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Abstract

In this paper, Mallows’ (1973) C,, criterion, Akaike’s (1973) AIC, Hurvich and
Tsai’s (1989) corrected AIC and the BIC of Akaike (1978) and Schwarz (1978) are
derived for the leads-and-lags cointegrating regression. Deriving model selection
criteria for the leads-and-lags regression is a nontrivial task since the true model
is of infinite dimension. This paper justifies using the conventional formulas
of those model selection criteria for the leads-and-lags cointegrating regression.
The numbers of leads and lags can be selected in scientific ways using the model
selection criteria. Simulation results regarding the bias and mean squared error
of the long-run coefficient estimates are reported. It is found that the model
selection criteria are successful in reducing bias and mean squared error relative
to the conventional, fixed selection rules. Among the model selection criteria,
the BIC appears to be most successful in reducing MSE, and C), in reducing bias.
We also observe that, in most cases, the selection rules without the restriction
that the numbers of the leads and lags be the same have an advantage over those
with it.

Keywords: Cointegration, Leads-and-lags regression, AIC, Cor-
rected AIC, BIC, C,

1 Introduction

Several methods have been proposed for efficient estimation of cointegrating relations.

Phillips and Hansen (1990) and Park (1992) use semiparametric approaches to derive
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efficient estimators that have a mixture normal distribution in the limit. Saikkonen
(1991), Phillips and Loretan (1991), and Stock and Watson (1993) use the regres-
sion augmented with the leads and lags of the regressors’ first differences, yielding
estimators as efficient as those based on the semiparametric approach. This is called
leads-and-lags regression or dynamic OLS regression. This method was also used for
cointegrating smooth-transition regression by Saikkonen and Choi (2004). Johansen
(1988) uses vector autoregression to derive the maximum likelihood estimator of
cointegrating spaces under the assumption of a normal distribution. In addition, Pe-
saran and Shin (1999) use an autoregressive distributed modelling approach for the
inference on cointegrating vectors. Finite-sample properties of the aforementioned
methods are studied by Hargreaves (1994) and Panopoulou and Pittis (2004), among
others.

This paper focuses on the leads-and-lags regression among the methods mentioned
above. Though it has been used intensively in empirical applications' due to its
optimal property and simplicity, the practical question of how to select the numbers
of the leads and lags has not been resolved yet. Most empirical studies use arbitrary
numbers of leads and lags and empirical results can differ depending on this choice.
Furthermore, a restriction that the numbers of leads and lags be the same is often
imposed out of convenience. This situation is certainly undesirable from empirical
viewpoints and indicates a need for methods that select the numbers of leads and
lags in nonarbitrary ways.

The main purpose of this paper is to propose methods for the selection of the
numbers of leads and lags in cointegrating regressions. More specifically, we will
derive model selection criteria for the leads-and-lags regression so that the numbers

of leads and lags can be chosen scientifically. These will make the leads-and-lags

! Examples are Ball (2001) for the money-demand equation; Bentzen (2004) for the rebound effect
in energy consumption; Caballero (1994) for the elasticity of the U.S. capital-output ratio to the cost
of capital; Hai, Mark, and Wu (1997) for spot and forward exchange rate regressions; Hussein (1998)
for the Feldstein—Horioka puzzle; Masih and Masih (1996) for elasticity estimates of coal demand for
China; Weber (1995) for estimates of Okun’s coefficient; Wu, Fountas, and Chen (1996) for current

account deficits; and Zivot (2000) for the forward rate unbaisedness hypothesis.



regression more useful for empirical applications. Deriving model selection criteria
for the leads-and-lags regression is a nontrivial task since the true model is of infinite
dimension. Most model selection criteria in time series analysis are derived assuming
that the true model is contained in a set of candidate models. The only exception
that we are aware of is Hurvich and Tsai (1991), which considers a bias-corrected
Akaike information criterion (AIC) for the infinite-order autoregressive model using
a frequency-domain approach for the approximation of the variance—covariance ma-
trices for the true and approximating models. Notably, the resulting formula from
this study is different from that for the finite-order autoregressive model (cf. Hurvich
and Tsai, 1989). By contrast, we will show that all the model selection criteria that
we derive for the leads-and-lags regression are the same as those for the case of a
finite-dimensional true model.

In this paper, we will consider four model selection criteria: Mallows’ (1973) C,,
criterion, Akaike’s (1973) AIC, Hurvich and Tsai’s (1989) corrected AIC, and the
Bayesian information criterion (BIC) of Akaike (1978) and Schwarz (1978). These
methods are the most common in practice,? though there are many other methods
available as documented by Rao and Yu (2001).3

We will also report extensive simulation results that compare the model selection
criteria using bias and mean squared error (MSE) of the long-run coefficient estimate
as benchmarks. The simulation results show that the model selection criteria are
successful in reducing bias and MSE relative the fixed selection rules. the BIC appears
to be most successful in reducing MSE, and C), in reducing bias. We also observe
that, in most cases, the selection rules without the restriction that the numbers of

the leads and lags be the same have an advantage over those with it.

2The Google citation numbers for these articles are 1,060, 4,546, 741, 205 and 5,720, respectively,

as of August 23, 2008.
3Unfortunately, this review article focuses on the statistics literature only and neglects contri-

butions to the subject of model selection that appeared in the econometrics literature. Some of
the important works neglected there are Phillips and Ploberger (1994, 1996). However, since the
Phillips—Ploberger criterion assumes that the true model is contained in a set of candidate models

(see Section 3 of Phillips and Ploberger, 1994), it is inapplicable to our problem.



A recent paper related to the current one is Kejriwal and Perron (2008). Since such
selection rules as the AIC and BIC yield logarithmic rates of increase of the chosen
numbers of leads and lags, they do not satisfy the upper bound condition for leads-
and-lags regression (condition (9) in Section 2). However, Kejriwal and Perron (2008)
show that the condition can be weakened without bringing changes to the asymptotic
mixture normality of the long-run coefficient estimates. The weakened condition is
satisfied by the AIC and BIC so that their use is justified in practice. Kejriwal and
Perron (2008) use the AIC and BIC without considering their appropriateness for
the leads-and-lags regression. This paper establishes rigorously that using them and
others is proper from the viewpoint of model selection.

This paper is organized as follows. Section 2 briefly explains cointegrating leads-
and-lags regression. Section 3 derives model selection criteria for leads-and-lags re-
gression. Section 4 reports simulation results that compare the performance of the
model selection criteria in finite samples. Section 5 summarizes and concludes. All
the proofs are contained in appendices.

A few words on our notation. Weak convergence is denoted by = and all limits
are taken as T' — oo. The largest integer not exceeding z is denoted by [z]. For
an arbitrary matrix A, |A| = [tr(A’A)]"? and ||A|l, = sup{||Az| : |z|| < 1}.
When applied to matrices, the inequality signs > and > mean the usual ordering
of positive definite and semidefinite matrices, respectively. Last, for a matrix A,

Py = A(AIA)_lA/ and M4 =1 — Py.

2 Leads-and-lags regression

This section briefly introduces the leads-and-lags regression of Saikkonen (1991)* and

some required assumptions. Consider the cointegrating regression model
yt:ﬂ‘i‘ﬁ/xt—i—Ut, (t:]~727"'7T)7 (1)

where z; (p x 1) is an I(1) regressor vector and u; a zero-mean stationary error term.

The main purpose of the leads-and-lags regression is to estimate the cointegrating

*See also Phillips and Loretan (1991) and Stock and Watson (1993).



vector [ efficiently such that it has a mixture normal distribution in the limit. Leads
and lags will augment the regression model (1) for this purpose.
For the regressors and error terms, we assume that w; = (Ax} u) = (vj ug)

satisfy conditions for the multivariate invariance principle such that

LS = B(r), re (0,1, 2)

where B(r) is a vector Brownian motion with a positive-definite variance—covariance
. vi Wou p . .. . . .
matrix = . More primitive conditions for this are available in
Wyy  Wyy 1

the literature (cf., e.g., Phillips and Durlauf, 1986).

Furthermore, the summability condition

o0

S B (wiwyyy) | < oo (3)

j=—00
needs to be satisfied. This implies that the process w; has a continuous spectral

density matrix fuu. (), which we assume to satisfy

fww (A) > elpt1, €>0. (4)

This assumption means that the spectral density matrix fu. (A) is bounded away
from zero. Last, denoting the fourth-order cumulants of w; as k;;r, we also require
a technical assumption:
o
ZZZ |Kijri(m1, m2,m3)| < oo,
mi,m2,Mm3=—0oo
Note that all of these assumptions are taken from Saikkonen (1991).

Under conditions (3) and (4), the error term u; can be expressed as

o0
Uy = Z W;‘Utfj + e, (5)

j=—00
where e; is a zero-mean stationary process such that Eeyv} ;=0 forall j =0,+£1,...,

and

[e.0]
> lmjll < o

j=—o00



As is well known, the long-run variance of the process e; can be expressed as w? =

e
— Q 1
W Wy by Wor -

Using equation (5), we can write model (1) as
o0
Yo = p+ Bloe+ Z T Az j + ey, (6)
j=—00
where A signifies the difference operator. Truncating the infinite sum in model (6)

at Ky and Ky, we obtain

Ky
yw = p+Bu+ Y mAzjtexy (t=Kp+2,K,+3,...,T—Kyp),
Jj=—Kr,
= QIKZKt-i-eKt, (7)
where Ok = [ 8" 7'y oo Tk Vs 2re = [Lwy, Ay e 5o Az g ] and

/
eKt:€t+ E ijt—j:€t+‘/;f,K~
J>Kuy, j<—Kp,

In regression model (7), leads and lags are used as additional regressors. Saikkonen
(1991) uses a common value for Ky and K7, for simplicity, but the results he obtained
apply to the current case with some minor changes in notation.

The numbers of leads and lags should be large enough to make the effect of trun-
cation negligible, but should not be too large because this will bring inefficiency in
estimating the coefficient vector 5. Conditions on Ky and K, that provide asymp-
totic mixture normality of the OLS estimator of S and asymptotic normality of the

OLS estimator of [7TI_KL, T, | are
K{/T, K} /T —0 (8)

and

vT Y gl —o. (9)

J>Ky, j<—Kg,
In fact, Saikkonen (1991) did not derive asymptotic normality of the OLS estimator
of [ﬂ'L Ky ,7T'KU]’ , but this can be done using the same methods as for Theorem 4 of

Lewis and Reinsel (1985) (see also Berk, 1974). Conditions (8) and (9) are sufficient



to derive the asymptotic distributions of the OLS estimators for model (7), but do
not provide practical guidance in selecting Ky and K7, in finite samples. The next

section will consider various methods for their optimal selection.

3 Methods for selecting Ky and K,

This section considers various procedures for selecting Ky and K. These are basi-
cally model selection procedures that have often been used for regressions and time-
series analysis. For the derivations of these procedures, we assume that the conditions
of the leads-and-lags regression in Section 2 hold.

For later use, write model (7) in obvious matrix notation as y = Zglx + ex.
The OLS estimator of the parameter vector O using model (7) is denoted by .
In addition, model (6) is written in vector notation as y = 7 + e, where e =

lex,+2,---,er—K,]) is the vector of errors.

3.1 (, criterion

The C), criterion of Mallows (1973) is an estimator of the expected squared sum of
forecast errors. Assume that E(e; | Zx) = 0 for any Ky and K. Then the forecast
error for the C), criterion is defined by f; = 4, —E(y; | Zk) = 9/1(2Kt—9/KZKt—E(W,K ]
Zr). This measures the distance between the fitted value g; and the conditional
expectation of y;. The expected squared sum of the forecast errors standardized by

o2 (= E(e?)) is

€

| TKv
Ag = ) E(ft2 | ZK)
€ t=Kr+2
) 1 T—-Ky
= B[Ok —0)ZkZic0x = 0) | Zi] + —5 > Vi
e e t=Kr+2
| T-Kv A ,
2 S B[ ( - o) B i | 2] 24
€ t:KL+2

= A+ B-C, say.



Since Uig(@;( —0)Z Zi (O — 0)12, = xX*(p(KL + Ky +2) + 1) (cf. Theorem 4.1
of Saikkonen, 1991, and Theorem 4 of Lewis and Reinsel, 1985), A is approximated
by p(Kr, + Ky +2) + 1. Using the relation E(e%,) = 02 + E(VfK), we approximate
B by (Tlg ZtT:_[?LZZ éf’K —(T' — Ky — K, — 1). The third term C is approximated
by zero since 91( — Ok converges to zero in probability. Let Kimax and Kr max be

the maximum values used for selecting Ky and K7, respectively. We estimate o2 by

~2 1 ZT_KU,max ~D

Oc = ToRymm—Kimmn—T 2t=Kp s+ 2 €t Kmax where €; g max denotes the regression

residual using Ky max and K max for Ky and Kj, respectively. Then, using the

aforementioned approximations, the C), criterion that approximates A is defined by

T—Ky
1

Co=—5 >, EGx+@+)(KL+Ky+2)-T.
Te 1=K, +2

In practice, we choose Kyy and K, so that the C), criterion is minimized. Note that

this requires preselecting Ky max and K, max-

3.2 Akaike information criterion

The AIC of Akaike (1973) is an estimator of the expected Kullback—Leibler informa-
tion measure and is often used for regression and time-series models. In deriving the
AIC and its variants, it is usually assumed® that candidate models include the true
model (cf. Akaike, 1973; Hurvich and Tsai, 1989), though it does not have to be
so because the Kullback—Leibler information measure simply indicates how far apart
the true and any candidate models are.

Since the true model of the current study (equation (6)) involves an infinite num-
ber of parameters, candidate models cannot include the true model. However, it

is still possible to derive the AIC using a general formula.5 Assume that the error

A notable exception is Hurvich and Tsai (1991), which considers a bias-corrected AIC for the

autoregressive model of infinite order.

5The general formula assumes /T asymptotics, but it can straightforwardly be extended to the
current case because the leads-and-lags coefficient estimators for the nonstationary regressors have
a mixture-normal distribution in the limit. The general formula is related to Takeuchi’s (1976)
information criterion. See Chapter 7, Section 2 of Burnham and Anderson (2002) for further details

on this.



terms of the candidate model (7) follow an iid normal distribution with mean 0 and
variance UEK conditional on Zk, and denote the conditional log-likelihood function
of the candidate model by (0,02, ) = I(§k). Then, letting n =T — Ky — K, — 1,
the general formula can be written as

Cicityhe G
t=Kp+2 ‘t,
nln | &==8c42 65

) +2tr [J(66)1(60) ']

n
where 6, = [0, 02]' minimizes the Kullback-Leibler information measure, J(d,) =

A(51c) DU x) B 921(8 ) . 1
E { T |5K:5J and 1(6,) = E |:_85K8§IK |6K60} Since tr [J(0,)1(0,) 7] =

LN ]

g
52
95

(p(KU +Kp+2)+1+ 2035(’3) as shown in Appendix I and 62 = 02 as shown

o e

in Lemma A.2 in Appendix II, the AIC is defined by

ZT—KU é2
t=Kr+2 “t,K

AIC—nln( >+2(p(KU+KL+2)+2).

Notably, this is the same as the usual AIC that assumes that candidate models include
the true model. However, notice that the sample size n depends on the chosen model

unlike in conventional regression models.

3.3 Corrected Akaike information criterion

Hurvich and Tsai’s (1989) corrected AIC is also an estimator of the Kullback-Leibler
information measure. First, it calculates the Kullback—Leibler information measure
using unknown parameter values. Next, the unknown parameter values are replaced
with the maximum likelihood estimators. These steps provide the corrected AIC.

In our application, letting Er(-) be an expectation operator using the true model

(6) and assuming Er(e? | Z_) = 02 where Z_ denotes {zj;}° the Kullback—

—0o0)
Leibler information measure using unknown parameter values is
— ZKk0K)'(y — ZKb
“9Ep((6K)) = Fp |nln(o?) + Y 2O = Z0x) | 5
e
— Z0) (1 — ZK0 2
_ Ep(nln(o2) | 2.) + T = ZK0K) (T = ZxbK) | 1o

OcK Ock
= f(eKa UgK)a say.



Replacing 0 and aﬁ 1 With corresponding maximum likelihood estimators, we obtain

. — 750 (1 — Zxh 2
F(Bx,6%) = Ep (nn(6%)) + (T =2k KA)Q(T K0x) | e, (10)
OcK OceK

T-Ky 52
Zz:KL+2 €t K

- . The corrected AIC is an approximation to f(fx,&%).

where 62 =
As shown in Lemma A.3 in Appendix II, the second and third terms in relation

(10) follow - F'(m,n—m) and L respectively, under a normality assumption

n2
x*(n—m
when T is large. Thus, using the mean values of the second and third terms in relation
(10), we approximate f(fx,62x) by

T—KU ~2 2
_ €
AICo = nln Di—ry 42 €K L S
n n—-—m-—2 n—m-—2

This is the corrected AIC. Notice that this is exactly the same as the corrected AIC
of Hurvich and Tsai (1989), which assumes that candidate models include the true
model. By contrast, Hurvich and Tsai’s (1991) corrected AIC derived for the AR(oc0)
model is different from that of the current work.

Comparison of the AIC and the corrected AIC reveals that the major difference
between them lies at which stage the maximum likelihood estimators are plugged into
the Kullback—Leibler information measure. The AIC calculates the Kullback—Leibler
information measure using the maximum likelihood estimators from the beginning,
but the corrected AIC calculates the Kullback—Leibler information measure using
unknown parameter values and then uses the maximum likelihood estimators for the

computed Kullback—Leibler information measure.

3.4 Bayesian information criterion

The BIC of Akaike (1978) and Schwarz (1978) is an approximation to a transformation
of the Bayesian posterior probability of a candidate model. Unlike the AIC, it does
not require the probability density of the true model. Therefore, the true model of
infinite dimension as in this paper does not require any separate treatment and the

usual formula,

52

ZT—KU é
BIC = nln (W) + (p(Ky + K1, +2) + 2) In(n),

10



can be used. Because we never use the true model in the leads-and-lags regression,

consistency of the BIC cannot be an issue.

4 Simulation results

The ultimate purpose of the leads-and-lags regression is to estimate the long-run
coefficient 8 precisely. This section investigates how model selection criteria of the
previous section perform in relation to the estimation of the long-run coefficient (.

To this end, we consider the data generating process
Yt = p+ Bre+ur, T =Te-1 + vy

where x; is a scalar unit root process with xg = 0. We set 4 = 1 and 8 = 1 throughout
the simulations and set the sample size at 100 or 300. The error term w; = (v, ug)’

is generated from a VARMA(1,1) process:

wy = Awy_1 + 4 — Ogy_q,

where ) )
A _ a1l 0 7 @ _ 911 0 ’
0 a2 0 922
€1t .. 1 o012
g = ~1.i.d.(0,X), ¥ = ,
| €2t | o121
wy = €&g— 0.

The parameters a;; and 0;; (i = 1, 2) are related to the strength of the serial correla-
tion in wy, whereas o2 signifies contemporaneous correlation. In the simulations, the
parameters a; and 6;; take values from {0, 0.4, 0.8} while 015 is equal to either 0.4
or 0.8. We consider two distributions for ¢;: a standard normal distribution and a
log-normal distribution. Since AIC¢ is based on the assumption that the error terms
are normally distributed, the nonnormal distribution of €; implies that the correction
for the AICo does not make much sense. In order to check the robustness of AICqo
to nonnormal error terms, we try a log-normal distribution for the error terms. We

also note that all the selection criteria depend on the maximum numbers of the leads

11



and lags. We will use Ky = [4 x (T/100)'/4] and K15 = [12 x (T7'/100)'/4] commonly
for Kiymax and K7, max in the simulations. All computations are carried out using
the GAUSS matrix language with 10,000 replications.

Before reporting our simulation results, we note that the leads of Ax; = v; do not
have to be included in the augmented regression model (7) when a1; = 617 = 0. In

this case, vy becomes equal to €1; and

U = (1 — aggL)il(l — (911L)€2t

= ¢(L)o12vs + ¢(L)eg1 s, (11)

where ¢(L) = (1 — ageL)~*(1 — 011 L) with L being the lag operator and €21t =
g9t — 012€1¢. Since the first term of (11) includes v;—; = Az;_; only for j > 0, while
€2.1,¢ is independent of vy = €1, for all s and ¢, we can see that u; can be expressed
as in equation (5) without the leads of Ax;.

Tables 1-4 present empirical bias of the estimate of 5 while Tables 5-8 report
empirical MSE. Part I of each table deals with the case where the leads of Ax; are
not required (i.e., a;; = 011 = 0). Part II handles the case where either aj; # 0 or
011 # 0 or both. Note that a different scale is used in each table depending on the
sample size and the distribution of ;. For the purpose of comparison, we also select
the leads and lags by the fixed rules Ky = K =1, 2, 3, K4 and K15. Although it is
often the case that Ky is conventionally set equal to K7, in practice, we do not have
to use the same numbers for the leads and lags. Especially, when a1; = 611 = 0, we
do not have to include the leads and then the selection rules without the restriction
of Ky = K, are expected to have an advantage over those with Ky = K.

We first summarize the simulation results regarding the bias.

(b-i) C}, without the restriction of Ky = K, tends to be most successful in reducing
bias. Especially when there are high serial correlations in the data (see the last
two columns in each table), C}, shows much better performance than the other

selection criteria and the fixed selection rules.
(b-ii) When a1; = 6017 = 0, the absolute value of the bias without the restriction

12



(b-iii)

(b-iv)

(b-v)

(b-vi)

(b-vii)

(b-viii)

(b-ix)

of Ky = K, is smaller than that with Ky = K in most cases. This is
well expected because the leads of Ax; are not required in this case for the

augmented regression (7).

When ai; = 011 = 0, the bias resulting from the use of C), is smallest whereas

the BIC leads to the most biased estimates among the four selection criteria.

The AIC tends to perform slightly better than the AIC,, especially when a1 =

011 = 0. But the differences are marginal.

There are a few cases where the model selection criteria with the restriction
Ky = K, result in the smaller bias, but the differences between the restricted
and unrestricted cases are relatively small. In most cases, the model selection

criteria without the restriction Ky = K, perform better than those with it.

The fixed selection rules sometimes result in large biases. In most cases, they

are dominated by one of the model selection criteria.

Overall, the bias with K,.x = K12 tends to be smaller than that with K. =
K.

The log-normal distribution does not bring any noticeable changes in evaluating
the selection rules. In particular, performance of the AIC. does not change much

with the log-normal distribution.

As sample size grows, bias decreases as expected, but qualitative differences are

not observed with the increasing sample sizes in evaluating the selection rules.

Regarding to the MSE, the simulation results are summarized as follows.

(1)

The BIC tends to perform best in almost all the cases, and the AIC, tends to
follow. The MSE with C), tends to become largest in most cases. Overall, how-
ever, the differences of the MSEs are relatively small among the four selection

criteria.

13



(m-ii)

(m-iii)

(m-iv)

(m-v)

(m-vi)

(m-vii)

In most cases, the MSE without the restriction of Ky = K, is smaller than
that with Ky = K though there are exceptions, especially in Part II of the
tables, but the differences between the restricted and unrestricted cases are

quite small.
The AIC. tends perform slightly better than the AIC.

In most cases, the fixed selection rules are dominated by one of the model

selection criteria.

Overall, the MSE with Kp.x = K12 tends to be larger than that with Kpax =
K.

The log-normal distribution does not bring any noticeable changes in evaluating
the selection rules. In particular, performance of the AIC. does not change much

with the log-normal distribution.

As sample size grows, MSE decreases as expected, but qualitative differences
are not observed with the increasing sample sizes in evaluating the selection

rules.

‘We infer from the simulation results that the model selection criteria are successful

in reducing bias and MSE relative the fixed selection rules. The BIC appears to be

most successful in reducing MSE, and C), in reducing bias. We also observe that

the selection rules without the restriction Kj; = Ky have an advantage over those

with Ky = K, in most cases. For practitioners, therefore, we recommend using the

selection rules of this paper without the restriction of Ky = K.

5 Conclusion and further remarks

We have derived Mallows’ (1973) C), criterion, Akaike’s (1973) AIC, Hurvich and
Tsai’s (1989) corrected AIC, and the BIC of Akaike (1978) and Schwarz (1978) for

the leads-and-lags cointegrating regression. QOur results justify using conventional

14



formulas of those model selection criteria for the leads-and-lags cointegrating regres-
sion. These model selection criteria allow us to choose the numbers of leads and lags
in scientific ways. Simulation results regarding the bias and mean squared error of
the long-run coefficient estimates are also reported. The model selection criteria are
shown to be successful in reducing bias and mean squared error relative to the con-
ventional, fixed selection rules. Among them, the BIC appears to be most successful
in reducing MSE, and C), in reducing bias. We also observe that the selection rules
without the restriction that the numbers of the leads and lags be the same have an
advantage over those with it in most cases. The model selection criteria in this paper
were derived for linear regression, but we note that they can also be used for the
nonlinear leads-and-lags regression of Saikkonen and Choi (2004).

The ultimate purpose of the model selection criteria for the leads-and-lags coin-
tegrating regression is to estimate the long-run slope coefficient efficiently. Though
it was shown through simulations that they improve on the fixed selection rules in
terms of bias and mean squared error, a better rule that directly minimizes the mean
squared error (or other efficiency measures) of the long-run slope coefficient estimate
may exist. How this rule, if it exists, and the model selection criteria of this paper

are related is a question one may be interested in investigating.
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Appendix I: Calculation of tr {J(d,)I(6,)"'}

Ignoring a constant, the Kullback—Leibler information measure is written as

n — ZkOk)'(y — ZK0
Bp(6x) = Er|Din(oty) + YT AKO = Zicbi) | g
2 20’6K
n (r — Zk0k)'(r — ZK0k) | no?
= -] 2 .
2 e 2031{ " QUZK
This is minimized by 6, = (Z}(ZK)AZ}(T and Ug _ (T*ZKGO);(TfZKeo) N Ug.

é(z}d/ — 2 Zkbk)
~ 5o+ 51— (y = Zx0K)' (v = Zk0k)

Zye, and y — Zgb, = My, T+ e, we may write

ANor) _

Since 5= , Iy — ZpZib, =

Ol(5k) Ol(6 k) | A A
0=0,— )
86K 86/1( A/12 A22

where Aj; = %Z}(ee’ZK, App = %Z}(e X (—# + ﬁ(T’MZKT +ee+ Qe'MZKT))
o o o o

2
and Agg = (—# + 5og (7' Mg, 7+ e+ 26’MZK7')> . Thus,

o2
VA A 0
J6)=| T - (A1)
0 20§ + F%T MZKT
Moreover, using
PU(k) ~ 72K — A (Zky = Zic ZK0k)
o i ) )
0000 |~ 2 — 02y Zx) 5t — Ay~ Zx0) (v — Zxcbx)
we find
1 71
1(60> = 75 n02 . T’MZKT <A2>
0 Tt

Using (A.1), (A.2) and the relation 7'Mz, 7 = n(02 — 02), we obtain

2 I 0
tT{J((50>I((50)_1} _ %tr P(KU+;(L+2)+1 o
o ((772 e

o

9 2 2
- €<p(KU+KL+2)+1+000206).

o
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Appendix II: Proofs

The following lemma is required for the derivation of the corrected AIC in Subsection
3.

V'Mz, V VM
771_215 =op(1). (it) 771_?56 = op(1).

Proof: (i) Write V'My, V = V'V = V' Z (2} Zk) 1 ZkV . Since
2

Lemma A.1 (i)

2 /
B0) - B[ Y w
J>Ky, j<—-K

_ Y E(@uepim)+ > > E(ruejvim)

>Ky, j<—Kp, i>Ky, j<—Kr I>Ky, I<—-Kp,

Z W;viﬂ'j + Z Z \/W;Qvfuﬂ'j \/ﬂ-;QU’Uﬂ-l

>Ky, j<—Kp, i>Ky, j<—Kr I>Ky, I<—-Kp,

vo oo Imlir+ Yo sl

1>Ky, j<—Kr, 1>Ky, j<—Kp I>Ky, I<—Kj,
2

= luy Z 5l |

i>Ky, j<—Kp,

IN

IN

where [, is the maximum eigenvalue of €,, and the Cauchy-Schwarz inequality is

used for the first inequality. Assumption (9) implies E <Vt2K> =o(T1). Thus,

V'V = o,(1). (A.3)
Next, let Dy = diag[n=1/2, n1I,, nil/zlp, cel nfl/zlp] and R = diag[l,n 2 ZtT;}?LIQ_Q zyxy, T
!/
where I' = F (v£+KL, .. ,vg_KU) (v£+KL, . vg_KU). Then, we have the following

equality for the second term of V'My, V.
|\V'Zg Dr(DrZy Zx Dr) ' DrZk V||
< V' ZxDr ||| B, 1 DrZx V]
+ ||V Zk Dy || |Dr(Zk Zk) ' Dr — R7H|, |1 D1 Zk V],

where Lemma A1l of Saikkonen is used for the inequality. As shown in Saikkonen

(1991),7 |V’ Zg D7 || = 0,(K/?), HR—1H1 = 0,(1), and HDT(Z}(ZK)—lDT — R—lHl =

"Saikkonen (1991) does not consider an intercept term in his linear regression model, but extending

his results to the model with an intercept term is straightforward.
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O,(K/T"?), where K/K;, K/Ky = O(1). Therefore, V' Zy (2} Zx) '\ ZKV =
op(K), which gives the stated result along with Assumption (8).
(ii) Write V' Mgz, e = V'e = V' Zg(Z}. Z )"  Zke. Then, V'e = o0,(y/n) because

E|V'e|l < BV el < VEVV)VE@e) = of1) x O(vn) = o( /).
Since ||DrZrcel| = O,(K'/?), as shown in Saikkonen (1991), V' Zx (Z4 Zx) ™' Zxe =

op(K). Thus, the stated result follows.

Lemma A.2 o2 2, o2.

— "Nr— — "Nr— VMg,V
0_(2) _ (T ZKGO) (T ZKQO) +0_2 and (T ZKQO) (‘I‘ ZKQO) _ nZK p 0

Proof: Since m ‘ m

by Lemma A.1 (i), we obtain the result.

Lemma A.3 Assume e; ~ iid N(O a?).

() ZKGK (T Zk0xk) follows (m,n —m) when T is large.

eK

ﬁ when T is large.

Proof: (i) Since 7 — Zib = 7 — Pz,y = Mg, T — Pz,e, the second term in

relation (10) is written as

(r— ZKéK),(T — ZKéK) ¢Pge T Mg, T
52 = 52 + 52
OcK OcK OcK
GPZ
. nm ( ' )/m N ' Mg, T (A4)
n_m(niegK>/(n—m) ol

where m = p(Ky + K1, +2) + 1. For the first term in relation (A.4), note first that

% 4 x2(m). Next, letting V = Vi, +2,K5- - Vr—Ky k|, we have
ne2g e Mge VM7V 2V'Mg,.e
o2 [(n—m) = o2(n—m)  o2(n—m) oc2(n—m)
e e e e
eMyg,.e
= —— 1 A5
Jg(n—m) +OP( )a ( )

and egz(\izf;f 5 = 4 x2(n —m)/(n —m). Note that the second equality of relation (A.5)

. 'P. "M .
holds due to Lemma A.1. Since = GZQK  and < UgK ° are independent, the first term

e e
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in (A.4) is approximately distributed as -*™ F(m,n —m). For the second term in

(A.4), note that relation (A.3) yields 7'My, 7 = V'My, V < V'V = 0,(1) and that

6%, = O,(1). Thus, the second term is 0,(1). This completes the proof.

2
e is distributed as

x2(2—m) '

(ii) Relation (A.5) implies that 5

OcK
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Table 1: Bias of the Estimates

Part I: a11 = 011 = 0 (biasx10, T'= 100, &;: normal)

0’12:.4 g12 = . 0'12:.4 0’12:.8 0'12:.4 0'122.8

(a11, a2) 0,4 (0,8 (0.4 (0,38 ] (0,0) (0,00 (0,0 (0,0 (0, 8) (0, 8)

(911’ 922) (07 0) (07 0) (07 O) (07 0) (07 '4) (07 '8) (0, '4) (07 ‘8) (01 '4) (07 '4)
(Kmax = Ka)

Cp .0082 .3433 .0135 .6369 .0084 —.0051 —.0019 —.0018 1745 3243

AIC .0304 .3835 .0258 6389 | —.0197 —.0115 —.0026 —.0021 .2055 3347

AIC. .0364 4023 .0312 6392 | —.0235 —.0149 —.0026 —.0020 2165 3391

BIC 0777 .5010 .0594 6665 | —.0467 —.0402 —.0029 —.0012 2768 3872

Cp (KL = Kv) .0106 .3548 .0155 .6474 | —.0116 —.0069 —.0017 —.0015 1790 3323

AIC (K1 = Ky) .0482 4357 .0393 .6722 | —.0306 —.0250 —.0029 —.0017 12328 .3644

AIC, (KL = KU) .0591 .4664 .0491 .6916 | —.0366 —.0310 —.0027 —.0011 2524 .3857

BIC (KL = Kv) 1077 .5957 .0935 .8024 | —.0684 —.0876 —.0087 —.0018 3142 14946

K = Ky = Kmax 1400 7226 2806  1.4632 | —.0960 —.1868 —.1847 —.3670 35687 7304
(Kmax - K12)

Cp —.0155 .0564 —.0028 .1664 | —.0017 —.0016 —.0049 —.0018 .0270 .0825

AIC .0220 .1515 .0063 2386 | —.0153 —.0092 —.0021 —.0014 .1066 1473

AIC. .0283 .2610 .0261 3068 | —.0237 —.0163 —.0018 —.0013 .1591 1984

BIC .0763 4242 .0577 4229 | —.0463 —.0398 —.0029 —.0012 .2624 3107

Cp (K = Kv) —.0206 .0658 —.0073 .1637 | —.0066 —.0043 —.0053 —.0009 .0268 .0823

AIC (KL = Ku) .0409 .2016 .0233 2858 | —.0275 —.0231 —.0017 —.0011 .1401 1868

AIC. (KL = KU) .0556 .3810 .0462 4619 | —.0355 —.0301 —.0017 —.0004 .2344 .3099

BIC (KL = Kv) 1073 .5693 .0933 6541 | —.0684 —.0876 —.0087 —.0017 3111 4694

K = Ky = Kmax .1629 .8344 .3390 1.6892 | —.1168 —.2248 —.2199 —.4357 4128 .8425

Kr=Ky=1 .0480 .5513 1086 1.1267 | —.0043 —.0027 —.0022 —.0017 2727 5620

Kr=Ky=2 .0148 .4524 .0425 9314 | —.0026 —.0001 —.0013 —.0001 2237 .4644

K, =Ky =3 .0009 .3703 .0143 7690 | —.0026 —.0001 —.0017 —.0002 .1826 .3829

Part II: a11 # 0 and/or 611 # 0 (biasx10, T' = 100, &;: normal)

012 :04 g12 :08 g12 :04 012 :08 012 :04 012 :08

(a11, azz) (4,4) (8,8 (4,4 (88| (0,00 (0,00 (0,00 (0,0 (8, 8) (8,.8)

(011, 022) (0,0) (0,00 (0,00 (0,0) | (4,.4) (8.8 (4.4 (8.8) (4, .4) (.4, .4)
(Kmax = K4)

Cp —.0059 —.0065 —.0024 —.0005 | —.0048 —.0094 —.0031 —.0027 1745 —.0012

AIC —.0056 —.0071 —.0022 —.0015 | —.0048 —.0045 —.0044 —.0040 .2055 —.0013

AIC, —.0059 —.0062 —.0019 —.0010 | —.0046 —.0059 —.0039 —.0037 .2165 —.0013

BIC —.0049 —.0056 —.0016 —.0008 | —.0046 —.0041 —.0023 —.0041 2768 —.0013

Cp (KL = KU) —.0060 —.0066 —.0031 —.0004 | —.0065 —.0114 —.0031 —.0052 1790 —.0010

AIC (KL = Kvu) —.0077 —.0056 —.0024 —.0014 | —.0050 —.0018 —.0048 —.0003 2328 —.0017

AIC. (KL = Ky) | —.0061 —.0061 —.0024 —.0015 | —.0063 —.0033 —.0036 —.0010 .2524 —.0016

BIC (KL = KU) —.0049 —.0051 —.0021 —.0012 | —.0048 —.0071 —.0027 —.0057 3142 —.0015

K =Ky = Kmax | —0049 —.0050 —.0018 —.0011 | —.0058 —.0104 —.0031 —.0066 3587 —.0013
(Kmax = K12)

Cp —.0137 —.0121 —.0054 —.0033 .0026 .0095 —.0072 —.0095 .0270 —.0047

AIC —.0058 —.0094 —-.0075 —.0036 .0000 .0051 —.0054 —.0037 .1066 —.0067

AIC, —.0069 —.0084 —.0022 —.0029 | —.0067 —.0048 —.0035 —.0042 .1591 —.0026

BIC —.0054 —.0077 —.0012 —.0031 | —.0040 —.0027 —.0023 —.0032 .2624 —.0007

Cp (K1 = Kv) —.0149 —-.0119 -—-.0069 —.0032 | —.0094 —.0054 —.0086 —.0096 .0268 —.0035

AIC (KL = KU) —.0074 —.0132 —.0040 —.0058 | —.0017 .0070 —.0037 —.0006 .1401 —.0065

AIC. (KL = Ky) | —.0073 —.0068 —.0023 —.0002 | —.0060 —.0013 —.0031 .0006 .2344 —.0016

BIC (KL = Kv) —.0048 —.0047 —.0021 —.0013 | —.0048 —.0073 —.0027 —.0057 3111 —.0011

K = Ky = Knax | —.0086 —.0067 —.0038 —.0015 | —.0086 —.0087 —.0046 —.0069 4128 —.0019

Kr=Ky=1 —.0054 —.0050 -—.0023 —-.0014 | —.0071 —.0111 —.0035 —.0058 2727 —.0016

Kr=Ky=2 —.0053 —.0052 —.0024 —.0014 | —.0043 .0021 —.0022 .0011 2237 —.0016

Kr=Ky=3 —.0054 —.0054 —.0027 —.0012 | —.0046 —.0008 —.0034 —.0030 1826 —.0016

23



Table 2: Bias of the Estimates

Part I: a11 = 611 = 0 (biasx10?, T = 100, &;: log-normal)

0’12:44 0'12:.8 0’12:.4 g12 .8 0’12:.4 0’12:.8

(a1, az2) 0.4 (0,8 (0,4 08 0,0 (0,00 (©0 (0,0 0, 8) 0, 8)

(911’ 922) (07 0) (07 0) (01 0) (07 0) (01 '4) (07 8) (07 ‘4) (07 8) (O> ‘4) (07 ‘4)
(Kmax = Ka)

Cp .0078 4234 .0093 4088 | —.0064 —.0047 .0007 .0006 .2250 .2103

AIC 0172 4444 0132 4078 | —.0085 —.0078 .0009 .0007 2527 .2147

AIC. .0205 4544 0142 4079 | —.0096 —.0084 .0005 .0006 .2633 .2169

BIC .0345 5515 .0202 4169 | —.0138 —.0158 —.0006 .0007 3372 .2368

Cp (KL = KU) .0127 4528 .0089 4189 | —.0044 —.0032 .0007 .0001 .2436 .2162

AIC (K1 = Kv) .0257 .5120 .0151 4290 | —.0101 —.0091 .0000 .0005 2978 2317

AIC, (KL = Ky) .0293 .5443 0173 4366 | —.0108 —.0110 —.0001 .0005 .3200 .2409

BIC (KL = Kv) .0440 .6975 .0275 4800 | —.0185 —.0243 —.0032 —.0001 .3921 .2883

K1 = Ky = Kmnax .0667 .9647 0727 9509 | —.0276 —.0551 —.0315 —.0634 4823 AT57
(Kmax - K12)

Cp —.0083 .1096 .0001 .0994 | —.0013 —.0008 —.0008 .0020 .0593 .0575

AIC .0045 1780 .0113 1416 | —.0060 —.0097 .0010 .0023 1198 .1022

AIC, .0123 .2424 0125 1819 | —.0083 —.0113 —.0003 .0015 1722 .1309

BIC .0316 14053 .0180 2384 | —.0131 —.0178 —.0008 .0016 .2894 1771

Cp (K = Kv) —.0085 1071 —.0044 .0938 | —.0006 .0013 —.0012 .0001 .0591 .0494

AIC (K1 = Kv) .0135 .2280 .0108 1517 | —.0060 —.0089 —.0001 .0018 1612 .1097

AIC. (KL = KU) .0236 .3859 .0161 .2560 | —.0090 —.0134 .0001 .0019 .2542 .1808

BIC (KL = Kv) .0418 .6072 0275 .3448 | —.0173 —.0250 —.0031 .0002 .3610 .2553

K = Ky = Kmax 0762 1.1273 0776 1.0753 | —.0325 —.0639 —.0355 —.0696 .5631 .5369

Kr=Ky=1 .0244 7429 .0285 7383 | —.0012 —.0009 —.0004 —.0006 3707 .3690

Kr=Ky=2 .0093 .6158 .0128 .6101 | —.0012 —.0010 .0003 —.0001 3073 .3054

K=Ky =3 .0030 5114 .0064 .5048 | —.0005 —.0001 .0009 .0005 .2553 .2530

Part II: a11 # 0 and/or 611 #0 (bias><1027 T =100, &¢: log-normal)

12 =04 o12 = 0.8 12 =04 12 =0.8 12 =04 012 =0.8

(a11,a22) (4,4 (88 (44 (88 ] (0,0 (0,00 (0,00 (0,0 (8, 8) (3,8

(611, 022) (0,0)  (0,0) (0,00 (0,0 | (4.4) (8.8) (4.4 (8.8) | (4.4  (4,.4)
(Kmax = K4)

Cp .0003 .0287 —.0004 —.0071 | —.0059 —.0300 .0012 .0039 .2250 —.0064

AIC .0026 .0321 —.0010 —.0079 | —.0082 —.0437 .0019 .0088 2527 —.0074

AIC, .0034 .0334 —.0008 —.0085 | —.0085 —.0473 .0019 .0084 .2633 —.0076

BIC .0055 .0420 —.0016 —.0105 | —.0093 —.0669 .0016 .0115 3372 —.0096

Cp (KL = KU) .0014 .0301 —.0001 —.0067 | —.0041 —.0250 .0014 .0045 .2436 —.0062

AIC (KL = Kvu) .0040 .0360 —.0004 —.0080 | —.0068 —.0458 .0022 .0076 .2978 —.0077

AIC. (KL = Kv) .0041 .0383 —.0005 —.0088 | —.0078 —.0502 .0018 .0087 .3200 —.0082

BIC (KL = Ku) .0067 .0480 —.0018 —.0111 | —.0097 —.0697 .0013 .0131 .3921 —.0103

K = Ku = Kmax .0123 .0600 —.0024 —.0136 | —.0122 —.0734 .0034 .0184 4823 —.0122
(Kmax = K12)

Cp —.0062 .0006 —.0022 —.0049 | —.0018 —.0115 —.0009 .0030 .0593 —.0033

AIC —.0024 .0073 .0001 —.0038 | —.0058 —.0487 .0011 .0108 1198 —.0025

AIC, —.0004 .0124 —.0005 —.0050 | —.0085 —.0606 .0003 .0137 1722 —.0049

BIC .0048 .0297 —.0012 —.0087 | —.0092 —.0760 .0017 .0160 .2894 —.0075

Cp (K1 = Kv) —.0069 .0015 —.0034 —.0056 .0005 —.0031 —.0017 —.0001 .0591 —.0042

AIC (KL = Ky) .0002 0117 .0005 —.0040 | —.0036 —.0446 .0013 .0106 1612 —.0045

AIC. (KL = Kv) .0018 .0228 —.0003 —.0077 | —.0058 —.0602 .0029 .0134 .2542 —.0062

BIC (KL = Kv) .0062 .0405 —.0014 —.0104 | —.0084 —.0729 .0011 .0134 .3610 —.0091

K = Ky = Knax .0139 .0704 —.0047 —.0169 | —.0160 —.0896 .0021 .0183 5631 —.0154

Kr=Ky=1 .0039 .0461 —.0009 —.0105 | —.0022 —.0054 —.0009 —.0027 3707 —.0095

Kr=Ky=2 .0012 .0384 .0004 —.0084 | —.0023 —.0081 .0003 —.0016 .3073 —.0076

Kr=Ky=3 —.0003 .0320 .0007 —.0071 | —.0003 —.0007 .0018 .0043 .2553 —.0063
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Table 3: Bias of the Estimates

Part I: a11 = 611 = 0 (biasx10, T'= 300, &;: normal)
12 =.

0’12:.4 g12 = . 0'12:.4 012 8 0'12:.4 0'122.8

(a11, ass) 0,4 (0,8 (0.4 (0,38 ] (0,0) (0,00 (0,0 (0,0 (0, 8) (0, 8)

(911’ 922) (07 0) (07 0) (07 O) (07 0) (07 '4) (07 '8) (0, '4) (07 ‘8) (01 '4) (07 '4)
(Kmax = Ka)

Cp 0049 .1046 .0025 1847 .0002 .0001 .0000 .0000 .0560 .0926

AIC .0092 1139 .0054 1839 | —.0008 .0000 .0001 .0001 .0658 .0928

AIC. .0096 1155 .0059 1837 | —.0008 —.0001 .0001 .0000 .0667 .0927

BIC .0241 1597 .0142 1827 | —.0068 —.0008 .0000 .0000 .1010 0983

Cp (KL = Kv) 0059 .1100 .0033 1857 .0000 .0003 .0000 .0001 .0604 .0935

AIC (K1 = Ky) 0131 1311 .0080 1861 | —.0021 .0002 .0000 —.0001 .0788 .0957

AIC. (KL = Kv) 0141 .1346 .0088 1863 | —.0023 .0000 —.0001 —.0001 .0811 0963

BIC (KL = Kv) .0366 2177 .0229 1965 | —.0161 —.0045 —.0002 —.0001 1260 1182

K = Ky = Kmax .0510 .2826 .0975 5509 | —.0294 —.0598 —.0595 —.1187 1418 2754
(Kmax = K12)

Cp .0005 .0262 .0003 .0319 .0000 .0001 .0000 .0000 .0153 0172

AIC .0069 .0522 .0035 .0448 | —.0005 .0002 .0000 —.0001 .0370 .0300

AIC, .0080 .0586 .0041 .0489 | —.0006 .0001 .0001 —.0001 .0425 .0333

BIC .0241 .1457 .0142 .0944 | —.0068 —.0008 .0000 .0000 .0983 0708

Cp (K = Kv) .0012 .0304 .0001 .0349 .0002 .0004 —.0002 —.0003 0171 .0191

AIC (K1 = Kv) .0113 .0786 .0068 .0587 | —.0019 .0002 —.0001 —.0001 05673 .0417

AIC. (KL = Kvu) .0128 .0925 .0078 .0698 | —.0022 .0001 .0000 —.0001 .0657 .0493

BIC (KL = Kv) .0366 .2148 .0229 .1501 | —.0161 —.0045 —.0002 —.0001 1257 .1092

K = Ky = Kmax .0539 .3014 .1047 5904 | —.0320 —.0644 —.0636 —.1272 1510 .2952

Kr=Ky=1 .0211 2232 .0382 14321 .0003 —.0002 —.0002 —.0001 1120 2160

K=Ky =2 0096 1817 .0155 .3503 .0008 .0004 .0001 .0001 .0914 1752

Ky, =Ky=3 0045 1474 .0061 .2836 .0004 .0001 —.0001 .0000 0741 1418

Part II: a11 # 0 and/or 611 # 0 (biasx10, T' = 300, ¢;: normal)

012 :04 g12 :08 g12 :04 012 :08 012 :04 012 :08

(a1, ass) (4,4) (8,8 (4,4 (88| (0,00 (0,00 (0,00 (0,0 (8, 8) (8,.8)

(011, 022) (0,0) (0,00 (0,00 (0,0) | (4,.4) (8.8 (4.4 (8.8) (.4,.4) (.4,.4)
(Kmax = K4)

Cp 0008 .0005 —.0004 —.0003 .0008 —.0003 .0002 .0004 .0560 —.0003

AIC 0007 .0006 —.0001 —.0002 .0010 .0007 .0001 .0000 .0658 —.0002

AIC, .0009 .0007 .0000 —.0002 .0011 .0005 .0001 .0001 .0667 —.0002

BIC .0010 .0007 —.0001 —.0001 .0009 .0009 .0001 .0010 .1010 —.0001

Cp (KL = Kvu) 0006 .0006 —.0002 —.0002 .0008 .0006 .0003 .0010 .0604 —.0001

AIC (KL = Kvu) 0007 .0006 .0000 —.0001 .0008 .0006 .0002 .0008 .0788 —.0002

AIC. (KL = Kv) .0008 .0006 —.0001 —.0002 .0009 .0010 .0001 .0007 .0811 —.0001

BIC (KL = Kv) .0010 .0007 —.0001 —.0002 .0010 .0022 .0000 .0012 1260 —.0002

K1 = Ky = Kmax 0008 .0005 —.0002 —.0003 .0012 .0034 —.0001 .0002 1418 —.0003
(Kmax = K12)

Cp —.0006 —.0005 —.0003 —.0005 .0005 .0006 —.0003 —.0008 .0153 —.0004

AIC .0006 —.0006 —.0004 —.0004 .0009 .0003 .0001 .0000 .0370 —.0001

AIC, .0006 —.0004 —.0002 —.0003 .0010 —.0001 .0000 .0001 .0425 —.0003

BIC .0010 .0007 —.0001 .0000 .0009 .0009 .0001 .0010 .0983 —.0001

Cp (K1 = Kv) —.0007 —.0005 —.0005 —.0003 .0005 .0008 —.0003 —.0009 0171 —.0005

AIC (K = Kv) .0004 .0001 —.0001 —.0001 .0009 .0004 .0002 .0005 .0573 —.0001

AIC. (KL = Kv) .0006 .0001 —.0002 —.0001 .0010 .0005 .0001 .0007 .0657 —.0002

BIC (KL = Kv) .0010 .0007 —.0001 —.0001 .0010 .0022 .0000 .0012 1257 —.0002

Ki = Ky = Kmax 0004 .0004 .0000 .0001 .0006 .0012 —.0001 —.0005 1510 .0001

Kr=Ky=1 .0009 .0007 —.0001 —.0002 .0007 —.0014 —.0002 —.0014 1120 —.0002

Kr=Ky=2 .0010 .0007 .0000 —.0002 .0013 .0027 .0001 .0008 .0914 —.0002

Kr=Ky=3 0007 .0006 —.0002 —.0003 .0008 .0012 —.0001 —.0001 0741 —.0003
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Table 4: Bias of the Estimates

Part I: a11 = 611 = 0 (biasx10®, T = 300, &;: log-normal)

0’12:44 0'12:.8 0’12:.4 g12 .8 0’12:.4 0’12:.8

(a11, a2) 0,4 (0,8 (0,4 (0,28 ] 0,00 (0,0) (0,0 (0,0 ©, 8) ©, 8)

(911’ 922) (07 0) (07 0) (01 0) (07 0) (01 '4) (07 8) (07 ‘4) (07 8) (O> ‘4) (07 ‘4)
(Kmax = Ka)

Cp —.0013 .3427 .0025 3568 | —.0069 —.0035 —.0008 —.0001 .1836 1807

AIC .0049 .3594 0047 3569 | —.0062 —.0056 —.0008 .0004 2137 .1830

AIC, .0057 .3640 .0046 3574 | —.0064 —.0058 —.0009 .0003 .2169 1833

BIC .0277 .5095 .0098 3599 | —.0099 —.0064 —.0015 .0001 .3470 .1950

Cp (KL = Kv) .0077 .3856 .0006 3587 | —.0024 —.0013 —.0013 .0003 2171 .1802

AIC (K1 = Kv) .0159 .4423 .0040 3606 | —.0063 —.0036 —.0013 .0008 .2766 1853

AIC. (KL = Kuv) .0163 4522 .0046 3611 | —.0061 —.0035 —.0016 .0007 .2849 .1868

BIC (KL = Kv) .0418 7135 0163 3821 | —.0168 —.0105 —.0018 .0007 4385 .2268

K = Ky = Knax .0652  1.0822 .0758 1.0932 | —.0335 —.0620 —.0391 —.0742 .5386 .5446
(Kmax = K12)

Cp —.0088 .0729 .0048 .0886 | —.0046 —.0048 —.0006 —.0001 .0511 .0580

AIC .0009 1451 .0053 1143 | —.0048 —.0075 —.0001 .0014 .1196 .0800

AIC, .0018 1673 .0053 1216 | —.0044 —.0083 —.0003 .0014 .1330 .0842

BIC .0264 .4492 .0090 .1941 | —.0104 —.0087 —.0014 .0007 3231 1394

Cp (K = Kv) .0010 1245 .0036 0774 | —.0024 —.0029 —.0021 —.0003 .0801 .0487

AIC (K1 = Kv) .0129 .2692 .0037 1274 | —.0054 —.0052 —.0010 .0009 .1926 .0895

AIC. (KL = Kv) .0116 .3046 .0033 1459 | —.0055 —.0057 —.0012 .0007 2124 .1054

BIC (KL = Kv) .0383 6787 .0167 2783 | —.0173 —.0113 —.0017 .0011 .4186 .2053

Kr = Ky = Kmax .0748 1.1625 .0805 1.1551 | —.0302 —.0605 —.0370 —.0725 .5813 .5768

Kr=Ky=1 .0250 .8506 .0288 .8606 .0003 .0019 —.0006 .0006 .4246 4294

Kr=Ky=2 .0074 .6851 .0098 .6935 | —.0020 —.0014 —.0014 —.0009 3413 .3458

K=Ky =3 .0003 .5508 .0019 5574 | —.0007 .0006 —.0004 .0007 .2744 .2780

Part II: a11 # 0 and/or 611 #0 (bias><1037 T = 300, €¢: log-normal)

12 =04 o12 = 0.8 12 =0.4 o12 = 0.8 o122 =04 012 =0.8

(a11, a22) (4,.4) (8,.8) (.4,.4) (.8,.8) (0,0) (0,0) (0, 0) (0, 0) (.8,.8) (.8,.8)

(011, 022) (0, 0) (0, 0) (0, 0) (0, 0) (.4,.4) (.8,.8) (.4,.4) (.8,.8) (.4,.4) (.4,.4)
(Kmax = K4)

Cp .0007 .0364 —.0039 —.0121 | —.0079 —.0353 —.0013 .0058 .1836 —.0113

AIC .0030 .0469 —.0048 —.0145 | —.0116 —.0593 —.0010 .0082 2137 —.0136

AIC, .0032 .0483 —.0048 —.0147 | —.0117 —.0601 —.0013 .0090 .2169 —.0138

BIC .0068 0675 —.0059 —.0194 | —.0160 —.0917 —.0020 .0136 .3470 —.0174

Cp (KL = Kvu) .0011 .0403 —.0044 —.0130 | —.0081 —.0336 —.0022 .0042 22171 —.0121

AIC (KL = Kvu) .0030 .0534 —.0049 —.0161 | —.0137 —.0688 —.0035 .0052 .2766 —.0148

AIC. (KL = Kv) .0034 .0549 —.0051 —.0166 | —.0140 —.0690 —.0032 .0047 .2849 —.0152

BIC (KL = Kv) .0071 0718 —.0059 —.0202 | —.0174 —.0951 —.0018 .0131 .4385 —.0181

K = Ky = Kmax .0100 0793 —.0072 —.0224 | —.0204 —.0951 —.0008 .0162 .5386 —.0196
(Kmax = K12)

Cp —.0049 .0102 —.0004 —.0031 | —.0071 —.0348 —.0006 .0071 .0511 —.0020

AIC —.0008 0278 —.0029 —.0078 | —.0082 —.0680 .0000 .0101 .1196 —.0078

AIC, .0010 .0306 —.0023 —.0087 | —.0086 —.0725 —.0004 .0127 .1330 —.0082

BIC .0052 0634 —.0053 —.0179 | —.0171 —.0998 —.0022 .0158 3231 —.0163

Cp (K1 = Kv) —.0023 .0149 —.0001 —.0034 | —.0050 —.0309 —.0030 .0008 .0801 —.0026

AIC (K = Kv) .0023 .0372 —.0045 —.0108 | —.0114 —.0677 —.0029 .0077 .1926 —.0109

AIC. (KL = Kv) .0017 .0413 —.0044 —.0121 | —.0115 —.0695 —.0031 .0064 2124 —.0116

BIC (KL = Kv) .0051 0671 —.0055 —.0194 | —.0183 —.0980 —.0018 .0134 4186 —.0171

K = Ky = Knax .0158 0888 —.0051 —.0222 | —.0158 —.0933 .0024 .0225 5813 —.0192

Kr=Ky=1 .0037 0623 —.0033 —.0174 | —.0002 .0052 —.0014 .0008 4246 —.0151

Kr=Ky=2 .0000 .0501 —.0024 —.0146 | —.0034 —.0073 —.0025 —.0047 .3413 —.0127

K, =Ky=3 —.0015 .0401 —.0021 —.0124 | —.0016 .0014 —.0008 .0033 .2744 —.0107
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Table 5: MSE of the Estimates

Part I: a1y = 611 = 0 (MSEx10, T' = 100, &;: normal)

0'122.4 0‘12:.8 0‘12:.4 0'12:.8 0‘12:.4 0'122.8

(@11, ag2) (0,.4) (0,.8) (0,.4) (0,.8)] (0,0) (0,0) (0,0) (0,0) (0,.8) (0,.8)

(9113 922) (07 0) (07 0) (0’ 0) (0’ 0) (Oa 4) (Oa 8) (Oa 4) (Oa 8) (07 4) (07 4)
(Kmax = K4)

G, .0398  .3031 0172 1863 .0060 .0023 .0026 .0009 .1081 .0619

AlIC .0354  .2853 0157 1828 .0054  .0022 .0023 .0008 .0985 .0611

AIC, .0339  .2807  .0152 .1808 .0053 .0022 .0022 .0008 .0959 .0607

BIC .0302 .2581 .0141 1811 .0051 .0028 .0020 .0007 .0854 .0637

C, (K = Ky) 0398  .3074 .0175 .1948 .0061 .0024  .0027  .0010 1079 .0643

AIC (K, = Ky) .0340  .2854 .0163 .2004 .0054  .0025 .0022 .0008 .0951 .0670

AIC. (K, = Ky) 0326  .2765 .0158 2045 .0052 .0026 .0022 .0008 .0916 .0686

BIC (K = Ky) .0289  .2448 .0155 .2300 .0052 .0040 .0022 .0007 .0800 .0785

K = Ky = Kpax .0373 .3005 .0285 4206 .0069 .0079 .0083 .0249 1021 1161
(Kmax = K12)

G, 1459 9807  .0680 4590 .0207  .0092 0097  .0035 .3620 1699

AIC .0699  .7069 .0345 .3506 .0080 .0033 .0035 .0014 2183 1136

AIC, .0449 .4926 .0203 2572 .0058 .0025 .0025 .0009 1472 .0819

BIC .0309  .3311 .0146 2198 .0051 .0028 .0020 .0007 .0939 .0697

C, (K = Ky) 1563 1.0208 0717 4752 .0235 .0108 .0110 .0043 3713 1755

AIC (K, = Ky) .0637  .6961 .0334 .3700 .0072 .0034  .0031 .0014 2044 1205

AIC. (K, = Ky) .0360  .3979 0172 .2604 .0053 .0027  .0022 .0008 1114 .0789

BIC (K1, = Ky) .0289 .2736 .0155 .2607 .0052 .0040 .0022 .0007 .0810 .0811

K = Ky = Kuax .0642 .4999 .0464 .6442 .0123 .0137 .0138 .0401 1715 .1802

Kr=Ky=1 .0295 .2376 .0142 .2709 .0046 .0016 .0020 .0007 .0825 0773

Kp=Ky=2 .0340 .2583 .0144 2277 .0054 .0020 .0023 .0008 .0918 .0682

Kr=Ky=3 .0394 .2868 .0163 2027 .0064 .0023 .0026 .0010 1035 .0636

Part II: a11 # 0 and/or 617 # 0 (MSEx10, T' = 100, &¢: normal)

0'1220.4 0’1220.8 0'1220.4 0'1220.8 0'1220.4 0'1220.8

(alla a22) (47 4) (87 8) (47 4) (83 8) (07 0) (07 0) (07 0) (07 0) (87 8) (8’ 8)

(011, 025) (0,00 (0,0) (0,00 (0,0) ] (4,.4) (.8,.8) (4,.4) (8.8 | (4.4  (4,.4)
(Kmax = K4)

G, .0148  .0158 .0063 .0065 .0149 .0416 .0065 .0184 1081 .0062

AlIC .0128 .0140 .0054 .0058 .0130 .0419 .0055 .0184 .0985 .0055

AIC, .0123 .0135 .0052 .0056 .0126 .0430 .0054 .0186 .0959 .0053

BIC .0105 .0113 .0044 .0048 .0112 .0484 .0047 .0204 .0854 .0045

C, (K = Ky) .0147  .0158 .0062 .0066 .0154  .0464  .0065 .0194 1079 .0062

AIC (K, = Ky) .0120  .0134 .0051 .0056 0127  .0487  .0052 .0199 .0951 .0053

AIC. (K, = Ky) .0114  .0125 .0048 .0053 .0120 .0486 .0050 .0204 .0916 .0050

BIC (K1, = Ky) .0099 .0105 .0042 .0044 .0109 .0526 .0045 .0222 .0800 .0042

K = Ky = Knpax .0129  .0129 .0053 .0053 .0138 .0374  .00567  .0163 1021 .0052
(Kmax = Kl?)

C, .0589 .0591 .0256 .0259 .0516 .1355 .0257 .0575 .3620 .0248

AIC .0267 .0414 .0129 .0188 .0201 .0591 .0085 .0255 2183 .0155

AIC, .0160  .0260 .0069 .0112 .0144  .0465 .0060 .0195 1472 .0086

BIC .0107  .0149 .0045 .0066 .0113 .0485 .0047  .0205 .0939 .0049

C, (Kt = Ky) .0616  .0616 .0264 .0269 .0590 1557 .0282 .0702 3713 .0256

AIC (K1, = Ky) .0235 .0398 .0114 .0181 0172 .0596 .0075 .0261 .2044 .0145

AIC, (K = Ky) .0124 .0200 .0052 .0082 .0123 .0500 .0051 .0206 1114 .0059

BIC (KL = Ky) .0099  .0117  .0042 .0050 .0109 .0526 .0045 .0222 .0810 .0043

K = Ky = Knax .0225 .0222 .0093 .0094 .0251 .0599 .0101 .0243 1715 .0091

Kr=Ky=1 .0112 .0114 .0047 .0048 .0119 .0399 .0051 .0173 .0825 .0047

K; =Ky =2 .0130  .0132 .0054 .0055 .0142 .0423 .0059 .0176 .0918 .0053

K =Ky=3 .0151 .0153 .0062 .0063 .0167  .0444  .0068 .0181 .1035 .0061
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Table 6: MSE of the Estimates

Part I: a;; = 017 = 0 (MSEx 103, T = 100, &;: log-normal)

0'122.4 0‘12:.8 0‘12:.4 0'12:.8 0‘12:.4 0'122.8

(@11, az2) 0,4 (0,8 (0,4 (0,8 ] (0,0) (0,0) (0,0) (0,0 0, 8) (0, 8)

(9113 922) (07 0) (07 0) (0’ 0) (0’ 0) (Oa 4) (Oa 8) (Oa 4) (Oa 8) (07 4) (07 4)
(Kmax = K4)

G, .0287  .2v75  .0105  .1315 | .0039  .0012  .0014  .0004 .0975 .0430

AlIC 0262 .2735 .0098  .1276 | .0036  .0011 .0013  .0004 .0950 .0419

AIC, .0256  .2720  .0096  .1261 .0036  .0011 .0013  .0004 .0944 .0416

BIC .0240 2717 .0092 1228 .0035 .0011 .0012 .0003 .0921 .0417

C, (K = Ky) .0287  .2869  .0109  .1383 | .0041 .0014  .0015  .0005 .0993 .0455

AIC (K, = Ky) .0262  .2878  .0103  .1396 | .0038  .0013  .0014  .0004 .0974 .0461

AIC. (K, = Ky) .0256  .2874  .0101 1403 | .0037  .0013  .0013  .0004 .0960 .0465

BIC (K = Ky) .0243 2881 .0097  .1455 | .0036  .0014  .0013  .0004 .0931 .0491

K = Ky = Kpax .0296 .3450 .0147 .2809 .0048 .0039 .0031 .0071 .1108 .0791
(Kmax = K12)

G, 0695  .5939  .0252  .2186 | .0087  .0037  .0033  .0015 2075 .0761

AIC .0367 4696  .0136  .1773 | .0044  .0016  .0017  .0006 1452 0565

AIC, .0269 .3687 .0105 1417 .0037 .0012 .0014 .0004 1128 .0447

BIC 0229 3087  .0092  .1255 .0033  .0011 .0012  .0003 .0943 .0413

C, (K = Ky) 0750  .6210  .0277 2341 .0106  .0048  .0040  .0020 2168 .0814

AIC (K, = Ky) .0363 4773 .0148  .1980 | .0049  .0020  .0019  .0008 1426 .0625

AIC. (K, = Ky) .0268  .3473  .0109  .1588 | .0038  .0012  .0014  .0004 .1050 .0499

BIC (K1, = Ky) .0240 3132 .0099 1576 .0037 .0013 .0013 .0004 .0958 .0498

K = Ky = Knax .0474 5321 .0255 4677 | .0086  .0094  .0063  .0164 1693 .1301

Kr=Ky=1 0257 .2739  .0098  .1869 | .0038  .0010  .0014  .0004 .0912 .0549

Kp=Ky=2 .0280 .2690 .0101 .1614 .0042 .0012 .0015 .0004 .0920 .0493

Kr=Ky=3 .0309 .2738 .0110 .1464 .0048 .0015 .0017 .0005 .0956 0464

Part II: a;; # 0 and/or 611 # 0 (MSEx103, T = 100, ;: log-normal)

0'1220.4 0’1220.8 0'1220.4 0'1220.8 0'1220.4 0'1220.8

(alla a22) (47 4) (87 8) (47 4) (83 8) (07 0) (07 0) (07 0) (07 0) (87 8) (8’ 8)

(011, 025) (0,00 (0,0) (0,00 (0,0) ] (4,.4) (.8,.8) (4,.4) (8.8 | (4.4  (4,.4)
(Kmax = K4)

G, .0103  .0113  .0036  .0040 | .0103  .0239  .0037  .0087 .0975 .0037

AlIC .0092 .0105 .0033 .0037 .0093 .0206 .0033 .0075 .0950 .0034

AIC, .0090 .0103 .0032 .0036 .0091 .0200 .0033 .0072 .0944 .0033

BIC .0083  .0092  .0030 .0032 | .0087 .0176  .0032  .0063 .0921 .0030

C, (K = Ky) .0102  .0112  .0037  .0040 | .0105  .0256  .0038  .0093 .0993 .0037

AIC (K, = Ky) .0090  .0103 .0032  .0036 | .0094  .0218 .0033  .0076 .0974 .0033

AIC. (K, = Ky) .0088  .0099 .0032  .0035 | .0092  .0201 .0033  .0071 .0960 .0032

BIC (K1, = Ky) .0084 .0088 .0030 .0031 .0089 .0173 .0032 .0062 .0931 .0029

K = Ky = Knpax .0102  .0102  .0036  .0036 | .0111 .0215  .0040  .0078 .1108 .0035
(Kmax = Kl?)

C, .0259 .0315 .0093 .0116 .0241 .0694 .0086 .0254 2075 .0103

AIC .0128 .0222 .0047 .0080 .0113 .0282 .0043 .0113 1452 .0059

AIC, .0097  .0159  .0036  .0054 | .0095  .0210 .0035  .0075 1128 .0042

BIC .0081 .0110  .0030  .0038 | .0083  .0162  .0031 .0058 .0943 .0032

C, (Kt = Ky) .0277 .0336 .0102 .0122 .0281 .0847 .0104 .0327 .2168 .0109

AIC (K1, = Ky) .0127 .0216 .0048 .0078 .0127 .0342 .0046 .0122 .1426 .0059

AIC, (K = Ky) .0094 .0131 .0035 .0047 .0095 .0190 .0035 .0072 .1050 .0038

BIC (KL = Ky) .0084  .0097  .0031 .0035 .0089  .0166  .0032  .0062 .0958 .0031

K1 = Ky = Knax .0160  .0156  .0057  .0054 | .0181 .0410  .0064  .0153 1693 .0053

Kr=Ky=1 .0094 .0092 .0033 .0033 .0103 .0240 .0037 .0088 .0912 .0032

K; =Ky =2 .0103  .0101 .0037  .0036 | .0114  .0262  .0041 .0095 .0920 .0035

K =Ky=3 .0114  .0111 .0041 .0040 | .0129  .0310 .0046  .0109 .0956 .0039
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Table 7: MSE of the Estimates

Part I: a;; = 011 = 0 (MSEx102, T' = 300, &;: normal)

0'122.4 0‘12:.8 0‘12:.4 0'12:.8 0‘12:.4 0'122.8

(@11, az2) 0,4 (0,8 (0,4 (0,8 ] (0,0) (0,0) (0,0) (0,0 0, 8) (0, 8)

(9113 922) (07 0) (07 0) (0’ 0) (0’ 0) (Oa 4) (Oa 8) (Oa 4) (Oa 8) (07 4) (07 4)
(Kmax = K4)

G, .0345 3112 .0145  .1769 | .0046  .0009  .0019  .0004 1104 0579

AlIC .0329 3070  .0140  .1727 | .0044  .0009  .0018  .0004 .1096 0566

AIC, .0328  .3069  .0139  .1719 | .0044  .0009  .0018  .0004 .1093 0565

BIC .0312 3137 .0135 .1660 .0044 .0009 .0017 .0003 .1092 0572

C, (K = Ky) .0346  .3192  .0147  .1814 | .0046  .0010  .0020  .0004 1130 0596

AIC (K, = Ky) .0330  .3251 .0143 1819 | .0044  .0009  .0018  .0004 1135 .0607

AIC. (K, = Ky) .0329  .3260 .0142  .1820 | .0044  .0009  .0018  .0004 1133 .0609

BIC (K = Ky) 0322 .3409  .0143  .1910 | .0048  .0013  .0018  .0004 1128 .0695

K = Ky = Kpax .0369 3941 .0293 .5945 .0060 .0071 .0080 .0246 1288 1608
(Kmax = K12)

G, .0490 4356  .0211 1905 | .0064  .0013  .0027  .0005 1564 .0682

AIC 0377 3852  .0163  .1722 .0047  .0010  .0020  .0004 1322 .0607

AIC, .0361 3720 .0157 1675 .0046 .0009 .0019 .0004 1275 .0591

BIC 0312 .3236  .0135 15611 .0044  .0009  .0017  .0003 .1106 .0556

C, (K = Ky) .05600  .4404  .0214  .1987 | .0065  .0013  .0027  .0005 1587 .0703

AIC (K, = Ky) 03556  .3827  .0158  .1877 | .0046  .0009  .0019  .0004 1292 .0652

AIC. (K, = Ky) .0343 .3691 .0151 1841 .0045 .0009 .0019 .0004 1240 .0641

BIC (K1, = Ky) .0322 .3437 .0143 .1888 .0048 .0013 .0018 .0004 1130 .0701

K = Ky = Knax .0459 4862  .0365 7217 | .0077  .0088  .0097 @ .0294 .1596 1965

Kr=Ky=1 0305  .3224  .0149  .3955 | .0041 .0008  .0018  .0004 1081 1103

Kp=Ky=2 .0313 .3106 .0135 3017 .0043 .0009 .0018 .0004 .1066 .0874

Kr=Ky=3 .0327 3072 .0138 2414 .0045 .0009 .0019 .0004 1072 .0730

Part II: a;; # 0 and/or 611 # 0 (MSEx102, T = 300, ;: normal)

0'1220.4 0’1220.8 0'1220.4 0'1220.8 0'1220.4 0'1220.8

(alla a22) (47 4) (87 8) (47 4) (83 8) (07 0) (07 0) (07 0) (07 0) (87 8) (8’ 8)

(011, 025) (0,00 (0,0) (0,00 (0,0) ] (4,.4) (.8,.8) (4,.4) (8.8 | (4.4  (4,.4)
(Kmax = K4)

G, .0125 .0128 .0052 .0055 .0124 .0261 .0052 0111 1104 .0054

AlIC .0118 .0121 .0049 .0052 .0115 .0324 .0049 .0138 .1096 .0050

AIC, .0116 .0121 .0049 .0051 .0115 .0330 .0049 .0140 .1093 .0050

BIC .0106  .0110  .0045 .0046 | .0107  .0474  .0047  .0207 .1092 .0046

C, (K = Ky) .0124  .0127  .0052  .0054 | .0124 .0306  .0053  .0131 1130 .0053

AIC (K, = Ky) .0113  .0118 .0048  .0050 | .0113  .0403 .0049  .0168 1135 .0049

AIC. (K, = Ky) .0112 .0117 .0048 .0050 .0112 .0410 .0048 0171 1133 .0048

BIC (K1, = Ky) .0105 .0107 .0044 .0045 .0107 .0526 .0047 .0226 1128 .0045

K = Ky = Kuax .0119 .0121 .0050 .0051 .0122 .0228 .0051 .0095 1288 .0050
(Kmax = Kl?)

C, .0181 .0193 .0076 .0081 .0169 .0294 .0071 .0118 .1564 .0080

AIC .0135 .0157 .0056 .0067 .0123 .0306 .0052 .0132 1322 .0062

AIC, .0128  .0151 .00564  .0064 | .0120 .0309  .0051 .0133 1275 .0059

BIC .0106  .0112  .0045 .0047 | .0107  .0474  .0047  .0207 .1106 .0046

C, (Kt = Ky) .0182  .0193 .0076  .0080 | .0173  .0323  .0072  .0138 1587 .0079

AIC (K1, = Ky) .0120 .0144  .0052  .0061 0117 .0395  .0050  .0166 1292 .0056

AIC, (K = Ky) .0115 .0135 .0050 .0057 .0113 .0404 .0049 .0169 .1240 .0053

BIC (KL = Ky) .0105  .0108  .0044  .0045 .0107  .0526  .0047  .0226 1130 .0045

K1 = Ky = Knax .0151 .0152  .0064  .0064 | .0155 .0245 .0066  .0102 .1596 .0064

Kr=Ky=1 .0109 .0112 .0046 .0047 .0113 .0309 .0048 .0132 .1081 .0047

K; =Ky =2 .0114  .0118  .0048  .0050 | .0118  .0257  .0049  .0109 .1066 .0049

K =Ky=3 .0120 .0124 .0051 .0052 .0122 .0230 .0051 .0097 1072 .0051
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Table 8: MSE of the Estimates

Part I: a;; = 017 = 0 (MSEx10°, T = 300, &;: log-normal)

0'122.4 0‘12:.8 0‘12:.4 0'12:.8 0‘12:.4 0'122.8

(@11, az2) 0,4 (0,8 (0,4 (0,8 ] (0,0) (0,0) (0,0) (0,0 0, 8) (0, 8)

(9113 922) (07 0) (07 0) (0’ 0) (0’ 0) (Oa 4) (Oa 8) (Oa 4) (Oa 8) (07 4) (07 4)
(Kmax = K4)

G, .1041 9804  .0379 4089 | .0135  .0022  .0049  .0008 .3496 1400

AlIC 1010 9678 .0369 4027 | .0131 .0021 .0047  .0008 3453 1377

AIC, .1008 9670  .0368 4018 | .0131 .0022  .0047  .0008 .3446 1376

BIC .0984 .9680 .0362 .3930 .0131 .0021 .0047 .0008 .3453 1362

C, (K = Ky) 1051 1.0073  .0388  .4229 | .0137  .0023  .0049  .0008 .3576 1450

AIC (K, = Ky) 1017 1.0089  .0379 4233 | .0133  .0022  .0048  .0008 .3559 1454

AIC. (K, = Ky) 1013 1.0082  .0378 4233 | .0133  .0022  .0048  .0008 .3554 1455

BIC (K = Ky) .0998 1.0206  .0374 4279 | .0134 .0024  .0048  .0008 .3548 .1495

K = Ky = Kpax 1113 1.1701 .0529 .8979 .0159 .0093 .0098 .0205 .3940 2617
(Kmax = K12)

G, 1175 1.1857 0435 4308 | .0147  .0026  .0054  .0009 4128 1512

AIC 1014 1.0732  .0379 3979 | .0130  .0022  .0047  .0008 .3660 1384

AIC, .1000  1.0503 .0373 .3910 .0129 .0021 .0047 .0008 .3590 1359

BIC 0956  .9593  .0355 3657 | .0128  .0021 .0046  .0007 .3369 1302

C, (K = Ky) 1199 1.2028  .0447 4510 | .0153  .0028  .0056  .0010 4162 1586

AIC (K, = Ky) 1026 1.0976  .0388 4302 | .0133  .0023  .0049  .0008 3739 1490

AIC. (K, = Ky) 1015 1.0704  .0379 4206 | .0132  .0022  .0048  .0008 .3652 1465

BIC (K1, = Ky) .0983 1.0130 .0371 4136 .0132 .0023 .0047 .0008 3512 1468

K = Ky = Knax 1297 1.3728 0635 1.1105 .0189 .0121 .0122 .0274 4601 3203

Kr=Ky=1 1010 1.0260  .0383  .6532 | .0135 .0023  .0049  .0008 .3530 1985

Kp=Ky=2 .1035 .9990 .0375 .5523 .0140 .0024 .0050 .0008 .3489 1740

Kr=Ky=3 .1068 .9906 .0384 4876 .0144 .0024 .0052 .0009 .3498 1589

Part II: a;; # 0 and/or 611 # 0 (MSEx10%, T = 300, ;: log-normal)

0'1220.4 0’1220.8 0'1220.4 0'1220.8 0'1220.4 0'1220.8

(alla a22) (47 4) (87 8) (47 4) (83 8) (07 0) (07 0) (07 0) (07 0) (87 8) (8’ 8)

(011, 025) (0,00 (0,0) (0,00 (0,0) ] (4,.4) (.8,.8) (4,.4) (8.8 | (4.4  (4,.4)
(Kmax = K4)

G, .0369 .0389 .0133  .0137 | .0368  .0506  .0133  .0184 .3496 .0134

AlIC .0356 .0375 .0128 .0132 .0356 .0479 .0129 .0174 .3453 .0129

AIC, .0355 .0374 .0128 .0132 .0356 .0477 .0129 .0173 .3446 .0129

BIC 0346  .0353  .0124  .0125 .0351 .0450  .0126  .0160 .3453 .0123

C, (K = Ky) .0368  .0385  .0133  .0136 | .0369  .0512  .0133  .0185 .3576 .0134

AIC (K, = Ky) .0353  .0368  .0128  .0130 | .0357  .0478  .0129  .0172 .3559 .0128

AIC. (K, = Ky) .0353  .0367  .0127  .0129 | .0357  .0477  .0129  .0170 .3554 0127

BIC (K1, = Ky) .0347 .0350 .0125 .0124 .0354 .0448 .0127 .0159 .3548 .0123

K = Ky = Knpax .0382  .0378  .0137  .0133 | .0394  .0507  .0141 .0181 .3940 .0133
(Kmax = Kl?)

C, .0420 .0484 .0154 .0170 .0396 .0588 .0147 .0215 4128 .0163

AIC .0358 .0423 .0131 .0148 .0353 .0485 .0128 .0176 .3660 .0139

AIC, .0353  .0413  .0129  .0144 | .0351 0478 0127  .0174 .3590 .0137

BIC .0337 .0349 .0122 .0125 .0343 .0430 .0124 .0155 .3369 .0122

C, (Kt = Ky) .0424 .0476 .0156 .0170 .0415 .0642 .0153 .0232 4162 .0164

AIC (K1, = Ky) .0359  .0403 .0130  .0142 0359  .0508  .0130  .0172 3739 .0134

AIC, (K = Ky) .0354 .0390 .0128 .0137 .0355 .0482 .0129 .0170 .3652 .0132

BIC (KL = Ky) .0343 .0348 .0124 .0124 .0350 .0434 .0127 .0158 .3512 .0123

K1 = Ky = Knax .0444 .0439 .0157 .0153 .0461 .0647 .0164 .0237 4601 .0153

Kr=Ky=1 .0363 .0360 .0130 .0128 .0374 .0537 .0134 .0193 .3530 .0127

K; =Ky =2 0375  .0371 0134  .0132 | .0386  .0547  .0137  .0196 .3489 .0131

K =Ky=3 .0387  .0382  .0139  .0137 | .0399 .0673  .0143  .0205 .3498 .0136
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