws. The standard errors of the posterior means are computed using a Parzen window with
a bandwidth of 1000 (Shephard and Pitt (1997)). The 95% intervals are calculated using
the 2.5th and 97.5th percentiles of the simulated draws. Geweke (1992) suggests assessing
the convergence of MCMC by comparing values early in the sequence with those late in
the sequence. Let z(*) be the ith draw of a parameter in the recorded 10000 draws, and
let Ty = (1/na) Y14 2@ and Tp = (1/n4) X1 0001-n, 7). Using these values, Geweke

(1989) proposes the following CD statistics.

TpA—7TB

CD =
\/&i/nA + &%/nB

; (31)

where \/&,24/7“1 and @/6125,/713 are the standard errors of T4 and Tg. If the sequence of 2

is stationary, it converges in distribution to the standard normal. We set ny4 = 1000 and
np = 5000 and compute 6% and 6% using Parzen window with bandwidth of 100 and 500
respectively.
According to the CD values, the null hypothesis of the convergence to the posterior
distribution is accepted for all parameters and change points at the 1% significance level.
We select the number of change points using the posterior odds ratio. The posterior odds
ratio in favor of model i, M;, to model j, Mj, is given by
poRr < LMilyr) _ F(Gr|Mi) f(Mi)
fF(Milgr) — f(gr|M;) (M)

where f(gr|M;)/f(gr|M;) and f(M;)/f(M;) are called Bayes factor and prior odds ratio

(32)

respectively.

If this posterior odds ratio is greater (less) than one, M; (M;) will be selected. As is
the usual practice, we set the prior odds ratio to be one, so that the posterior odds ratio is
equal to the Bayes factor. The Bayes factor is the ratio of marginal likelihoods f(gr|M;) and
f(gr|Mj;), so that the model with a higher marginal likelihood will be selected. We calculate
the marginal likelihood using the harmonic mean method proposed by Newton and Raftery
(1994).

Table 2 also shows the log-marginal likelihood to select the number of change points.
According to the log marginal likelihood, we may choose the number of change points as
two. Figure 2 plots the histogram of change points (71,72) sampled from their posterior

distribution when the number of change points is two. Judging from their modes, we may
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conclude that the change points are around 6/22/2004 and 8/4/2005. Posterior means of
myp, m1 and mo when the number of change points is two are 0.4706, 0.0593 and 0.1910,
indicating that the mean of RV is low during these two change points.

The posterior mean of d decreases slightly as the number of change points increases, but
the differences are small. We may conclude that RV follows a long memory process even if

we take account of structural changes.

6. Conclusions

This article presents a Bayesian method for the joint analysis of long-memory and structural
changes using the irreversible Markov switching ARFIMA model. Our method is illustrated
by applying to the RV of the TOPIX from 1/7/1997 to 12/28/2006. We detect two change
points around 6/22/2004 and 8/4/2005 and find that the mean of RV is low during these
two change points. We also find that the value of memory parameter d does not decrease so
much even if we consider structural changes.

This article is just a starting point and several extensions are possible. First, we detect
long-memory even if we consider structural changes. To examine whether this result might
be specific to our data, we should also apply our method to different RV data. Second,
we concentrate on the structural changes in the mean of RV. It is important to extend our
analysis such that other parameters such as d, § and ¢ may also change. Third, it is also
important to examine whether the result may change if we calculate RV taking account of
jumps in prices (Barndorff-Nielsen and Shephard (2004)). Fourth, we only used the ARFIMA
model for RV. It is worthwhile using the other models such as HAR (heterogeneous interval
autoregressive) model (Corsi (2004)) and UC (unobserved components) model (Barndorfi-

Nielsen and Shephard (2001, 2002)).

Appendix A: Sampling from (9) and (10)

We sample from (9) and (10) using the ARMH (Accept-Reject Metropolis-Hastings) algo-
rithm proposed by Tierney (1994) with the normal proposal density obtained by applying
the second order Taylor expansion to the true log-density around its mode. In this Appendix,
we explain this method.

Let f(x) denote the true density from which we like to sample and I(z) = log f(z). We

11



approximte [(x) using the second-order Taylor expansion around z*.

%

I(z*) +1'(z") (x — 2*) + 1" (z") (z — 2*)*

= logh(x) (A1)

[(z)

The normalized version of h(x) is a normal density with mean z* —{'(z*)/l" (z*) and variance
—1/1"(2*). Using this normal density as the proposal density, we apply the ARMH algorithm.

Denote the (i — 1)th sampled value of « by z;_; and consider the ith sampling. Then,
the ARMH algorithm proceeds as follows.

1. Sample a proposal = from h(z) and a value u from the uniform distribution on (0, 1).
2. If u < f(x)/h(x), go to 3. Else, return to 1.

3. If f(wi1) < h(x;—1), then let ¢ = 1.
If f(xj—1) > h(x;—1) and f(z) < h(z), then let ¢ = h(x;—1)/f(xi—1).
If f(zj—1) > h(z;—1) and f(x) > h(z), then let
i [ )
o= min | ]

h
h

Z;
Ly
Z;

4. Sample a value u from the uniform distribution (0, 1).
5. If u < ¢, return x; = z. Else, return z; = z; 1.

The closer to one is f(x)/h(x) around the mode of f(x), the more efficient is the draw
in the AR part 1-2, in the sense that it accepts the draw with higher probability. Hence, we
select z* as the mode of f(z), which we find by applying the Newton method to f(x) several

times.
Appendix B: Sampling from (19)
(19) can be represented as follows.

P(Dki_l—l—la' . 7Dki|Dki_17Dki+17 v 7DT7’gki)

ki—1
= P(Dki|Dki_17Dki+l7gki) H P(Dt|Dki_17Dt+175t)7 (Bl)
t=k;—1+1
where we omit the parameters (0,02,m(0), coe,mM) o, ,TN—1,N—1) in the condition in

this Appendix.

12



Thus, we first sample Dy, from P(Dy,|Dy,_,, Dk, 11, 0k;)- Using the sampled Dy,, we next
sample Dy, from P(Dy,_1|Dy,_,, D,,Jr.—1). Using the sampled Dy, _;, we next sample
Dy, o from P(Dki72|Dki,1aDki717 Uk,—2). By repeating this procedure, we can sample from
(19).

P(Dy|Dy,_,, D¢y1,7:) in (B1) is represented as

P(Dt|l~)ki—17Dt+1ugT) X P(Dt+1|Dt)P(Dt|Dki_1a?Jt)a (B2)

where P(Dy;1|Dy) is the transition probability defined by (6).

To calculate P(Dy|Dy,_,, %) in (B2), we must calculate P(Dyg._, 11, ...,D¢|Dy._,,5) (t =
ki1 +1,...,k;) sequentially starting from Dy, ,. Suppose that P(Dy, ,11,...,Di_1] Dkifﬂ
U¢—1) is given. Then, we can update it to P(Dg, ,41,... ,Dt|l~)ki71,gjt) using the following
Hamilton (1989) filter.

Step 1:
P(Dp,_, 415, Dt|Dgy_y, Gt—1) = P(Dy| Dy 1)P(Dg;_, 415+ Di 1Dy, 1) (B3)
Step 2:

FWe, D,y i1, Di| D,y ihi—1) = F (Wil De, G—1)P(Dy,_y 41, -, Di| D,y ihi—1),  (B4)

where
] 1 t—1 2
(| Dy, Ge—1) = 5 exp | —5 5 {(yt — ) — 22_; bi(yi—i — Mt—i)} (B5)
Step 3:
f(yt|Dki—17'gt*1) = Z Z f(ytJDki—l-l-l?"'7Dt|Dki—17gt71) (BG)
Dki*l""l:O DtZO
Step 4:

f(yt,Dki_1+17 s 7Dt|Dki_17gt71)

P(Dk17 +17"'7Dt|Dki, 7gt) = ~ - (B7)
1 1 e Dk, Gt—1)
P(Dt|f)k1.71,gt) (t=ki—1 +1,...,k;) are calculated as
N N
P(Dy|Dx,_,5) = Y, -+ Y, P(Dk_yi1,--5 Di|Di_ys ), (B8)

Dy, _,41=0 D¢ 1=0

where P(Dy,_,+1,...,D¢|Dg,_,,7) is given by (B7).
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Table 1: Descriptive Statistics of the Realized Volatility

RV  log-RV

Mean

15453 0.1630
(0.0260)  (0.0139)

Standard Deviation 1.3819 0.7366

Min 0.0986 —2.3166
Max 21.2073 3.0543
Skewness 4.1628 —0.0536

(0.0461) (0.0461)
Kurtosis 36.5959 3.3243

(0.0922) (0.0922)
LB(10) 3518.60  8848.73

Note: Numbers in parentheses are standard errors. LB(10) represents the Ljung-Box statistics to test the null

hypothesis of no autocorrelations up to the 10th lag.

Table 2: Estimation Results

Parameter Mean  Standard Error 95% Interval CD
Number of Change Points = 0 (Log Marginal Likelihood = -1733.59)
d 0.5011 0.0007 0.4560, 0.5487] 0.97
m 0.4501 0.0030 [0.0779,0.8426] 0.82
0 0.1337 0.0010 [0.0735,0.1952] 1.16
o2 0.2419 0.0001 0.2306,0.2537] 0.20
Number of Change Points = 1 (Log Marginal Likelihood = -1732.67)
d 0.4939 0.0012 0.4469, 0.5431] 2.44
m(0) 0.4676 0.0047 [0.0866, 0.8453] —0.98
m) 0.1986 0.0269 [—0.4557, 0.9948] 1.79
0 0.1256 0.0014 [0.0654,0.1892] 1.99
o2 0.2417 0.0001 0.2305,0.2532] 0.69
00 0.9994 0.0000 [0.9982, 1.0000] 2.11
71 1881.01 51.87 [1431,2387] 1.74

Note: The first 5000 draws are discarded and then the next 10000 draws are used for calculating the pos-
terior means, the standard errors of the posterior means, the 95% intervals and the convergence diagnostic
(CD) statistics proposed by Geweke (1992) for each parameters and change points. The posterior means are
computed by averaging the simulated draws. The standard errors of the posterior means are computed using
a Parzen window with a bandwidth of 1000. The 95% intervals are calculated using the 2.5th and 97.5th
percentiles of the simulated draws. The CD is computed using equation (31) with n4 = 1000 and ng = 5000,

where we calculate % and 6% using Parzen window with bandwidth of 100 and 500 respectively.
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Table 2: Estimation Results (Continued)

Parameter = Mean  Standard Error 95% Interval CD
Number of Change Points = 2 (Log Marginal Likelihood = -1731.79)
d 0.4875 0.0010 [0.4378,0.5387] —0.94
m(9) 0.4706 0.0031 [0.0971, 0.8439] 0.14
m) 0.0593 0.0182 [—0.5915, 0.7805] —0.66
m® 0.1910 0.0172 [—0.5941,0.9918] —0.76
0 0.1217 0.0011 [0.0598,0.1876] ~1.28
o2 0.2415 0.0001 [0.2303,0.2532] 2.22
00 0.9994 0.0000 [0.9982, 1.0000] 1.33
T 0.9995 0.0000 [0.9985, 1.0000] 0.39
71 1787.90 16.76 (1461, 2058] 0.76
7(2) 2104.30 17.65 (1810, 2416] 0.52
Number of Change Points = 3 (Log Marginal Likelihood = -1733.51)
d 0.4747 0.0010 [0.4223,0.5303] 0.35
m(©) 0.4511 0.0038 [0.1077,0.8119] 1.86
m) —0.1101 0.0225 [—0.7067,0.5715] 1.18
m® 0.2505 0.0791 [—0.7654, 1.0947] —2.01
m() 0.2104 0.0158 [—0.5944, 1.0010] 2.04
0 0.1101 0.0010 [0.0456,0.1776] 0.62
oy 0.2410 0.0001 [0.2300,0.2528] ~1.38
00 0.9994 0.0000 [0.9983, 1.0000] —0.08
T 0.9995 0.0000 [0.9985, 1.0000] —2.40
T2 0.9995 0.0000 [0.9986, 1.0000] —1.40
(1) 1872.68 10.46 [1761,2025] —2.44
7(2) 2084.40 16.15 (1913, 2203] ~2.19
7(3) 2311.38 23.83 2096, 2435] —2.12

Note: The first 5000 draws are discarded and then the next 10000 draws are used for calculating the pos-
terior means, the standard errors of the posterior means, the 95% intervals and the convergence diagnostic
(CD) statistics proposed by Geweke (1992) for each parameters and change points. The posterior means are
computed by averaging the simulated draws. The standard errors of the posterior means are computed using
a Parzen window with a bandwidth of 1000. The 95% intervals are calculated using the 2.5th and 97.5th
percentiles of the simulated draws. The CD is computed using equation (31) with na = 1000 and np = 5000,

where we calculate % and 6% using Parzen window with bandwidth of 100 and 500 respectively.
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