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Abstract

In Japanese stock markets, there are two kinds of breaks, i.e., night-
time and lunch break, where we have no trading, entailing inevitable
increase of variance in estimating daily volatility via naive realized vari-
ance (RV). In order to perform a much more stabilized estimation, we
are concerned here with a modification of the weighting technique of
Hansen and Lunde (2005). As an empirical study, we estimate optimal
weights in a certain sense for Japanese stock data listed on the Tokyo
Stock Exchange. We found that, in most stocks appropriate use of the
optimally weighted RV can lead to remarkably smaller estimation vari-
ance compared with naive RV, hence substantially to more accurate
forecasting of daily volatility.
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1 Introduction

Recently, it has been well recognized that diurnal activity affects the intra-
day phenomenon, namely, when detailed intraday information is stockpiled,
it has a big impact on the market. The notion of realized variance (RV)
has been introduced to deal with this phenomenon, and it has come under
intense investigation. For example, see Andersen and Bollerslev (1998a, b),
Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen et al. (2001,
2003), Barndorff-Nielsen and Shephard (2002, 2004), as well as references
therein. Then, the RV has become one of the critical notions in analyzing
market microstructure, as it captures market information more precisely
than daily returns, through intraday (high-frequency) data.

Theoretically, RV can be viewed as a proxy variable of Integrated Vari-
ance (IV) calculated from intraday full high-frequency log returns, when
adopting the semimartingale-model setup having a continuous-martingale
part for the underlying log-price process, nowadays widely accepted. Thus
we need to employ full high-frequency data for 24 hours in estimation of RV
as a measure of daily volatility in actual analysis. We can always observe
“full” high-frequency data in case of, e.g., an exchange rate: then we could
follow the same line of thought as Andersen et al. (2003) argued in forecast-
ing volatilities in future periods. However, in some stock markets the market
activities are restricted, e.g., to 4-5 hours a day in Japanese stock markets.
In such a situation, we can only observe intermittent high-frequency data,
and then variance of computing naive RV over whole day may be much
larger compared with the full high-frequency case, due to possible larger
fluctuations over longer time-intervals.

In order to tackle this problem, Hansen and Lunde (2005) have regarded
it as a smoothing problem to the period when data is not observed, and
estimated an optimal weight to the volatility of each period as a constrained
optimization problem. Taking into account only the stock markets in the
U.S., they have assumed that markets have only one inactive period within
a day, which is, they only consider close-to-open period. We will adopt
their approach in order to construct an optimal weight applicable to the
Japanese stock markets having two breaks a day, that is, nighttime and
lunch break. As an empirical study, we will estimate optimal weights for
Japanese stock data listed on the Tokyo Stock Exchange (First Section) for 3
years, from January 4, 2004 to November 28, 2006. These data are TOPIX
(index) and TOPIX core 30 (individual stocks). We found that, in most
stocks appropriate use of the optimally weighted RV can lead to remarkably
smaller estimation variance compared with naive RV, hence substantially to
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more accurate forecasting of daily volatility.
The remainder of this article is organized as follows. Section 2 presents

the construction of an optimally weighted RV, following the technique of
Hansen and Lunde (2005). Section 3 provides some empirical analyses con-
cerning the optimally weighted RV based on the intermittent high-frequency
data of the Tokyo Stock Exchange. Section 4 concludes.

2 An optimal weighting procedure

In this section we will present a conditional variant of the argument in
Hansen and Lunde (2005, Section 2), so that we can perform empirical stud-
ies of cases where there are more than two inactive periods. Under a formal
setup, which is model-free about an underlying stock-price process, we will
construct an optimal weight under a kind of conditional-proportionality as-
sumption.

2.1 Objective

First let us recall the structure of Japanese market more precisely. The
market opens at 9:00 and closes at 15:00 (at each weekday) with lunch
break 11:00∼12:30.

Let T > 0 represent 24-hours length expediently, and let kT stand for the
closing time 15:00 on kth day. Let G denote “all available information up to
time (k−1)T”, such as all observed price data up to time (k−1)T . Then we
want to estimate the kth-day integrated (accumulated) volatility Vk, i.e., the
volatility over the kth-day period Ik := [(k−1)T, kT ], based on intermittent
high-frequency data over Ik together with the available information G. Each
Ik can be split into four sub periods:

Ik =
4∪

i=1

Ik,i, where Ik,i := [Tk,i−1, Tk,i].

Here (k − 1)T := Tk,0 < Tk,1 < Tk,2 < Tk,3 < Tk,4 := kT (= Tk+1,0), where
Ik,1 denotes nighttime period, Ik,2 morning trading time, Ik,3 lunch break,
and Ik,4 afternoon trading time.

If Vk,i stands for the integrated volatility over Ik,i := [Tk,i, Tk,i−1], then,
in view of the additive character of the integrated volatility we have Vk =∑4

i=1 Vk,i. Denote by X = (Xt)t∈R the underlying log-price process. Then,
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a common estimator of Vk is given by the naive RV

RVk :=
4∑

i=1

V̂k,i,

where

V̂k,1 := (XTk,1
− XTk,0

)2,

V̂k,2 := (realized volatility over Ik,2),

V̂k,3 := (XTk,3
− XTk,2

)2,

V̂k,4 := (realized volatility over Ik,4),

all of which are direct to compute, of course. When estimating Vk using
past daily time series of each V̂k,i, it is clear that V̂k,1 and V̂k,3 exhibit
much larger variances compared with V̂k,2 and V̂k,4, due to the lack of high-
frequency data therein. Note that, at the same time, we should not simply
ignore the fluctuations over each Ik,1 and Ik,3 in general, as they often have
non-negligible impact for the target variable Vk.

Instead of RVk, we will consider a (randomly) weighted version of the
form

RVk(λ) :=
4∑

i=1

λiV̂k,i

for some λ = (λi)i≤4. A natural optimal weight, say λ∗ = (λ∗
i )i≤4, is then

given by the minimizer of the G-conditional mean square error

λ 7→ MSE(λ) := PG [|RVk(λ) − Vk|2],

where PG [v] stands for the conditional expectation of v given G. Unfortu-
nately, it is impossible to get an empirical variant of the optimal λ as Vk

cannot be observed. Following the approach taken in Hansen and Lunde
(2005), we will impose a kind of proportionality assumption to obtain a
closed-form solution to this optimization problem.

2.2 Derivation under conditional proportionality

Building on the argument in the previous subsection, we will derive the
explicit form of λ∗ given above within a more formal setup.

Fix a complete probability space (Ω,F , P ). Given any natural number
m ≥ 2 (say m = m′ + m′′, where m′ is the number of inactive periods of
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tradings, and m′′ is that of active periods where we can get reasonably high-
frequency data). Let V and Vi, i ≤ m, be nonnegative random variables.
Fix a sub σ-field G ⊂ F and write H = G ∨ σ(V ), so that G ⊂ H ⊂ F . Now
V is the target variable to be estimated based on all available information,
and we want to find the optimal weight λ∗ = (λ∗

i )i≤m, which a.s. minimizes
the G-conditional mean square error given by

λ 7→ MSEG(λ) := PG [|V̂ (λ) − V |2].

Here, as before, we will focus on V̂ (λ) of the form

V̂ (λ) =
m∑

i=1

λiVi (1)

with λ = (λj)j≤m ∈ Λ, where the random index set Λ is defined by

Λ =
{

λ = (λi)m
i=1 ∈ Rm

+ :
m∑

i=1

λiµi = µ0

}
,

with G-measurable random variables

µ0 = PG [V ], µi = PG [Vi], and η2
ij = covG [Vi, Vj ].

Supposing µi > 0 a.s. we set

γi,j =
η2

i,j

µiµj
.

With the setup above, we are going to derive the explicit form of λ∗ ∈ Λ
under an additional assumption of a kind of H-conditional proportionality
of Vi to V , in a similar manner to Hansen and Lunde (2005, Theorem 5),
which corresponds to the case of m = 2 and G = {φ,Ω}.

In the sequel we will suppress the term “almost surely (under P )” in
equations involving random variables and/or conditional expectations. Sup-
pose that for each i ≤ m there exists an G-measurable random variable ρi

such that
PH[Vi] = ρiV.

Then, by taking the conditional expectation PH in (1) we have

PH[V̂ (λ)] =
m∑

i=1

λiρiV, (2)
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hence taking PG and using the fact G ⊂ H yield

PG [V̂ (λ)] = µ0

m∑
i=1

λiρi. (3)

On the other hand, taking PG in (1) yields that

PG [V̂ (λ)] =
m∑

i=1

λiµi = µ0 (4)

for λ ∈ Λ. Equating the right-hand sides of (3) and (4) yields
∑m

i=1 λiρi = 1
for λ ∈ Λ. Therefore, from (2) we get

PH[V̂ (λ)] = V (5)

(hence, in particular PG [V̂ (λ)] = µ0) for λ ∈ Λ. According to (5) and simple
conditioning argument we get

PG [|V̂ (λ) − V |2] = varG [V̂ (λ)] − 2PG [{V̂ (λ) − V }(V − µ0)] − varG [V ]

= varG [V̂ (λ)] − varG [V ]

for λ ∈ Λ, so that we arrive at

λ∗ := argminλ∈ΛvarG [V̂ (λ)],

which serves as the optimal G-measurable random weight within Λ for L2(P |G)-
projection of V onto the linear space spanned by {V1, V2, . . . , Vm}.

For any λ = (λi)i≤m ∈ Λ we can set

λm =
1

µm

(
µ0 −

m−1∑
i=1

λiµi

)
.

Observe that

varG [V̂ (λ)] =
m∑

i=1

λ2
i η

2
i,i + 2

∑
1≤i<j≤m

λiλjη
2
i,j =: ζ(λ1, . . . , λm−1).

For each i ∈ {1, . . . ,m − 1}, elementary computations lead to

∂λi
ζ(λ1, . . . , λm−1) = 2

(
di,iλi +

∑
1≤j≤m−1,j 6=i

λjdi,j − bi

)
,
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where

di,j := µiµj(γm,m + γi,j − γi,m − γj,m),
bi := µ0µi(γm,m − γi,m)

for 1 ≤ i, j ≤ m−1. In view of the first-order condition ∇(λ1,...,λm−1)ζ(λ1, . . . , λm−1) =
0 and the definition of Λ, we see that for λ ∈ Λ the optimal G-measurable
weight λ∗ = (λ∗

i )
m
i=1 fulfils Dλ∗ = b, where D ∈ Rm ⊗ Rm and b ∈ Rm are

given by

D =


d1,1 . . . d1,m−1 0
...

. . .
...

...
dm−1,1 . . . dm−1,m−1 0

µ1 . . . µm−1 µm

 , b =


b1
...

bm−1

µ0

 .

Summarizing the above now yields the following assertion.

Theorem. Suppose that µi > 0 a.s., and that for each i ≤ m there exists a
G-measurable random variable ρi such that

PH[Vi] = ρiV, a.s. (6)

Then, the G-measurable function λ 7→ PG [|V̂ (λ) − V |2] defined on Λ is a.s.
minimized by λ∗ = argminλ∈ΛvarG [V̂ (λ)], which is in turn explicitly given
by a solution of Dλ = b. In particular, λ∗ = D−1b if further D is invertible.

This theorem formulates a conditional and multi-intermittence version
of Hansen and Lunde (2–5, Sections 2.2 and 2.3); again let us note that
their result corresponds to the case where m = 2 and G = {φ,Ω} in our
framework. Apart from the ad-hoc assumption (6), which cannot be sup-
pressed for computing the λ∗ without involving the latent variable V , our
task toward positive analysis is to evaluate G-measurable random variables
(µi)m

i=0 and [ηi,j ]mi,j=1, and of course this in principle requires specification
of underlying model structure and forms of Vi as well as their relation to V .
In the empirical study given in the next section, where m = 4, we will sim-
ply utilize the sample-mean type estimators for evaluations of the quantities
(µi)4i=0 and [ηi,j ]4i,j=1 as in Hansen and Lunde (2005).

Remark. The condition (6) is in principle impossible to verify without
knowledge of the underlying price process X; see Hansen and Lunde (2005,
Section 3.2) for an ad-hoc verification procedure of the proportionality con-
dition. In practice, instead mere increments of X, one may use those of
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X centered by the sample mean in each period. In our empirical study, we
will simply adopt this, however, we also observed that the gap between the
cases of centered and non-centered versions was negligible, rendering that
the condition (6) is not so irrelevant.

3 Empirical study

In this section we apply our optimal weight for intermittent high-frequency
data to Japanese stock data. We use Japanese stock data listed on the Tokyo
Stock Exchange (First Section) for 3 years, from January 4, 2004 to Novem-
ber 28, 2006. These are TOPIX (index) and TOPIX core 30 (individual
stocks). However, we deselect four stocks, Seven & I Holdings, Mitsubishi
UFJ Financial Group, Sumitomo Mitsui Financial Group, and Mizuho Fi-
nancial Group. The Seven & I Holdings is done for the reason that it was
formed on September 1, 2005, and the other three banking holding compa-
nies is done for the reason that we cannot optimize the weights for these
data fluctuating irregularly after Japan’s financial big bang. As a result, we
use one index and 27 individual stocks. In sum, we perform our empirical
analysis using 27 data series. These are listed in Table 1 along with the
number of observations N .

As mentioned before, the Japanese stock market is divided into two ses-
sions by a lunch break, i.e., the morning session from 9:00 to 11:00 and the
afternoon session from 12:30 to 15:00.1 ∗ Taking into consideration the min-
imum observation interval of the Japanese stock market, we take 1 minute
as a sampling frequency. Thus, the sample size of zenba and goba are 120
and 150, respectively. Now let (Yk,2,i)120

i=1 and (Yk,4,i)150i=1 denote the kth-
day intraday returns over zenba and goba, respectively, and then define the
kth-day naive realized variance by

RVk := Y 2
k,1 + RVk,2 + Y 2

k,3 + RVk,4,

= Y 2
k,1 +

120∑
i=1

Y 2
k,2,i + Y 2

k,3 +
150∑
j=1

Y 2
k,4,j .

where Y 2
k,1, RVk,2, Y 2

k,3, and RVk,4 denote the square of close-to-open re-
turn, RV in morning session, the square of lunch break return, and RV in
afternoon session on kth day, respectively.

As in the case of U.S.-stock market handled in Hansen and Lunde (2005),
unrestricted estimates are found to be strongly influenced by the most ex-

∗These two sessions are respectively called “zenba” and “goba”.
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treme values. So we filter the raw data for outliers. We classify 1% of
the observations Y.,1, Y.,2, Y.,3, and Y.,4 as outliers and omitted from the
estimation.2 †

The literature says that the data are contaminated with market mi-
crostructure noise if sampling frequency is too high, and that it leads to a
biased estimate. Then, in order to mitigate the influence of the noise, we use
Newey-West type modified realized variance (RVNW ) in our analysis follow-
ing Hansen and Lunde (2005). The RVNW estimators over the k th lunch
break and the k th nighttime, say RVNW,k,2 and RVNW,k,4, respectively, are
defined based on the Bartlett kernel:

RVNW,k,2 :=
120∑
i=1

Y 2
k,2,i + 2

q∑
h=1

(
1 − h

q + 1

) 120−h∑
j=1

Yk,2,jYk,2,j+h,

RVNW,k,4 :=
150∑
i=1

Y 2
k,4,i + 2

q∑
h=1

(
1 − h

q + 1

) 150−h∑
j=1

Yk,4,jYk,4,j+h,

where q is the number of autocovariances in our empirical study,3 we will
utilize the RVNW,k,i for RVk,i, i = 2, 4. ‡ This estimator has the advan-
tage that it is guaranteed to be nonnegative; see Newey and West (1987).
We show how the bias occurs in too high-frequency sampling and how the
RVNW can correct it by plotting the volatility signature plot introduced by
Anderson et al. (2000). See Figure 1. The upper panel is for the TOPIX
and the lower for the JAPAN TOBACCO. In these figures, the horizontal
axis is the sampling interval ranging from 1 to 20 minutes. The vertical axis
is the averaged RV over all sampling periods.

From these figures we can clearly see that RVNW s are relatively sta-
ble at every sampling frequency, while RV s estimated in usual way are
widely ranged depending on sampling frequency. Furthermore, the plot of
the TOPIX has upward bias; conversely, the others including the JAPAN
TOBACCO have downward bias.

Hereafter we will omit the subscript NW in RVNW,k,2 and RVNW,k,4.

3.1 Estimation of optimal weight

Here, we estimate the optimal weight λ∗ obtained in Section 2.2 for the
volatilities in each intraday period with real data. The λ∗ can be obtained
by some optimal measures µi and ηi,j (simply, ηi := ηi,i), which are estimated

†As for JAPAN TOBACCO, we take 0.1% data as outliers.
‡We take q = 10 which spans a 10-minute period.
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as expected values and variances. Let V̂k,1 = Y 2
k,1, V̂k,2 = RVk,2, V̂k,3 = Y 2

k,3,
and V̂k,4 = RVk,4, then

µ̂0 =
1
n

n∑
t=1

(V̂t,1 + V̂t,2 + V̂t,3 + V̂t,4),

µ̂i =
1
n

n∑
t=1

V̂t,i, i = 1, 2, 3, 4,

η̂i =
1
n

n∑
t=1

(V̂t,i − µ̂i)2, i = 1, 2, 3, 4,

η̂i,j =
1
n

n∑
t=1

(V̂t,i − µ̂i)(V̂t,j − µ̂j), i, j = 1, 2, 3, 4,

where n is the number of daily observations over the sample period.
Tables 1-4 show the estimates of these optimal measure and optimal

weight for each data. From these tables we have several interesting obser-
vations as follows.

• Table 1 shows that each volatility of index or TOPIX is very low
compared with the individual stocks. Moreover, the volatilities of µ̂3,
i.e., volatilities in lunch time are remarkably low compared with others.

• Table 2 indicates variance estimates of each volatility. The values of
η̂1 are quite larger than others through all stocks. This implies the
need for obtaining “optimal weight” in empirical analysis.

• Table 3 has correlation estimates between volatilities. This has a no-
ticeable consequence that the estimates between η̂1 and η̂3, i.e., close-
to-open and lunch break in several stocks have negative correlations.
As expected, the estimates in all stocks have very high correlation be-
tween η̂2 and η̂4, i.e., morning session and afternoon session volatilities.

• Finally Table 4 gives estimates λ̂∗ = (λ̂∗
i )i≤4 of the optimal weight

λ∗. These estimates are large in the order of λ̂∗
1, λ̂∗

3, λ̂∗
2, and λ̂∗

4 on
average. However, it is also interesting that λ̂∗

4s are larger than λ̂∗
2s in

some stocks.4 §

§When the optimal weight λ̂ has a negative component, we there set zero conveniently.
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3.2 Result and discussion

In this subsection, we investigate whether variances of RV s are reduced well
by using the estimates obtained above. For the purpose, we compare RV
calculated by usual way and weighted RV . These two RV s are obtained
from

RVk = Y 2
k,1 + RVk,2 + Y 2

k,3 + RVk,4,

RVk(λ̂∗) = λ̂∗
1Y

2
k,1 + λ̂∗

2RVk,2 + λ̂∗
3Y

2
k,3 + λ̂∗

4RVk,4.

The sample period for estimation of optimal weights is ranged from 2004 to
2006, which means that we perform in-sample estimation. Table 5 shows the
result. By definition, there is no change in these averages. However, these
variances are significantly reduced in all stocks. Additionally, we plot these
RV s in Figure 2. The upper panel is for the TOYOTA and the lower for the
Nomura Holdings. In this figure, crosses indicate conventional RV s and open
circles indicate weighted RV s. We recognize at a glance that the variances
of RV s are reduced over estimation periods. In Figure 3, we plot V̂k,i or
λiV̂k,i in each time period, separately. The upper panel is for the V̂k,i of
TOYOTA and the lower for the λiV̂k,i. It can be recognized from this figure
that the overnight variance notably gets smaller and the variances in active
periods get larger by optimally weighting the data. In view of the stylized
fact that there is a positive correlation between volume and volatility (for
example, see the extensive survey of Karpoff (1987)), it is quite natural that
the optimal weight λi in inactive periods such as overnight and lunchtime
one is relatively small. After all, we can conclude that the optimal weight
may significantly reduce the “variance of RV” for more accurate forecasting
of volatility based on intermittent high-frequency data.

4 Concluding remarks

In this article, in order to perform estimation of the integrated volatility with
variance being less than conventional RV, we first formulated an optimal
closed-form random weighting procedure under the conditional proportion-
ality of the computable “basis” variable (Vj)j≤m. Then we have obtained
the preferable empirical evidence that applying this weighting procedure can
reduce the variances of estimating integrated volatility for most stocks. Our
empirical analysis substantially implies that, as soon as we are concerned
with intermittent high-frequency data, the optimally weighted RV can lead
to more accurate forecasting of daily volatility than the common naive RV.
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Asset N µ̂0 µ̂1 µ̂2 µ̂3 µ̂4

TOPIX 700 0.632 0.229 0.220 0.009 0.174
JAPAN TOBACCO 727 5.208 1.239 2.005 0.135 1.829
SHIN-ETSU CHEMICAL 699 2.646 0.796 0.934 0.052 0.865
TAKEDA PHARMACEUTICAL 699 1.613 0.442 0.584 0.027 0.559
ASTELLAS PHARMA INC. 699 2.872 0.926 1.003 0.053 0.890
FUJIFILM HOLDINGS 699 2.557 0.728 0.893 0.056 0.879
NIPPON STEEL 699 3.613 0.855 1.324 0.062 1.371
JFE HOLDINGS,INC. 699 3.357 0.992 1.199 0.051 1.115
HITACHI,LTD. 699 2.351 0.946 0.734 0.032 0.639
MATSUSHITA 699 2.121 0.892 0.630 0.033 0.566
SONY 699 2.855 1.073 0.900 0.036 0.845
NISSAN MOTOR 699 2.048 0.959 0.562 0.025 0.503
TOYOTA 699 2.077 0.663 0.683 0.030 0.700
HONDA MOTOR 699 2.548 0.932 0.803 0.039 0.774
CANON INC. 699 2.168 0.855 0.649 0.031 0.632
NINTENDO CO.,LTD. 699 2.810 1.253 0.889 0.051 0.617
MITSUBISHI CORPORATION 699 2.980 1.101 1.003 0.041 0.835
ORIX 698 4.208 1.714 1.375 0.076 1.042
NOMURA HOLDINGS 699 3.090 1.331 0.919 0.043 0.796
MILLEA HOLDINGS 695 5.842 1.052 2.263 0.143 2.383
MITSUBISHI ESTATE 699 3.896 1.347 1.418 0.055 1.075
EAST JAPAN RAILWAY 699 1.574 0.397 0.617 0.035 0.525
NTT 699 2.715 0.876 0.944 0.040 0.855
KDDI 699 2.727 0.858 0.964 0.051 0.854
NTT DOCOMO,INC. 699 5.669 1.050 2.059 0.148 2.412
TOKYO ELECTRIC POWER 699 1.312 0.236 0.513 0.029 0.534
SOFTBANK CORP. 699 7.374 1.918 2.902 0.082 2.472

Table 1 Empirical estimates µ̂
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Asset η̂1 η̂2 η̂3 η̂4

TOPIX 0.089 0.032 0.000 0.021
JAPAN TOBACCO 5.947 3.342 0.074 2.483
SHIN-ETSU CHEMICAL 1.438 0.317 0.007 0.261
TAKEDA PHARMACEUTICAL 0.575 0.099 0.002 0.097
ASTELLAS PHARMA INC. 2.135 0.337 0.007 0.222
FUJIFILM HOLDINGS 1.216 0.200 0.006 0.163
NIPPON STEEL 1.690 0.465 0.009 0.548
JFE HOLDINGS,INC. 2.616 0.554 0.007 0.624
HITACHI,LTD. 2.200 0.285 0.002 0.211
MATSUSHITA 2.419 0.236 0.004 0.187
SONY 2.666 0.227 0.003 0.162
NISSAN MOTOR 2.113 0.158 0.002 0.138
TOYOTA 0.889 0.118 0.002 0.113
HONDA MOTOR 2.065 0.199 0.004 0.177
CANON INC. 1.738 0.130 0.002 0.110
NINTENDO CO.,LTD. 3.645 0.803 0.017 0.550
MITSUBISHI CORPORATION 3.213 0.597 0.004 0.432
ORIX 8.499 1.551 0.028 0.866
NOMURA HOLDINGS 4.341 0.471 0.007 0.398
MILLEA HOLDINGS 2.663 1.511 0.035 1.353
MITSUBISHI ESTATE 5.060 1.534 0.010 0.849
EAST JAPAN RAILWAY 0.479 0.144 0.003 0.098
NTT 2.431 0.403 0.003 0.280
KDDI 2.171 0.372 0.007 0.333
NTT DOCOMO,INC. 3.104 0.283 0.028 0.348
TOKYO ELECTRIC POWER 0.149 0.112 0.002 0.099
SOFTBANK CORP. 11.671 7.381 0.023 5.385

Table 2 Empirical estimates η̂
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Asset η̂12√
η̂1

√
η̂2

η̂13√
η̂1

√
η̂3

η̂14√
η̂1

√
η̂4

η̂23√
η̂2

√
η̂3

η̂24√
η̂2

√
η̂4

η̂34√
η̂3

√
η̂4

TOPIX 0.204 −0.028 0.182 0.272 0.514 0.233
JAPAN TOBACCO 0.220 0.134 0.148 0.277 0.622 0.360
SHIN-ETSU CHEMICAL 0.220 0.013 0.181 0.171 0.473 0.130
TAKEDA PHARMACEUTICAL 0.197 −0.011 0.099 0.094 0.388 0.137
ASTELLAS PHARMA INC. 0.133 0.078 0.127 0.106 0.367 0.238
FUJIFILM HOLDINGS 0.109 0.028 0.099 0.104 0.308 0.169
NIPPON STEEL 0.156 0.052 0.145 0.226 0.540 0.266
JFE HOLDINGS,INC. 0.117 −0.030 0.118 0.163 0.406 0.106
HITACHI,LTD. 0.213 0.043 0.091 0.169 0.462 0.143
MATSUSHITA 0.288 −0.022 0.195 0.190 0.444 0.145
SONY 0.175 −0.028 0.165 0.141 0.405 0.128
NISSAN MOTOR 0.229 0.052 0.146 0.223 0.484 0.198
TOYOTA 0.108 0.028 0.217 0.155 0.479 0.136
HONDA MOTOR 0.262 0.079 0.191 0.255 0.474 0.185
CANON INC. 0.163 −0.040 0.174 0.102 0.449 0.051
NINTENDO CO.,LTD. 0.136 0.140 0.123 0.120 0.293 0.088
MITSUBISHI CORPORATION 0.250 −0.003 0.163 0.245 0.507 0.228
ORIX 0.159 0.047 0.181 0.277 0.520 0.283
NOMURA HOLDINGS 0.174 0.123 0.214 0.225 0.485 0.244
MILLEA HOLDINGS 0.178 −0.057 0.054 0.120 0.485 0.238
MITSUBISHI ESTATE 0.105 0.028 0.177 0.325 0.507 0.243
EAST JAPAN RAILWAY 0.230 0.101 0.211 0.134 0.392 0.142
NTT 0.318 0.082 0.304 0.136 0.483 0.098
KDDI 0.252 0.139 0.165 0.173 0.429 0.136
NTT DOCOMO,INC. 0.072 −0.007 0.143 0.053 0.199 −0.041
TOKYO ELECTRIC POWER 0.362 0.104 0.295 0.200 0.705 0.177
SOFTBANK CORP. 0.213 0.145 0.270 0.322 0.606 0.317

Table 3 Empirical estimates of correlation
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Asset λ̂∗
1 λ̂∗

2 λ̂∗
3 λ̂∗

4

TOPIX 0.175 1.047 0.182 2.069
JAPAN TOBACCO 0.083 1.545 0.026 1.096
SHIN-ETSU CHEMICAL 0.039 1.427 0.140 1.476
TAKEDA PHARMACEUTICAL 0.025 1.762 0.152 1.017
ASTELLAS PHARMA INC. 0.037 1.267 0.072 1.756
FUJIFILM HOLDINGS 0.032 1.451 0.081 1.402
NIPPON STEEL 0.041 2.223 0.018 0.462
JFE HOLDINGS,INC. 0.067 1.786 0.176 1.023
HITACHI,LTD. 0.081 0.959 0.259 2.444
MATSUSHITA 0.041 1.033 0.165 2.524
SONY 0.023 1.015 0.120 2.263
NISSAN MOTOR 0.079 0.997 0.132 2.805
TOYOTA 0.031 1.345 0.113 1.619
HONDA MOTOR 0.014 1.256 0.040 1.971
CANON INC. 0.033 1.006 0.220 2.342
NINTENDO CO.,LTD. 0.193 1.063 0.149 2.619
MITSUBISHI CORPORATION 0.079 1.149 0.227 2.074
ORIX 0.119 1.044 0.047 2.461
NOMURA HOLDINGS 0.084 1.182 0.072 2.372
MILLEA HOLDINGS 0.048 1.958 0.114 0.564
MITSUBISHI ESTATE 0.122 1.198 0.101 1.885
EAST JAPAN RAILWAY 0.005 1.773 0.131 0.902
NTT 0.000 1.173 0.281 1.885
KDDI 0.020 1.642 0.124 1.312
NTT DOCOMO,INC. 0.000 2.408 0.077 0.291
TOKYO ELECTRIC POWER 0.000 1.566 0.226 0.940
SOFTBANK CORP. 0.096 1.720 0.106 0.886
Min. 0.000 0.959 0.018 0.291
Max. 0.193 2.408 0.281 2.805
Average 0.058 1.407 0.132 1.647

Table 4 Empirical estimates λ̂∗
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RV RVweighted Diff. Diff.
Code Mean Var. Mean Var. Mean Var.
TOPIX 0.632 0.209 0.632 0.195 0.000 0.014
JAPAN TOBACCO 5.208 19.292 5.208 17.443 0.000 1.849
SHIN-ETSU CHEMICAL 2.646 2.844 2.646 1.824 0.000 1.021
TAKEDA PHARMACEUTICAL 1.613 0.995 1.613 0.551 0.000 0.444
ASTELLAS PHARMA INC. 2.872 3.348 2.872 1.699 0.000 1.649
FUJIFILM HOLDINGS 2.557 1.916 2.557 0.980 0.000 0.935
NIPPON STEEL 3.613 3.896 3.613 3.011 0.000 0.885
JFE HOLDINGS,INC. 3.357 4.888 3.357 3.369 0.000 1.519
HITACHI,LTD. 2.351 3.409 2.351 2.128 0.000 1.281
MATSUSHITA 2.121 3.745 2.121 1.983 0.000 1.762
SONY 2.855 3.709 2.855 1.440 0.000 2.269
NISSAN MOTOR 2.048 2.996 2.048 1.713 0.000 1.284
TOYOTA 2.077 1.450 2.077 0.761 0.000 0.689
HONDA MOTOR 2.548 3.228 2.548 1.455 0.000 1.773
CANON INC. 2.168 2.394 2.168 1.007 0.000 1.387
NINTENDO CO.,LTD. 2.810 6.335 2.810 6.187 0.000 0.148
MITSUBISHI CORPORATION 2.980 5.880 2.980 4.033 0.000 1.846
ORIX 4.208 14.533 4.208 10.600 0.000 3.933
NOMURA HOLDINGS 3.090 6.792 3.090 4.278 0.000 2.514
MILLEA HOLDINGS 5.842 7.997 5.842 7.850 0.000 0.147
MITSUBISHI ESTATE 3.896 10.070 3.896 8.180 0.000 1.890
EAST JAPAN RAILWAY 1.574 1.047 1.574 0.684 0.000 0.363
NTT 2.715 4.602 2.715 2.244 0.000 2.358
KDDI 2.727 3.986 2.727 2.258 0.000 1.728
NTT DOCOMO,INC. 5.669 4.316 5.669 1.758 0.000 2.558
TOKYO ELECTRIC POWER 1.312 0.688 1.312 0.584 0.000 0.103
SOFTBANK CORP. 7.374 40.986 7.374 38.900 0.000 2.086

Table 5 Mean and variance of RV s
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Figure 1 Volatility signature plot (TOPIX and JAPAN TOBACCO)
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Figure 2 Realized variance (TOYOTA and Nomura Holdings)
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Figure 3 Original and weighted RV (TOYOTA)
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