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Abstract

For the estimation problem of the realized volatility, covariance and hedging coef-
ficient by using high frequency data with possibly micro-market noises, we use the
Separating Information Maximum Likelihood (SIML) method, which was recently
developed by Kunitomo and Sato (2008). By analyzing the Nikkei 225 futures and
spot index markets, we have found that the estimates of realized volatility, covariance
and hedging coefficient have significant bias by the traditional method which should
be corrected. Our method can handle the estimation bias and the tick-size effects
of Nikkei 225 futures by removing the possible micro-market noise in multivariate
high frequency data.
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1. Introduction

Recently a considerable interest has been paid on the estimation problem of
the realized volatility by using high-frequency data in financial econometrics. It
may be partly because it is possible now to use a large number of high-frequency
data in financial markets including the foreign exchange rates markets and stock
markets. Although there were some discussion on the estimation of continuous
stochastic processes in the statistical literature, the earlier studies often had ignored
the presence of micro-market noises in financial markets when they tried to estimate
the underlying stochastic processes. Because there are several reasons why the
micro-market noises are important in high-frequency financial data both in economic
theory and in statistical measurements, several new statistical estimation methods
have been developed. See Anderson, T.G., Bollerslev, T. Diebold,F.K. and Labys,
P. (2000), Ait-Sahalia, Y., P. Mykland and L. Zhang (2005), Hayashi and Yoshida
(2005), Zhang, L., P. Mykland and Ait-Sahalia (2005), Barndorff-Nielsen, O., P.
Hansen, A. Lunde and N. Shepard (2006), Ubukata and Oya (2007) for further
discussions on the related topics.

In addition to these recent studies on the statistical methods on high frequency
data, Kunitomo and Sato (2008) recently have developed the Separating Informa-
tion Maximum Likelihood (SIML) estimation method for estimating the realized
volatility and the realized covariance with possible micro-market noise by using
high frequency data. The main merit of the SIML estimation is its simplicity and
then it can be practically used for the multivariate (high frequency) financial time
series with micro-market noise.

The main purpose of this memorandum is to apply our estimation method for
the analysis of Nikkei-225 spot index and Nikkei-225 futures, which has been traded
1

actively in the Osaka Securities Exchange over the past 20 years Unlike some

estimates of the realized volatility, the realized covariance and the hedging ratio by

'Tt has been well-known in finance that futures of rice called Cho-Go-Mai were actively traded

in the early 18th century at the Do-Jima-Rice Market in Osaka.



some traditional methods, our estimates can be calculated in a simple way. Also the
resulting estimates on these important quantities in the actual trading are stable
over different frequency periods and thus they are reliable for practical purposes.
There are some interesting findings on the Nikkei-225 futures from our data analysis.

In Section 2 we discuss some aspects of the high frequency data of the Nikkei-
225 futures. Then we shall explain the Separating Information Maximum Likelihood
(SIML) estimator of the realized volatility and the realized covariance with micro-
market noise in Section 3. In Section 4 we shall report some empirical results on
the high frequency data of Nikkei-225 futures and then some brief remarks will be
given in Section 5. In Appendix we shall report the results of simulations we have

conducted on the SIML estimation.

2. High Frequency Data of Nikkei 225 Spot and Futures Mar-
kets

There are several important features on the high frequency data of Nikkei-225

futures, which we are analyzing.

(i) Heavy Traded Data(Less than 1 Second, 5, 10, 30, 60 Seconds):

The Nikkei-225 futures have been the major financial tool in the financial industry
because the Nikkei-225 is the major index in Japan. We have high frequency data
less than 1 second of Nikkei-225 futures. In our analysis we have been using 1 second,
5 seconds, 10 seconds, 30 seconds and 60 seconds. Although we have high frequency
data on the Nikkei-225 futures within less than one second, we only have the Nikkei-
225 spot index at every minute. Then we have an interesting new problem in the

high frequency data analysis.

(ii) Intra-day Volatility Movements

When we analyze the tick data over a day, there has been an observation that
the volatility of asset price changes over time within a day. Thus it is important
to develop the method of measurements on the realized volatility , the realized

covariance and the realized hedging ratio, which are free from these movements
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within a day.

(iii) Tick Size of Nikkei-225

In the standard finance theory the continuous time stochastic processes are often
assumed for dynamic behaviors of securities prices. The typical example is the
Black-Scholes theory. On the other hand, the Nikkei-225 futures have the minimum
tick size and thus the observation of prices cannot be continuous over time. We may
interpret the underlying price process as the efficient price and the tick seize effects

as a kind of the micro-market noise.

(iv) Spot Market and Futures Market
Because the Nikkei-225 futures are the major derivatives for Nikkei-225 spot, it is
important to measure the realized covariance of the spot-futures and the realized

hedging ratio.

3. The SIML Estimation of Realized Volatility, Covariance
and Hedging Coefficient with Micro-Market Noise

Let y;s and y;; be the i—th observation of the j—th (log) spot price and the
j—th (log) futures price at t for j = 1,--- ,p;0 =1t <t} <--- <" =1. We set
¥; = (Yis, yir) be a 2 x 1 vector and Y,, = (y;) be an n x 2 matrix of observations.
The underlying continuous process x; = (z;s, T; f)/ is not necessarily the same as the
observed prices and let v; = (v;s, vif) be the vector of the micro-market noise. Then

we have

where £(v;) = 0 and
() (=)

’ Oss g
Eviv) =3 = | o )
o gy
We assume that
t
(3.2) X; = X +/ »12(5)dB, (0<t<1),
0
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where By is a p x 1 vector of the standard Brownian motions and we write 3,(s) =
%1/2(5)21/2(s)". Then the main statistical problem is to estimate the quadratic

variations and co-variations

(z) (o)

1 Oss O
(3.3) s, - / S, (s)ds — o1
0 of) oy

of the underlying continuous process {x;} and also the variance-covariance %, =
(07;) of the noises from the observed y; (i = 1,---,n). Although we assume the
Gassuian processes in order to derive the SIML estimation in this section, the asymp-

totic results do not depend on the Gassusianity of the underlying processes as we

have discussed in Kunitmo and Sato (2008).

We consider the standard situation when 3(s) = ¥, and v; (i = 1,---,n)
are independently and normally distributed as N3(0,3,). Then given the initial

condition yg, we have
(3.4) Y, ~ Nuxo (1n 2y 1, ©3%, +C,C, ® hn2m> :

where 1, = (1,--- ,1), hp, = 1/n (= t* — ;) and

1 0 -~ 0 O
1 1 0 0
(3.5) C.,.=|1 1 1 0
1 1 1 0
1 1 1 1
We transform Y, to Z, (= (z,)) by
(3.6) Z, = h,"*P,C," (Y, — Yo)



where

and

2 2k—1_.. 1
(35) P = () e = [ s MGG - )]
(3.9) Yo=1,80y,.

By considering the information on 3, and ¥, in the Gaussian-likelihood func-

tion, Kunitomo and Sato (2008) defined the SIML estimator of 3, by

m

- 1 /
(3.10) ¥, =— E ZLZy,
m
k=1

and also they defined the SIML estimator of 3, by

n

A 1 '
(3.11) 3, = 7 Z o 0 k2, ,
k=n+1-—1
where
2k —1
(3.12) U = 4n sin? B (2n . 1)] .

For both ﬁ]v and ﬁ)x, the number of terms m and [ should be dependent on n.
Then we only need the order requirements that m, = O(n®) (0 < « < 3) and

l, =0(") (0 < B<1)for ¥, and X,, respectively.

Although the SIML estimation was introduced under the Gassian processes and

the standard model, it has reasonable properties under the non-Gaussian processes



and the volatility models. Let the conditional covariance matrix of the (underlying)

returns without noise be
(313) Ez =& |:77/ I'Z'I';|fn7i_1:| y

where r; = x; —x;_; is a sequence of martingale differences and F,, ;_; is the o—field
generated by x; (s < t;_1) and vy (s < t;_1). In this setting it is natural to impose

the condition

1 !
(3.14) DRI YR / 3. (s)ds .
n 4 0
i=1
When the realized volatility and covariance ¥, = (0';;)) is a constant (positive

definite) matrix, we summarize the asymptotic properties of the SIML estimator

under some regularity conditions 2.

Proposition 1 : We assume that x; and v; (i = 1,--- | n) are mutually independent
in (2.1), r; = x; — x;_1 and v; are a sequence of martingale differeces with (3.1),
(32), sup; i<, E(|Vi|*) < 00 and sup, <, € [[[v/n 1:|°] < 00 .

(i) As n — oo,

(3.15) .- 50

with m, =n® (0 < a < 1/2) and

(3.16) Vi [65) = o] 5 N0, 6o + [aff)]z)

with m3/n? — 0 for i,j = s or f.

(i) As n — o0,

(3.17) ¥, -3, 0
and

2
(3.18) Vi [&g;» — al-(;)} 2 N(0,0001) + [ai}j)} )

2It is a special case of Theorem 2 of Kunitomo and Sato (2008).
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with I, =n? (0 < 3 < 1) fori,j = s or f.

When 3, is a random (positive definite) matrix, we need the concept of stable
convergence, which has been explained by Hall and Heyde (1980) and Barndorfi-
Nielsen et al. (2006) in the details. In this situation (3.16) should be replaced
by

(3.19) NG [T] 5 N(0,2)
as n — oo for 7,7 = s or f, for instance.

Choice of m and [
Because the properties of the SIML estimation method crucially depends on the
choice of m and [, we have investigated the small sample effects of several possibili-

ties. Currently, we are using o = 0.3,0.45 and 3 = 0.8.

By using Proposition 1, it is possible to evaluate the SIML estimators of the
realized volatility, covariance, correlation and the hedging ratio, which will be useful

for empirical analysis.

Hedging Ratio
The SIML estimator of the hedging ratio H = agc)/ Jj(f;) can be defined by

()
N g

(3.20) n=—_L.
9rs

Then by using Proposition 1 we can derive the limiting distribution of the hedging

ratio estimator, which is given by
(3.21) No [H - H] . N(0,w)

as m? /n* — 0, where

(z) U(x)2
(3.22) wp =5 [1 - ﬁ] .
Orf Oss Off
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Correlation Coefficient

The SIML estimator of the correlation coefficient psr = agp) /1/ agﬁ)aﬁ) is defined by

@)
O-Sf .
5ol

(3.23) ey =

Then by using Proposition 1 the limiting distribution of the hedging ratio estimator
is given by

(3.24) Vit [y = peg] 5 N(0,,)

as m2 /n? — 0, where

a(fcp
(3.25) w,= [1— @ |

This formula agrees with the standard one known in the statistical multivariate
analysis (see Theorem 4.2.4 of Anderson (2003) for instance) except the fact that

we use m, instead of n.

4. Estimation Results

Realized Volatility

We have picked one day in April 2007 and estimated the realized volatility with
different time intervals as in Table 4.1. We have found that the estimated HI heavily
depends on the observation intervals while our estimation does not depend on them
very much. The problem of significant biases of the estimated HI has been pointed
out recently by several researchers and we have also confirmed this observation by

our method.

Table 4.1 : Estimation of Realized Volatility :
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Yy b HI
Is | 5.252E-05 9.853E-09 4.946E-04
10s | 4.513E-05 4.168E-08 1.764E-04
30s | 5.099E-05 7.217E-08 9.449E-05
60s | 6.151E-05 8.976E-08 6.964E-05

Realized Covariance and Correlation

The SIML estimators of the realized covariance and the realized correlation can be
defined as the realized variance. We give some estimates of the realized covariance
of the Nikkei-225 spot-future by high frequency data.

We have found that the effects of micro-market noise should not be ignored
and the correlation between the spot and futures is quite high based on the high
frequency data, which agree with the standard arguments in the standard financial
theory. Our method gives stable estimation results on the realized covariance and
the realized correlation.

In addition to the simulation reported in Kunitomo and Sato (2008), we have
examined some properties of the estimation of realized variance and covariance by

using simulations, which is reproted in Appendix.

Realized Hedging

We have obtained the estimates of the hedging ration by the SIML estimation.
Unlike other methods, our estimates are stable and reliable. The most important
finding is the fact that the estimates of the hedging ratio from high frequency his-
torical data are not reliable while we have reasonable estimates of the hedging ratio

by the SIML estimation.

Effects of Tick Size and the Rounding-Error model
The tick size of the Nikkei 225 futures have small impact on the realized volatility.
It may be because the effects of tick size have been in the micro-market noise in our

formulation.
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We have examined some properties of the rounding-error model by using simu-
lations. For instance, we simulate a quasi-continuous path and then generate the
rounding error process as Figure 3. It may be surprising to find that the SIML
estimates are quite robust against the contamination of Tick-Size effects, which is

reported in Appendix.

On Estimates of the Realized Volatility

In order to remove some unstable movements in the markets, we have estimated the
realized volatility by deleating the first 10 minutes after several trials. We compare
the SIML estimation and the historical volatility calculations for the realized volatil-
ity, correlation and the hedging coefficient from 1 minutes data, which are reported
in Table 4.2.

We also picked one day and give a figure on the Nikkei-225 futures and the spot
index in Figure 4. We can observed the similarity of two time series data. The
important use of the Nikkei-225 futures is to hedge risks involving the Nikkei-225
spot market. We have done some simulation by using the estimates of the hedging
coefficient by the historical method and the SIML estimation. We definitely find
that the SIML estimation is useful in this respect.
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1min. data SIML Historical

date Var(Spot)  Var(Future) cor Hedge | Var(Spot) Var(Future) cor  Hedge
20070301 6.84E-05 5.59E-05 1.00 1.10 6.23E-05 8.88E-05 0.60 0.50
20070302 8.13E-05 8.83E-05 0.99 0.95 7.34E-05 9.94E-05 0.64 0.55
20070305 7.5TE-05 7.08E-05 0.99 1.03 9.11E-05 1.19E-04 0.59 0.52
20070306 5.40E-05 5.05E-05 1.00 1.03 7.91E-05 1.13E-04 0.68 0.56
20070307 1.06E-04 1.02E-04 0.99 1.02 7.45E-05 1.22E-04 0.71 0.56
20070308 9.32E-05 1.05E-04 0.99 0.94 6.92E-05 1.13E-04 0.61 0.48
20070309 4.64E-05 3.72E-05 0.99 1.11 6.80E-05 1.01E-04 0.62 0.51
20070312 3.83E-05 3.77E-05 0.99 1.00 4.22E-05 6.81E-05 0.51 0.40
20070313 3.94E-05 3.87E-05 1.00 1.01 4.38E-05 6.91E-05 0.52 0.42
20070314 5.44E-05 6.10E-05 1.00 0.94 6.00E-05 9.45E-05 0.62 0.49
20070315 3.35E-05 3.35E-05 0.99 0.99 4.61E-05 8.28E-05 0.58 0.43
20070316 1.20E-04 1.26E-04 1.00 0.98 7.81E-05 9.85E-05 0.64 0.57
20070319 9.60E-05 9.29E-05 0.97 0.99 6.95E-05 8.74E-05 0.58 0.52
20070320 3.32E-05 3.24E-05 0.99 1.00 3.94E-05 7.01E-05 0.65 0.49
20070322 1.14E-05 1.06E-05 0.97 1.01 1.61E-05 4.61E-05 0.41 0.24
20070323 1.44E-05 1.37E-05 0.96 0.98 3.01E-05 5.90E-05 0.51 0.37
20070326 3.60E-05 2.86E-05 0.99 1.11 2.99E-05 5.59E-05 0.50 0.37
20070327 5.63E-05 5.25E-05 0.99 1.02 3.82E-05 6.01E-05 0.54 0.43
20070328 5.96E-05 5.45E-05 1.00 1.04 5.94E-05 9.88E-05 0.55 0.42
20070329 6.36E-05 5.60E-05 0.96 1.03 6.13E-05 9.40E-05 0.56 0.45
20070330 6.03E-05 6.26E-05 0.99 0.97 3.28E-05 7.34E-05 0.60 0.40
20070402 1.10E-04 1.10E-04 1.00 1.00 7.16E-05 9.72E-05 0.56 0.49
20070403 3.62E-05 4.14E-05 0.96 0.90 5.41E-05 8.01E-05 0.51 0.42
20070404 3.04E-05 2.97E-05 0.97 0.98 2.84E-05 6.96E-05 0.56 0.36
20070405 3.13E-05 3.11E-05 0.97 0.98 3.14E-05 6.59E-05 0.53 0.37
20070406 1.62E-05 1.29E-05 0.96 1.07 2.04E-05 5.11E-05 0.40 0.25
20070409 2.77E-05 2.77E-05 0.97 0.97 2.66E-05 4.60E-05 0.41 0.31
20070410 3.01E-05 2.22E-05 0.95 111 2.79E-05 5.23E-05 0.32 0.23
20070411 1.04E-05 7.10E-06 0.91 1.11 2.70E-05 4.36E-05 0.33 0.26
20070412 3.35E-05 2.63E-05 0.99 1.11 3.19E-05 5.33E-05 0.40 0.31
20070413 6.84E-05 6.25E-05 0.99 1.04 5.58E-05 7.27E-05 0.52 0.46
20070416 6.82E-05 6.68E-05 1.00 1.01 3.67E-05 6.56E-05 0.56 0.42
20070417 6.58E-05 5.80E-05 1.00 1.06 3.97E-05 7.61E-05 0.53 0.38
20070418 7.83E-05 6.69E-05 1.00 1.08 3.57E-05 6.11E-05 0.60 0.46
20070419 4.77E-05 3.66E-05 0.99 1.13 7.50E-05 8.69E-05 0.60 0.56
20070420 4.30E-05 3.65E-05 0.99 1.08 3.81E-05 7.57E-05 0.63 0.45
20070423 3.78E-05 3.65E-05 1.00 1.01 4.70E-05 6.53E-05 0.59 0.50
20070424 5.29E-05 4.56E-05 0.99 1.07 5.23E-05 8.70E-05 0.60 0.47
20070425 3.18E-05 2.32E-05 0.98 1.14 4.69E-05 6.24E-05 0.52 0.45
20070426 3.03E-05 2.82E-05 0.99 1.02 2.91E-05 5.35E-05 0.48 0.35
20070427 4.59E-05 4.27E-05 0.99 1.02 7.26E-05 9.66E-05 0.60 0.52

*

use data after 9:10 for everyday.

Table 4.2 : Realized Volatility and Correlation of Nikkei-225 index

(Spot and futures of NIKKEI-225 index)
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‘ SIML  Historical Hedge ratio =1

hedge error ratio ‘ 0.247%  0.66% 0.244%

5. Concluding Remarks

In this memorandum, we have applied the Separating Information Maximum

Likelihood (SIML) estimation method to estimate the realized volatility, the realized
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covariance, and the realized hedging coefficient by using high-frequency financial
data of Nikkei-225 futures with possibly micro-market noise. The SIML estimator is
so simple that it can be practically used not only for the single high frequency data,
but for the multivariate high frequency series with micro-market noise. This has an
important aspect because we want to estimate the hedging ratio from high-frequency
data for instance.

We have found several important observations by analyzing a set of high fre-
quency data of Nikkei-225 futures and Nikkei-225 spot index, which has been ac-
tively traded at the Osaka Securities Exchange in the past twenty years. There
are two important features in our high frequency data. First, although we have
high frequency data on the Nikkei-225 futures within less than one second, we only
have the Nikkei-225 spot Index at every minute. Then we have an interesting new
problem in the high frequency data analysis. Second, the tick size of the Nikkei-225
futures is more than ten times of the Nikkei-225 spot index. Thus we should treat
the effects of tick size carefully in our analysis. We can treat the tick size effect as

the micro-market noise in the SIML estimation method.
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APPENDIX : Simulations

We have reported several simulation results on the SIML estimation of the realized
volatility in Kunitomo and Sato (2008). Also we have conducted a number of addi-
tional simulations on the effects of the estimation problem of the realized volatility,
the realized covariance, the realized hedging ratio and the effects of tick size or the
rounding error model. We are summarizing our results of simulations.

Table A-1 : Estimation of Realized Volatility (constant volatility, o = 0.3)

n=300 Y o H-vol Y o H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.00E-04 2.20E-06 1.41E-03 | 2.03E-04 3.84E-07 3.21E-04 | 1.92E-04 1.85E-07 2.01E-04
SD 1.28E-04 3.10E-07 1.31E-04 | 1.32E-04 5.64E-08 2.79E-05 | 1.24E-04 2.60E-08 1.65E-05
MSE 1.64E-08 1.34E-13 1.73E-08 3.70E-14 1.55E-08 3.40E-14

AVAR 1.45E-08 8.34E-14 1.45E-08 8.34E-16 1.45E-08  8.34E-20

n=5000 hy- o H-vol Y Yo H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.07E-04 2.01E-06 2.02E-02 | 2.02E-04 2.10E-07 2.20E-03 | 2.01E-04 1.23E-08 2.20E-04
SD 8.63E-05 9.13E-08 4.83E-04 | 8.53E-05 1.01E-08 5.28E-05 | 8.16E-05 5.88E-10 4.47E-06
MSE 7.51E-09 8.46E-15 7.28E-09 2.08E-16 6.67E-09 1.06E-16

AVAR 6.21E-09  8.79E-15 6.21E-09 8.79E-17 6.21E-09 8.79E-21

n=20000 Yz S H-vol Y Yo H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.04E-04 2.00E-06 8.02E-02 | 2.03E-04 2.02E-07 8.20E-03 | 2.01E-04 4.55E-09 2.80E-04
SD 6.62E-05 5.55E-08 1.02E-03 | 6.40E-05 5.67E-09 1.01E-04 | 6.58E-05 1.24E-10 2.86E-06
MSE 4.39E-09  3.08E-15 4.11E-09 3.75E-17 4.33E-09 6.50E-18

AVAR 4.10E-09 2.90E-15 4.10E-09 2.90E-17 4.10E-09 2.90E-21

Data generating process:
Yt = Tt + vt
Tt = Ty—1 + Ut
ut ~ 1.5.d.N(0,02 /n), vt ~ i.i.d.N(0,02)
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Table A-2 : Estimation of Realized Volatility (constant volatility, a = 0.45)

n=300 Yz P H-vol Y o H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.06E-04 2.19E-06 1.41E-03 | 1.99E-04 3.82E-07 3.21E-04 | 1.96E-04 1.84E-07 2.01E-04
SD 7.96E-05 3.10E-07 1.35E-04 | 7.55E-05 5.62E-08 2.72E-05 | 7.52E-05 2.83E-08 1.71E-05
MSE 6.37E-09  1.32E-13 5.70E-09  3.63E-14 5.67E-09  3.40E-14

AVAR 6.14E-09 8.34E-14 6.14E-09  8.34E-16 6.14E-09  8.34E-20

n=5000 Y o H-vol Y Yo H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.05E-04 2.01E-06 2.02E-02 | 1.99E-04 2.11E-07 2.20E-03 | 2.01E-04 1.24E-08 2.20E-04
SD 4.22E-05 9.33E-08 4.80E-04 | 3.94E-05 9.30E-09 5.21E-05 | 3.84E-05 5.69E-10 4.46E-06
MSE 1.81E-09 8.88E-15 1.55E-09 1.98E-16 1.47E-09 1.08E-16

AVAR 1.73E-09 8.79E-15 1.73E-09 8.79E-17 1.73E-09  8.79E-21

n=20000 Yz S H-vol Y Yo H-vol Y Yo H-vol
True 2.00E-04 2.00E-06 2.00E-04 2.00E-07 2.00E-04 2.00E-09

Mean 2.04E-04 2.00E-06 8.03E-02 | 2.02E-04 2.02E-07 8.20E-03 | 1.99E-04 4.54E-09 2.80E-04
SD 3.17E-05 5.27E-08 9.31E-04 | 3.01E-05 5.25E-09 9.93E-05 | 2.88E-05 1.28E-10 2.76E-06
MSE 1.02E-09 2.80E-15 9.10E-10  3.28E-17 8.28E-10 6.49E-18

AVAR 9.28E-10 2.90E-15 9.28E-10 2.90E-17 9.28E-10 2.90E-21

Table A-3 : Round Error Model (o = 0.3)

n=300 Yz Yo H-vol Y Yo H-vol Y Yo H-vol
True 5.00E-05 5.00E-07 5.00E-05 5.00E-08 5.00E-05 0.00E+00

Mean 5.06E-05 5.84E-07 3.74E-04 | 4.82E-05 1.32E-07 1.02E-04 | 4.87E-05 8.29E-08  7.24E-05
SD 3.25E-05 8.31E-08 3.71E-05 | 3.04E-05 1.96E-08 8.89E-06 | 3.23E-05 1.18E-08  5.81E-06
MSE 1.06E-09 1.40E-14 9.24E-10 7.14E-15 1.04E-09 7.01E-15

AVAR 9.03E-10 5.22E-15 9.03E-10  5.22E-17 9.03E-10  0.00E+400

n=5000 Y > H-vol Yz o H-vol Y Yo H-vol
True 5.00E-05 5.00E-07 5.00E-05 5.00E-08 5.00E-05 0.00E+00

Mean 5.08E-05 5.41E-07 5.42E-03 | 4.86E-05 8.91E-08 9.18E-04 | 4.92E-05 2.03E-08  2.65E-04
SD 2.10E-05 2.47E-08 1.26E-04 | 1.86E-05 3.98E-09 2.20E-05 | 1.92E-05 1.59E-09 1.34E-05
MSE 4.44E-10 2.27E-15 3.49E-10 1.54E-15 3.69E-10  4.15E-16

AVAR 1.08E-10 5.49E-16 1.08E-10 5.49E-18 3.88E-10  0.00E+00

n=20000 Y > H-vol Yz o H-vol Y Yo H-vol
True 5.00E-05 5.00E-07 5.00E-05 5.00E-08 5.00E-05 0.00E+00

Mean 5.06E-05 5.38E-07 2.15E-02 | 5.09E-05 8.73E-08 3.52E-03 | 5.08E-05 1.01E-08  5.28E-04
SD 1.75E-05 1.40E-08 2.53E-04 | 1.62E-05 2.29E-09 4.69E-05 | 1.63E-05 7.43E-10  2.91E-05
MSE 3.07E-10  1.67E-15 2.63E-10 1.40E-15 2.66E-10 1.02E-16

AVAR 5.80E-11 1.81E-16 5.80E-11  1.81E-18 2.56E-10  0.00E+400

Data generating process: y: = log(y;)
y; = 10 x floor(exp(y;')/10 4 0.5)
vy = x + vt
Tt = Tt—1 + ut, zo = log(15000)
ut ~ 4.5.d.N(0,02 /n), vt ~ i.i.d.N(0,02)

* floor(z) is a function whose value is the largest integer less than or equal to z.
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Table A-4 : T-Error-Distribution (dfz =5, dfy, =7, a = 0.3)

n=300 Yz P H-vol Y o H-vol Y Yo H-vol
True 8.33E-05  7.00E-07 8.33E-05  7.00E-08 8.33E-05  7.00E-10

Mean 8.27TE-05 7.79E-07 5.07E-04 | 8.11E-05 1.45E-07 1.25E-04 | 8.25E-05 7.67E-08 8.39E-05
SD 5.20E-05 1.27E-07 5.90E-05 | 5.21E-05 2.33E-08 1.49E-05 | 5.64E-05 1.55E-08 1.38E-05
MSE 2.71E-09 2.23E-14 2.72E-09 6.12E-15 3.18E-09  6.02E-15

AVAR 2.51E-09 1.02E-14 2.51E-09 1.02E-16 2.51E-09 1.02E-20

n=5000 Y o H-vol Y Yo H-vol Y Yo H-vol
True 8.33E-05  7.00E-07 8.33E-05 7.00E-08 8.33E-05 7.00E-10

Mean 8.51E-05 7.04E-07 7.08E-03 | 8.28E-05 7.41E-08 7.83E-04 | 8.41E-05 5.00E-09 9.05E-05
SD 3.50E-05 3.53E-08 2.21E-04 | 3.62E-05 3.81E-09 2.34E-05 | 3.49E-05 2.92E-10 3.42E-06
MSE 1.23E-09 1.26E-15 1.31E-09 3.15E-17 1.22E-09 1.86E-17

AVAR 1.08E-09 1.08E-15 1.08E-09 1.08E-17 1.08E-09 1.08E-21

n=20000 Yz S H-vol Y Yo H-vol Y Yo H-vol
True 8.33E-05  7.00E-07 8.33E-05 7.00E-08 8.33E-05 7.00E-10

Mean 8.46E-05 7.01E-07 2.81E-02 | 8.36E-05 7.10E-08 2.88E-03 | 8.25E-05 1.76E-09 1.11E-04
SD 2.81E-05 1.99E-08 4.28E-04 | 2.69E-05 2.08E-09 4.64E-05 | 2.68E-05 5.18E-11 1.81E-06
MSE 7.93E-10 3.96E-16 7.25E-10 5.23E-18 7.20E-10 1.12E-18

AVAR 7.12E-10  3.55E-16 7.12E-10  3.55E-18 7.12E-10  3.55E-22

Data generating process:
Yt = 2t + /00Ut
Ty = xt—1 + \/Wut
ur ~ 1.0.d.T(df ), v¢ ~ i.0.d.T(dfv)
Table A-5 : Estimation of Realized Volatility (U-shaped volatility, a = 0.3)

n=300 Y Yy H-vol pI po H-vol pI pe H-vol
True 1.67E-04  2.00E-06 1.67E-04  2.00E-07 1.67E-04  2.00E-09

Mean 1.71E-04 2.16E-06 1.37E-03 | 1.68E-04 3.51E-07 2.88E-04 | 1.65E-04 1.55E-07 1.68E-04
SD 1.08E-04 3.12E-07 1.35E-04 | 1.09E-04 5.10E-08 2.43E-05 | 1.07E-04 2.34E-08 1.41E-05
MSE 1.16E-08 1.22E-13 1.19E-08 2.56E-14 1.14E-08 2.39E-14

AVAR 1.00E-08 8.34E-14 1.00E-08 8.34E-16 1.00E-08  8.34E-20

n=5000 Y Y H-vol pI po H-vol Se 3y H-vol
True 1.67E-04  2.00E-06 1.67E-04  2.00E-07 1.67E-04  2.00E-09

Mean 1.68E-04 2.01E-06 2.02E-02 | 1.68E-04 2.09E-07 2.17E-03 | 1.65E-04 1.06E-08 1.87E-04
SD 6.95E-05 9.15E-08 4.79E-04 | 7.04E-05 1.02E-08 5.20E-05 | 6.73E-05 5.13E-10 3.87E-06
MSE 4.83E-09 8.48E-15 4.95E-09 1.80E-16 4.53E-09 7.43E-17

AVAR 4.32E-09 8.79E-15 4.32E-09 8.79E-17 4.32E-09 8.79E-21

n=20000 Y p H-vol pI po H-vol Se 3y H-vol
True 1.67E-04  2.00E-06 1.67E-04  2.00E-07 1.67E-04  2.00E-09

Mean 1.70E-04 2.00E-06 8.01E-02 | 1.65E-04 2.02E-07 8.17E-03 | 1.64E-04 4.12E-09 2.47E-04
SD 5.61E-05 5.38E-08 9.72E-04 | 5.24E-05 5.39E-09 1.00E-04 | 5.19E-05 1.16E-10 2.50E-06
MSE 3.16E-09 2.89E-15 2.75E-09  3.34E-17 2.70E-09 4.49E-18

AVAR 2.85E-09  2.90E-15 2.85E-09 2.90E-17 2.85E-09 2.90E-21

Data generating process:

Yt =Tt + U, Tt = Tp—1 + Ut

ut ~1.5.d.N(0, (1 — s + 82)o2 /n), vt ~ 4.i.d.N(0,02),s = t/n

21



Table A-6 : Correlation (o = 0.45,corv = 0)

n=300 Y P corx Y o corx Y o corx

True 5.00E-05 5.00E-07 9.00E-01 5.00E-05 5.00E-08 9.00E-01 5.00E-05 5.00E-10 9.00E-01
corx corv H-vol corx corv H-vol corx corv H-vol

Mean 8.56E-01 7.42E-02 1.27E-01 8.88E-01 4.30E-01 5.62E-01 8.92E-01 8.90E-01 8.94E-01

SD 8.61E-02 9.81E-02 6.39E-02 6.27E-02 8.57TE-02 4.43E-02 6.25E-02 2.17E-02 1.18E-02

MSE 9.36E-03 4.06E-03 3.97E-03

AVAR 1.46E-02 1.46E-02 1.46E-02

n=5000 Y > corx Y > corx Y > corx

True 5.00E-05 5.00E-07 9.00E-01 5.00E-05 5.00E-08 9.00E-01 5.00E-05 5.00E-10 9.00E-01
corx corv H-vol corx corv H-vol corx corv H-vol

Mean 8.68E-01 4.05E-03 9.52E-03 8.96E-01 4.52E-02 8.24E-02 8.99E-01 7.53E-01 8.18E-01

SD 4.62E-02 3.21E-02 1.72E-02 2.99E-02 3.29E-02 1.64E-02 2.93E-02 1.44E-02 4.93E-03

MSE 3.19E-03 9.13E-04 8.59E-04

AVAR 4.11E-03 4.11E-03 4.11E-03

n=300 Yz Yo corx Yz Yo corx Y Yo corx

True 5.00E-05 5.00E-07  -5.00E-01 | 5.00E-05 5.00E-08 -5.00E-01 | 5.00E-05 5.00E-10  -5.00E-01
corx corv H-vol corx corv H-vol corx corv H-vol

Mean -4.60E-01 -4.01E-02 -6.89E-02 | -4.73E-01 -2.36E-01 -3.12E-01 | -4.78E-01 -4.97E-01 -4.96E-01

SD 2.16E-01 1.03E-01 6.74E-02 2.25E-01 9.79E-02 5.67E-02 2.21E-01 7.77TE-02 4.19E-02

MSE 4.83E-02 5.12E-02 4.93E-02

AVAR 5.76E-02 5.76E-02 5.76E-02

n=5000 Yz Yo corx Yz Yo corx Y Yo corx

True 5.00E-05 5.00E-07  -5.00E-01 | 5.00E-05 5.00E-08  -5.00E-01 | 5.00E-05 5.00E-10  -5.00E-01
corx corv H-vol corx corv H-vol corx corv H-vol

Mean -4.71E-01 -4.15E-03 -5.51E-03 | -5.01E-01 -2.31E-02 -4.47E-02 | -4.98E-01 -4.19E-01 -4.55E-01

SD 1.23E-01 3.37E-02 1.73E-02 1.10E-01 3.30E-02 1.67E-02 1.13E-01 2.75E-02 1.11E-02

MSE 1.59E-02 1.20E-02 1.28E-02

AVAR 1.62E-02 1.62E-02 1.62E-02

Data generating process:

Yit = Tit +vit,t=1,2

Tit = Tit—1+ Uit

ui ¢ ~ 4.8.d.N(0,02/n),v; ¢ ~ .i.d.N(0,02)

corr(ui ¢, u2,t) = corz

corr(vy ¢, v2,t) = corv
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Table A-7 : Correlation (o = 0.45,corv = 0.5)

n=300 Y Yo corx Y Yo corx Y o corx
True 5.00E-05 5.00E-07 9.00E-01 | 5.00E-05 5.00E-08 9.00E-01 | 5.00E-05 5.00E-10 9.00E-01

corx corv H-vol corx corv H-vol corx corv H-vol
Mean 8.75E-01 5.33E-01 5.56E-01 | 8.88E-01 6.88E-01 7.49E-01 | 8.93E-01 8.95E-01 8.98E-01
SD 7.17E-02 7.38E-02 4.81E-02 | 6.24E-02 5.30E-02 2.60E-02 | 6.22E-02 2.16E-02 1.19E-02
MSE 5.77E-03 4.05E-03 3.92E-03
AVAR 1.46E-02 1.46E-02 1.46E-02
n=5000 Y Yo corx Y Yo corx Y o corx
True 5.00E-05 5.00E-07 9.00E-01 | 5.00E-05 5.00E-08 9.00E-01 | 5.00E-05 5.00E-10 9.00E-01

corx corv H-vol corx corv H-vol corx corv H-vol
Mean 8.88E-01 5.02E-01 5.04E-01 | 8.97E-01 5.20E-01 5.36E-01 | 8.97E-01 8.35E-01 8.64E-01
SD 3.36E-02 2.42E-02 1.28E-02 | 2.95E-02 2.47E-02 1.25E-02 | 2.99E-02 1.01E-02 3.64E-03
MSE 1.28E-03 8.76E-04 9.01E-04
AVAR 4.11E-03 4.11E-03 4.11E-03

Data generating process: same as Table A-6.
Table A-8 : Hedge Ratio (o = 0.45, corv = 0)

n=300 Y Yo corx - Yo corx Y P corx
True 5.00E-05 5.00E-07 9.00E-01 | 5.00E-05 5.00E-08 9.00E-01 | 5.00E-05 5.00E-10 9.00E-01

Hx Hh Hx Hh Hx Hh
Mean 8.67E-01 1.28E-01 | 8.94E-01 5.60E-01 | 8.97E-01 8.93E-01
SD 1.48E-01 6.84E-02 | 1.26E-01 5.17E-02 | 1.33E-01 2.59E-02
MSE 2.30E-02 1.59E-02 1.76E-02
AVAR 1.46E-02 1.46E-02 1.46E-02
n=5000 Y Yo corx Yz Yo corx Y o corx
True 5.00E-05 5.00E-07 9.00E-01 | 5.00E-05 5.00E-08 9.00E-01 | 5.00E-05 5.00E-10 9.00E-01

Hx Hh Hx Hh Hx Hh
Mean 8.74E-01 9.81E-03 | 8.99E-01 8.18E-02 | 9.01E-01 8.19E-01
SD 7.73E-02 1.66E-02 | 6.80E-02 1.56E-02 | 6.75E-02 8.29E-03
MSE 6.66E-03 4.62E-03 4.55E-03
AVAR 4.11E-03 4.11E-03 4.11E-03

* Hx and Hh mean the estimated hedge ratios based on SIML and historical estimator, respectively.

Data generating process: same as Table A-6.

Note : In tables, Mean and SD are the sample mean and the standard deviation of

the SIML estimator and the historical estimator(H-vol) in the simulation. AVAR

corresponds to the asymptotic variance in Proposition 1.
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