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Abstract

In this paper, Mallows�(1973) Cp criterion, Akaike�s (1973) AIC, Hurvich and
Tsai�s (1989) corrected AIC and the BIC of Akaike (1978) and Schwarz (1978) are
derived for the leads-and-lags cointegrating regression. Deriving model selection
criteria for the leads-and-lags regression is a nontrivial task since the true model
is of in�nite dimension. This paper justi�es using the conventional formulas
of those model selection criteria for the leads-and-lags cointegrating regression.
The numbers of leads and lags can be selected in scienti�c ways using the model
selection criteria. Simulation results regarding the bias and mean squared error
of the long-run coe¢ cient estimates are reported. It is found that the model
selection criteria are successful in reducing bias and mean squared error relative
to the conventional, �xed selection rules. Among the model selection criteria,
the BIC appears to be most successful in reducing MSE, and Cp in reducing bias.
We also observe that, in most cases, the selection rules without the restriction
that the numbers of the leads and lags be the same have an advantage over those
with it.
Keywords: Cointegration, Leads-and-lags regression, AIC, Cor-

rected AIC, BIC, Cp

1 Introduction

Several methods have been proposed for e¢ cient estimation of cointegrating relations.

Phillips and Hansen (1990) and Park (1992) use semiparametric approaches to derive

�This paper was presented in a conference honoring the 60th birthday of Professor Peter C. B.
Phillips that was organized by Robert Mariano, Zhijie Xiao and Jun Yu and held in Singapore
in July, 2008. The authors are thankful to the seminar participants for their valuable comments.
Kurozumi�s research was partially supported by the Ministry of Education, Culture, Sports, Science
and Technology under Grants-in-Aid No. 18730142.

yCorresponding author. Department of Economics, Sogang University, #1 Shinsu-dong, Mapo-gu,
Seoul, 121-742 Korea. E-mail: inchoi@gmail.com

zDepartment of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo, Japan.
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e¢ cient estimators that have a mixture normal distribution in the limit. Saikkonen

(1991), Phillips and Loretan (1991), and Stock and Watson (1993) use the regres-

sion augmented with the leads and lags of the regressors��rst di¤erences, yielding

estimators as e¢ cient as those based on the semiparametric approach. This is called

leads-and-lags regression or dynamic OLS regression. This method was also used for

cointegrating smooth-transition regression by Saikkonen and Choi (2004). Johansen

(1988) uses vector autoregression to derive the maximum likelihood estimator of

cointegrating spaces under the assumption of a normal distribution. In addition, Pe-

saran and Shin (1999) use an autoregressive distributed modelling approach for the

inference on cointegrating vectors. Finite-sample properties of the aforementioned

methods are studied by Hargreaves (1994) and Panopoulou and Pittis (2004), among

others.

This paper focuses on the leads-and-lags regression among the methods mentioned

above. Though it has been used intensively in empirical applications1 due to its

optimal property and simplicity, the practical question of how to select the numbers

of the leads and lags has not been resolved yet. Most empirical studies use arbitrary

numbers of leads and lags and empirical results can di¤er depending on this choice.

Furthermore, a restriction that the numbers of leads and lags be the same is often

imposed out of convenience. This situation is certainly undesirable from empirical

viewpoints and indicates a need for methods that select the numbers of leads and

lags in nonarbitrary ways.

The main purpose of this paper is to propose methods for the selection of the

numbers of leads and lags in cointegrating regressions. More speci�cally, we will

derive model selection criteria for the leads-and-lags regression so that the numbers

of leads and lags can be chosen scienti�cally. These will make the leads-and-lags

1Examples are Ball (2001) for the money-demand equation; Bentzen (2004) for the rebound e¤ect

in energy consumption; Caballero (1994) for the elasticity of the U.S. capital-output ratio to the cost

of capital; Hai, Mark, and Wu (1997) for spot and forward exchange rate regressions; Hussein (1998)

for the Feldstein�Horioka puzzle; Masih and Masih (1996) for elasticity estimates of coal demand for

China; Weber (1995) for estimates of Okun�s coe¢ cient; Wu, Fountas, and Chen (1996) for current

account de�cits; and Zivot (2000) for the forward rate unbaisedness hypothesis.
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regression more useful for empirical applications. Deriving model selection criteria

for the leads-and-lags regression is a nontrivial task since the true model is of in�nite

dimension. Most model selection criteria in time series analysis are derived assuming

that the true model is contained in a set of candidate models. The only exception

that we are aware of is Hurvich and Tsai (1991), which considers a bias-corrected

Akaike information criterion (AIC) for the in�nite-order autoregressive model using

a frequency-domain approach for the approximation of the variance�covariance ma-

trices for the true and approximating models. Notably, the resulting formula from

this study is di¤erent from that for the �nite-order autoregressive model (cf. Hurvich

and Tsai, 1989). By contrast, we will show that all the model selection criteria that

we derive for the leads-and-lags regression are the same as those for the case of a

�nite-dimensional true model.

In this paper, we will consider four model selection criteria: Mallows�(1973) Cp

criterion, Akaike�s (1973) AIC, Hurvich and Tsai�s (1989) corrected AIC, and the

Bayesian information criterion (BIC) of Akaike (1978) and Schwarz (1978). These

methods are the most common in practice,2 though there are many other methods

available as documented by Rao and Yu (2001).3

We will also report extensive simulation results that compare the model selection

criteria using bias and mean squared error (MSE) of the long-run coe¢ cient estimate

as benchmarks. The simulation results show that the model selection criteria are

successful in reducing bias and MSE relative the �xed selection rules. the BIC appears

to be most successful in reducing MSE, and Cp in reducing bias. We also observe

that, in most cases, the selection rules without the restriction that the numbers of

the leads and lags be the same have an advantage over those with it.

2The Google citation numbers for these articles are 1,060, 4,546, 741, 205 and 5,720, respectively,

as of August 23, 2008.
3Unfortunately, this review article focuses on the statistics literature only and neglects contri-

butions to the subject of model selection that appeared in the econometrics literature. Some of

the important works neglected there are Phillips and Ploberger (1994, 1996). However, since the

Phillips�Ploberger criterion assumes that the true model is contained in a set of candidate models

(see Section 3 of Phillips and Ploberger, 1994), it is inapplicable to our problem.
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A recent paper related to the current one is Kejriwal and Perron (2008). Since such

selection rules as the AIC and BIC yield logarithmic rates of increase of the chosen

numbers of leads and lags, they do not satisfy the upper bound condition for leads-

and-lags regression (condition (9) in Section 2). However, Kejriwal and Perron (2008)

show that the condition can be weakened without bringing changes to the asymptotic

mixture normality of the long-run coe¢ cient estimates. The weakened condition is

satis�ed by the AIC and BIC so that their use is justi�ed in practice. Kejriwal and

Perron (2008) use the AIC and BIC without considering their appropriateness for

the leads-and-lags regression. This paper establishes rigorously that using them and

others is proper from the viewpoint of model selection.

This paper is organized as follows. Section 2 brie�y explains cointegrating leads-

and-lags regression. Section 3 derives model selection criteria for leads-and-lags re-

gression. Section 4 reports simulation results that compare the performance of the

model selection criteria in �nite samples. Section 5 summarizes and concludes. All

the proofs are contained in appendices.

A few words on our notation. Weak convergence is denoted by ) and all limits

are taken as T ! 1. The largest integer not exceeding x is denoted by [x]. For

an arbitrary matrix A, kAk = [tr(A0A)]1=2 and kAk1 = supfkAxk : kxk � 1g.

When applied to matrices, the inequality signs > and � mean the usual ordering

of positive de�nite and semide�nite matrices, respectively. Last, for a matrix A,

PA = A(A
0A)�1A0 and MA = I � PA.

2 Leads-and-lags regression

This section brie�y introduces the leads-and-lags regression of Saikkonen (1991)4 and

some required assumptions. Consider the cointegrating regression model

yt = �+ �
0xt + ut; (t = 1; 2; : : : ; T ) ; (1)

where xt (p� 1) is an I(1) regressor vector and ut a zero-mean stationary error term.

The main purpose of the leads-and-lags regression is to estimate the cointegrating
4See also Phillips and Loretan (1991) and Stock and Watson (1993).
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vector � e¢ ciently such that it has a mixture normal distribution in the limit. Leads

and lags will augment the regression model (1) for this purpose.

For the regressors and error terms, we assume that wt = (�x0t ut)
0 = (v0t ut)

0

satisfy conditions for the multivariate invariance principle such that

1p
T

[Tr]X
t=1

wt ) B(r); r 2 (0; 1]; (2)

where B(r) is a vector Brownian motion with a positive-de�nite variance�covariance

matrix 
 =

24 
vv !vu

!uv !uu

35 p

1
. More primitive conditions for this are available in

the literature (cf., e.g., Phillips and Durlauf, 1986).

Furthermore, the summability condition

1X
j=�1



E �wtw0t+j�

 <1 (3)

needs to be satis�ed. This implies that the process wt has a continuous spectral

density matrix fww (�), which we assume to satisfy

fww (�) � "Ip+1; " > 0: (4)

This assumption means that the spectral density matrix fww (�) is bounded away

from zero. Last, denoting the fourth-order cumulants of wt as �ijkl, we also require

a technical assumption:

1XXX
m1;m2;m3=�1

j�ijkl(m1;m2;m3)j <1:

Note that all of these assumptions are taken from Saikkonen (1991).

Under conditions (3) and (4), the error term ut can be expressed as

ut =
1X

j=�1
�0jvt�j + et; (5)

where et is a zero-mean stationary process such that Eetv0t�j = 0 for all j = 0;�1; : : :,

and
1X

j=�1
k�jk <1:
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As is well known, the long-run variance of the process et can be expressed as !2e =

!uu � !uv
�1vv !vu.

Using equation (5), we can write model (1) as

yt = �+ �
0xt +

1X
j=�1

�0j�xt�j + et; (6)

where � signi�es the di¤erence operator. Truncating the in�nite sum in model (6)

at KU and KL, we obtain

yt = �+ �0xt +
KUX

j=�KL

�0j�xt�j + eKt; (t = KL + 2;KL + 3; : : : ; T �KU ) ;

= �0KzKt + eKt; (7)

where �K = [� �0 �0�KL
; : : : ; �0KU

]0; zKt = [1; x
0
t;�x

0
t+KL

; : : : ;�x0t�KU
]0 and

eKt = et +
X

j>KU ; j<�KL

�0jvt�j = et + Vt;K :

In regression model (7), leads and lags are used as additional regressors. Saikkonen

(1991) uses a common value for KU and KL for simplicity, but the results he obtained

apply to the current case with some minor changes in notation.

The numbers of leads and lags should be large enough to make the e¤ect of trun-

cation negligible, but should not be too large because this will bring ine¢ ciency in

estimating the coe¢ cient vector �. Conditions on KU and KL that provide asymp-

totic mixture normality of the OLS estimator of � and asymptotic normality of the

OLS estimator of [�
0
�KL

; : : : ; �0KU
]0 are

K3
U=T; K

3
L=T ! 0 (8)

and
p
T

X
j>KU ; j<�KL

k�jk ! 0: (9)

In fact, Saikkonen (1991) did not derive asymptotic normality of the OLS estimator

of [�
0
�KL

; : : : ; �0KU
]0, but this can be done using the same methods as for Theorem 4 of

Lewis and Reinsel (1985) (see also Berk, 1974). Conditions (8) and (9) are su¢ cient
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to derive the asymptotic distributions of the OLS estimators for model (7), but do

not provide practical guidance in selecting KU and KL in �nite samples. The next

section will consider various methods for their optimal selection.

3 Methods for selecting KU and KL

This section considers various procedures for selecting KU and KL. These are basi-

cally model selection procedures that have often been used for regressions and time-

series analysis. For the derivations of these procedures, we assume that the conditions

of the leads-and-lags regression in Section 2 hold.

For later use, write model (7) in obvious matrix notation as y = ZK�K + eK .

The OLS estimator of the parameter vector �K using model (7) is denoted by �̂K .

In addition, model (6) is written in vector notation as y = � + e, where e =

[eKL+2; : : : ; eT�KU
]0 is the vector of errors.

3.1 Cp criterion

The Cp criterion of Mallows (1973) is an estimator of the expected squared sum of

forecast errors. Assume that E(et j ZK) = 0 for any KU and KL. Then the forecast

error for the Cp criterion is de�ned by ft = ŷt�E(yt j ZK) = �̂
0
KzKt��0KzKt�E(Vt;K j

ZK). This measures the distance between the �tted value ŷt and the conditional

expectation of yt. The expected squared sum of the forecast errors standardized by

�2e (= E(e
2
t )) is

�K =
1

�2e

T�KUX
t=KL+2

E
�
f2t j ZK

�
=

1

�2e
E
h
(�̂K � �)0Z 0KZK(�̂K � �) j ZK

i
+
1

�2e

T�KUX
t=KL+2

V 2t;K

� 2 1
�2e

T�KUX
t=KL+2

E

��
�̂K � �K

�0
zKtE [Vt;K j ZK ] j ZK

�
= A+B � C; say.
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Since 1
�2e
(�̂K � �)0Z 0KZK(�̂K � �)jZK ) �2(p(KL + KU + 2) + 1) (cf. Theorem 4.1

of Saikkonen, 1991, and Theorem 4 of Lewis and Reinsel, 1985), A is approximated

by p(KL +KU + 2) + 1. Using the relation E(e2Kt) = �
2
e + E(V

2
t;K), we approximate

B by 1
�2e

PT�KU
t=KL+2

ê2t;K � (T � KU � KL � 1). The third term C is approximated

by zero since �̂K � �K converges to zero in probability. Let KU;max and KL;max be

the maximum values used for selecting KU and KL, respectively. We estimate �2e by

�̂2e =
1

T�KU;max�KL;max�1
PT�KU;max

t=KL;max+2
ê2t;Kmax

, where êt;Kmax denotes the regression

residual using KU;max and KL;max for KU and KL, respectively. Then, using the

aforementioned approximations, the Cp criterion that approximates �K is de�ned by

Cp =
1

�̂2e

T�KUX
t=KL+2

ê2t;K + (p+ 1)(KL +KU + 2)� T:

In practice, we choose KU and KL so that the Cp criterion is minimized. Note that

this requires preselecting KU;max and KL;max.

3.2 Akaike information criterion

The AIC of Akaike (1973) is an estimator of the expected Kullback�Leibler informa-

tion measure and is often used for regression and time-series models. In deriving the

AIC and its variants, it is usually assumed5 that candidate models include the true

model (cf. Akaike, 1973; Hurvich and Tsai, 1989), though it does not have to be

so because the Kullback�Leibler information measure simply indicates how far apart

the true and any candidate models are.

Since the true model of the current study (equation (6)) involves an in�nite num-

ber of parameters, candidate models cannot include the true model. However, it

is still possible to derive the AIC using a general formula.6 Assume that the error

5A notable exception is Hurvich and Tsai (1991), which considers a bias-corrected AIC for the

autoregressive model of in�nite order.
6The general formula assumes

p
T asymptotics, but it can straightforwardly be extended to the

current case because the leads-and-lags coe¢ cient estimators for the nonstationary regressors have

a mixture-normal distribution in the limit. The general formula is related to Takeuchi�s (1976)

information criterion. See Chapter 7, Section 2 of Burnham and Anderson (2002) for further details

on this.
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terms of the candidate model (7) follow an iid normal distribution with mean 0 and

variance �2eK conditional on ZK , and denote the conditional log-likelihood function

of the candidate model by l(�K ; �2eK) = l(�K). Then, letting n = T �KU �KL � 1,

the general formula can be written as

n ln

 PT�KU
t=KL+2

ê2t;K
n

!
+ 2tr

�
J(�o)I(�o)

�1� ;
where �o = [�0o �

2
o]
0 minimizes the Kullback�Leibler information measure, J(�o) =

E
h
@l(�K)
@�K

@l(�K)
@�K j�K=�o

i
and I(�o) = E

�
� @2l(�K)
@�K@�

0
K j�K=�o

�
. Since tr

�
J(�o)I(�o)

�1� =
�2e
�2o

�
p(KU +KL + 2) + 1 +

2�2o��2e
�2o

�
as shown in Appendix I and �2o

p�! �2e as shown

in Lemma A.2 in Appendix II, the AIC is de�ned by

AIC = n ln

 PT�KU
t=KL+2

ê2t;K
n

!
+ 2 (p(KU +KL + 2) + 2) :

Notably, this is the same as the usual AIC that assumes that candidate models include

the true model. However, notice that the sample size n depends on the chosen model

unlike in conventional regression models.

3.3 Corrected Akaike information criterion

Hurvich and Tsai�s (1989) corrected AIC is also an estimator of the Kullback�Leibler

information measure. First, it calculates the Kullback�Leibler information measure

using unknown parameter values. Next, the unknown parameter values are replaced

with the maximum likelihood estimators. These steps provide the corrected AIC.

In our application, letting EF (�) be an expectation operator using the true model

(6) and assuming EF (e2t j Z1) = �2e where Z1 denotes fzKtg1t=�1, the Kullback�

Leibler information measure using unknown parameter values is

�2EF (l(�K)) = EF

�
n ln(�2eK) +

(y � ZK�K)0(y � ZK�K)
�2eK

j Z1
�

= EF
�
n ln(�2eK) j Z1

�
+
(� � ZK�K)0(� � ZK�K)

�2eK
+
n�2e
�2eK

= f(�K ; �
2
eK); say.
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Replacing �K and �2eK with corresponding maximum likelihood estimators, we obtain

f(�̂K ; �̂
2
eK) = EF

�
n ln(�̂2eK)

�
+
(� � ZK �̂K)0(� � ZK �̂K)

�̂2eK
+
n�2e
�̂2eK

; (10)

where �̂2eK =
PT�KU
t=KL+2

ê2t;K
n . The corrected AIC is an approximation to f(�̂K ; �̂2eK).

As shown in Lemma A.3 in Appendix II, the second and third terms in relation

(10) follow nm
n�mF (m;n�m) and

n2

�2(n�m) , respectively, under a normality assumption

when T is large. Thus, using the mean values of the second and third terms in relation

(10), we approximate f(�̂K ; �̂2eK) by

AICC = n ln

 PT�KU
t=KL+2

ê2t;K
n

!
+

nm

n�m� 2 +
n2

n�m� 2 :

This is the corrected AIC. Notice that this is exactly the same as the corrected AIC

of Hurvich and Tsai (1989), which assumes that candidate models include the true

model. By contrast, Hurvich and Tsai�s (1991) corrected AIC derived for the AR(1)

model is di¤erent from that of the current work.

Comparison of the AIC and the corrected AIC reveals that the major di¤erence

between them lies at which stage the maximum likelihood estimators are plugged into

the Kullback�Leibler information measure. The AIC calculates the Kullback�Leibler

information measure using the maximum likelihood estimators from the beginning,

but the corrected AIC calculates the Kullback�Leibler information measure using

unknown parameter values and then uses the maximum likelihood estimators for the

computed Kullback�Leibler information measure.

3.4 Bayesian information criterion

The BIC of Akaike (1978) and Schwarz (1978) is an approximation to a transformation

of the Bayesian posterior probability of a candidate model. Unlike the AIC, it does

not require the probability density of the true model. Therefore, the true model of

in�nite dimension as in this paper does not require any separate treatment and the

usual formula,

BIC = n ln

 PT�KU
t=KL+2

ê2t;K
n

!
+ (p(KU +KL + 2) + 2) ln(n);
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can be used. Because we never use the true model in the leads-and-lags regression,

consistency of the BIC cannot be an issue.

4 Simulation results

The ultimate purpose of the leads-and-lags regression is to estimate the long-run

coe¢ cient � precisely. This section investigates how model selection criteria of the

previous section perform in relation to the estimation of the long-run coe¢ cient �.

To this end, we consider the data generating process

yt = �+ �xt + ut; xt = xt�1 + vt;

where xt is a scalar unit root process with x0 = 0. We set � = 1 and � = 1 throughout

the simulations and set the sample size at 100 or 300. The error term wt = (vt; ut)
0

is generated from a VARMA(1,1) process:

wt = Awt�1 + "t ��"t�1;

where

A =

24 a11 0

0 a22

35 ; � =

24 �11 0

0 �22

35 ;
"t =

24 "1t
"2t

35 � i:i:d:(0;�); � =

24 1 �12

�12 1

35 ;
w0 = "0 = 0:

The parameters aii and �ii (i = 1, 2) are related to the strength of the serial correla-

tion in wt, whereas �12 signi�es contemporaneous correlation. In the simulations, the

parameters aii and �ii take values from {0, 0.4, 0.8} while �12 is equal to either 0:4

or 0.8. We consider two distributions for "t: a standard normal distribution and a

log-normal distribution. Since AICC is based on the assumption that the error terms

are normally distributed, the nonnormal distribution of "t implies that the correction

for the AICC does not make much sense. In order to check the robustness of AICC

to nonnormal error terms, we try a log-normal distribution for the error terms. We

also note that all the selection criteria depend on the maximum numbers of the leads
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and lags. We will use K4 = [4� (T=100)1=4] and K12 = [12� (T=100)1=4] commonly

for KU;max and KL;max in the simulations. All computations are carried out using

the GAUSS matrix language with 10,000 replications.

Before reporting our simulation results, we note that the leads of �xt = vt do not

have to be included in the augmented regression model (7) when a11 = �11 = 0. In

this case, vt becomes equal to "1t and

ut = (1� a22L)�1(1� �11L)"2t

= �(L)�12vt + �(L)"2�1;t; (11)

where �(L) = (1 � a22L)�1(1 � �11L) with L being the lag operator and "2�1;t =

"2t � �12"1t. Since the �rst term of (11) includes vt�j = �xt�j only for j � 0, while

"2�1;t is independent of vs = "1s for all s and t, we can see that ut can be expressed

as in equation (5) without the leads of �xt.

Tables 1�4 present empirical bias of the estimate of � while Tables 5�8 report

empirical MSE. Part I of each table deals with the case where the leads of �xt are

not required (i.e., a11 = �11 = 0). Part II handles the case where either a11 6= 0 or

�11 6= 0 or both. Note that a di¤erent scale is used in each table depending on the

sample size and the distribution of "t. For the purpose of comparison, we also select

the leads and lags by the �xed rules KU = KL = 1, 2, 3, K4 and K12. Although it is

often the case that KU is conventionally set equal to KL in practice, we do not have

to use the same numbers for the leads and lags. Especially, when a11 = �11 = 0, we

do not have to include the leads and then the selection rules without the restriction

of KU = KL are expected to have an advantage over those with KU = KL.

We �rst summarize the simulation results regarding the bias.

(b-i) Cp without the restriction of KU = KL tends to be most successful in reducing

bias. Especially when there are high serial correlations in the data (see the last

two columns in each table), Cp shows much better performance than the other

selection criteria and the �xed selection rules.

(b-ii) When a11 = �11 = 0, the absolute value of the bias without the restriction
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of KU = KL is smaller than that with KU = KL in most cases. This is

well expected because the leads of �xt are not required in this case for the

augmented regression (7).

(b-iii) When a11 = �11 = 0, the bias resulting from the use of Cp is smallest whereas

the BIC leads to the most biased estimates among the four selection criteria.

(b-iv) The AIC tends to perform slightly better than the AICc, especially when a11 =

�11 = 0. But the di¤erences are marginal.

(b-v) There are a few cases where the model selection criteria with the restriction

KU = KL result in the smaller bias, but the di¤erences between the restricted

and unrestricted cases are relatively small. In most cases, the model selection

criteria without the restriction KU = KL perform better than those with it.

(b-vi) The �xed selection rules sometimes result in large biases. In most cases, they

are dominated by one of the model selection criteria.

(b-vii) Overall, the bias with Kmax = K12 tends to be smaller than that with Kmax =

K4.

(b-viii) The log-normal distribution does not bring any noticeable changes in evaluating

the selection rules. In particular, performance of the AICc does not change much

with the log-normal distribution.

(b-ix) As sample size grows, bias decreases as expected, but qualitative di¤erences are

not observed with the increasing sample sizes in evaluating the selection rules.

Regarding to the MSE, the simulation results are summarized as follows.

(m-i) The BIC tends to perform best in almost all the cases, and the AICc tends to

follow. The MSE with Cp tends to become largest in most cases. Overall, how-

ever, the di¤erences of the MSEs are relatively small among the four selection

criteria.
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(m-ii) In most cases, the MSE without the restriction of KU = KL is smaller than

that with KU = KL though there are exceptions, especially in Part II of the

tables, but the di¤erences between the restricted and unrestricted cases are

quite small.

(m-iii) The AICc tends perform slightly better than the AIC.

(m-iv) In most cases, the �xed selection rules are dominated by one of the model

selection criteria.

(m-v) Overall, the MSE with Kmax = K12 tends to be larger than that with Kmax =

K4.

(m-vi) The log-normal distribution does not bring any noticeable changes in evaluating

the selection rules. In particular, performance of the AICc does not change much

with the log-normal distribution.

(m-vii) As sample size grows, MSE decreases as expected, but qualitative di¤erences

are not observed with the increasing sample sizes in evaluating the selection

rules.

We infer from the simulation results that the model selection criteria are successful

in reducing bias and MSE relative the �xed selection rules. The BIC appears to be

most successful in reducing MSE, and Cp in reducing bias. We also observe that

the selection rules without the restriction KL = KU have an advantage over those

with KU = KL in most cases. For practitioners, therefore, we recommend using the

selection rules of this paper without the restriction of KU = KL.

5 Conclusion and further remarks

We have derived Mallows� (1973) Cp criterion, Akaike�s (1973) AIC, Hurvich and

Tsai�s (1989) corrected AIC, and the BIC of Akaike (1978) and Schwarz (1978) for

the leads-and-lags cointegrating regression. Our results justify using conventional
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formulas of those model selection criteria for the leads-and-lags cointegrating regres-

sion. These model selection criteria allow us to choose the numbers of leads and lags

in scienti�c ways. Simulation results regarding the bias and mean squared error of

the long-run coe¢ cient estimates are also reported. The model selection criteria are

shown to be successful in reducing bias and mean squared error relative to the con-

ventional, �xed selection rules. Among them, the BIC appears to be most successful

in reducing MSE, and Cp in reducing bias. We also observe that the selection rules

without the restriction that the numbers of the leads and lags be the same have an

advantage over those with it in most cases. The model selection criteria in this paper

were derived for linear regression, but we note that they can also be used for the

nonlinear leads-and-lags regression of Saikkonen and Choi (2004).

The ultimate purpose of the model selection criteria for the leads-and-lags coin-

tegrating regression is to estimate the long-run slope coe¢ cient e¢ ciently. Though

it was shown through simulations that they improve on the �xed selection rules in

terms of bias and mean squared error, a better rule that directly minimizes the mean

squared error (or other e¢ ciency measures) of the long-run slope coe¢ cient estimate

may exist. How this rule, if it exists, and the model selection criteria of this paper

are related is a question one may be interested in investigating.
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Appendix I: Calculation of tr
�
J(�o)I(�o)

�1	
Ignoring a constant, the Kullback�Leibler information measure is written as

�EF (l(�K)) = EF

�
n

2
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(y � ZK�K)0(y � ZK�K)
2�2eK

j Z1
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2
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2�2eK

:

This is minimized by �o = (Z 0KZK)
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2
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2�4eK
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35, Z 0Ky � Z 0KZK�o =
Z 0Ke, and y � ZK�o =MZK� + e, we may write

@l(�K)

@�K

@l(�K)

@�0K
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24 A11 A12
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35 ;
where A11 = 1

�4o
Z 0Kee

0ZK ; A12 =
1
�2o
Z 0Ke�

�
� n
2�2o

+ 1
2�4o
(� 0MZK� + e

0e+ 2e0MZK�)
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and A22 =
�
� n
2�2o
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2�4o
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0e+ 2e0MZK�)

�2
. Thus,

J(�o) =

24 �2e
�4o
Z 0KZK 0

0 n�4e
2�8o

+ �2e
�8o
� 0MZK�

35 : (A.1)

Moreover, using

@2l(�K)

@�@�0
=

24 � 1
�2eK

Z 0KZK � 1
�4eK

(Z 0Ky � Z 0KZK�K)

� 1
�4eK

(y0ZK � �0KZ 0KZK) n
2�4eK

� 1
�6eK

(y � ZK�K)0(y � ZK�K)

35 ;
we �nd

I(�o) =

24 1
�2o
Z 0KZK 0

0 n�2e
�6o
� n

2�4o
+

� 0MZK
�

�6o

35 : (A.2)

Using (A.1), (A.2) and the relation � 0MZK� = n(�
2
o � �2e), we obtain

tr
�
J(�o)I(�o)

�1	 =
�2e
�2o
tr

8<:
24 Ip(KU+KL+2)+1 0

0 2�2o��2e
�2o

359=;
=

�2e
�2o

�
p(KU +KL + 2) + 1 +
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�2o

�
:
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Appendix II: Proofs

The following lemma is required for the derivation of the corrected AIC in Subsection

3.

Lemma A.1 (i)
V 0MZK

V

n�m = op(1). (ii)
V 0MZK

e

n�m = op(1).

Proof: (i) Write V 0MZKV = V
0V � V 0ZK(Z 0KZK)�1ZKV . Since

E
�
V 2t;K

�
= E

0@ X
j>KU ; j<�KL

�0jvt�j

1A2

=
X

j>KU ; j<�KL

E
�
�0jvt�jv

0
t�j�j

�
+

X
j>KU ; j<�KL

X
l>KU ; l<�KL

E
�
�0jvt�jv

0
t�l�l

�
�

X
j>KU ; j<�KL

�0j
vv�j +
X

j>KU ; j<�KL

X
l>KU ; l<�KL

q
�0j
vv�j

q
�0l
vv�l

� lvv

0@ X
j>KU ; j<�KL

k�jk2 +
X

j>KU ; j<�KL

X
l>KU ; l<�KL

k�jk k�lk

1A
= lvv

0@ X
j>KU ; j<�KL

k�jk

1A2 ;
where lvv is the maximum eigenvalue of 
vv and the Cauchy-Schwarz inequality is

used for the �rst inequality. Assumption (9) implies E
�
V 2t;K

�
= o(T�1). Thus,

V 0V = op(1): (A.3)

Next, letDT = diag[n�1=2; n�1Ip; n�1=2Ip; : : : ; n�1=2Ip] andR = diag[1; n�2
PT�KU
t=KL+2

xtx
0
t;�]

where � = E
�
v0t+KL

; : : : ; v0t�KU

�0 �
v0t+KL

; : : : ; v0t�KU

�
. Then, we have the following

equality for the second term of V 0MZKV .

V 0ZKDT (DTZ 0KZKDT )�1DTZKV 


�


V 0ZKDT



R�1

1 kDTZKV k
+


V 0ZKDT



DT (Z 0KZK)�1DT �R�1

1 kDTZKV k ;

where Lemma A1 of Saikkonen is used for the inequality. As shown in Saikkonen

(1991),7 kV 0ZKDT k = op(K1=2);


R�1



1
= Op(1), and



DT (Z 0KZK)�1DT �R�1

1 =
7Saikkonen (1991) does not consider an intercept term in his linear regression model, but extending

his results to the model with an intercept term is straightforward.
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Op(K=T
1=2), where K=KL; K=KU = O(1). Therefore, V 0ZK(Z 0KZK)

�1ZKV =

op(K), which gives the stated result along with Assumption (8).

(ii) Write V 0MZKe = V
0e� V 0ZK(Z 0KZK)�1ZKe. Then, V 0e = op(

p
n) because

E


V 0e

 � E kV k kek �pE (V 0V )pE(e0e) = o(1)�O(pn) = o(pn):

Since kDTZKek = Op(K1=2), as shown in Saikkonen (1991), V 0ZK(Z 0KZK)
�1ZKe =

op(K). Thus, the stated result follows.

Lemma A.2 �2o
p�! �2e.

Proof: Since �2o =
(��ZK�o)0(��ZK�o)

n +�2e and
(��ZK�o)0(��ZK�o)

n =
V 0MZK

V

n

p�! 0

by Lemma A.1 (i), we obtain the result.

Lemma A.3 Assume et � iid N(0; �2e).

(i) (��ZK �̂K)0(��ZK �̂K)
�̂2eK

follows nm
n�mF (m;n�m) when T is large.

(ii) n�2e
�̂2eK
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�2(n�m) when T is large.

Proof: (i) Since � � ZK �̂K = � � PZKy = MZK� � PZKe, the second term in

relation (10) is written as
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; (A.4)

where m = p(KU +KL + 2) + 1. For the �rst term in relation (A.4), note �rst that
e0PZK e

�2e

d
= �2(m). Next, letting V = [VKL+2;K ; : : : ; VT�KU ;K ]

0; we have�
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and
e0MZK

e

�2e(n�m)
d
= �2(n �m)=(n �m). Note that the second equality of relation (A.5)

holds due to Lemma A.1. Since
e0PZK e

�2e
and

e0MZK
e

�2e
are independent, the �rst term

21



in (A.4) is approximately distributed as nm
n�mF (m;n �m). For the second term in

(A.4), note that relation (A.3) yields � 0MZK� = V
0MZKV � V 0V = op(1) and that

�̂2eK = Op(1). Thus, the second term is op(1). This completes the proof.

(ii) Relation (A.5) implies that n�2e
�̂2eK

is distributed as n2

�2(n�m) .
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Table 1: Bias of the Estimates

Part I: a11 = �11 = 0 (bias�10, T = 100, "t: normal)
�12 = :4 �12 = :8 �12 = :4 �12 = :8 �12 = :4 �12 = :8

(a11; a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(�11; �22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp :0082 :3433 :0135 :6369 :0084 �:0051 �:0019 �:0018 .1745 :3243
AIC :0304 :3835 :0258 :6389 �:0197 �:0115 �:0026 �:0021 .2055 :3347
AICc :0364 :4023 :0312 :6392 �:0235 �:0149 �:0026 �:0020 .2165 :3391
BIC :0777 :5010 :0594 :6665 �:0467 �:0402 �:0029 �:0012 .2768 :3872

Cp (KL = KU ) :0106 :3548 :0155 :6474 �:0116 �:0069 �:0017 �:0015 .1790 :3323
AIC (KL = KU ) :0482 :4357 :0393 :6722 �:0306 �:0250 �:0029 �:0017 .2328 :3644
AICc (KL = KU ) :0591 :4664 :0491 :6916 �:0366 �:0310 �:0027 �:0011 .2524 :3857
BIC (KL = KU ) :1077 :5957 :0935 :8024 �:0684 �:0876 �:0087 �:0018 .3142 :4946
KL = KU = Kmax :1400 :7226 :2896 1:4632 �:0960 �:1868 �:1847 �:3670 .3587 :7304

(Kmax = K12)
Cp �:0155 :0564 �:0028 :1664 �:0017 �:0016 �:0049 �:0018 :0270 :0825
AIC :0220 :1515 :0063 :2386 �:0153 �:0092 �:0021 �:0014 :1066 :1473
AICc :0283 :2610 :0261 :3068 �:0237 �:0163 �:0018 �:0013 :1591 :1984
BIC :0763 :4242 :0577 :4229 �:0463 �:0398 �:0029 �:0012 :2624 :3107

Cp (KL = KU ) �:0206 :0658 �:0073 :1637 �:0066 �:0043 �:0053 �:0009 :0268 :0823
AIC (KL = KU ) :0409 :2016 :0233 :2858 �:0275 �:0231 �:0017 �:0011 :1401 :1868
AICc (KL = KU ) :0556 :3810 :0462 :4619 �:0355 �:0301 �:0017 �:0004 :2344 :3099
BIC (KL = KU ) :1073 :5693 :0933 :6541 �:0684 �:0876 �:0087 �:0017 :3111 :4694
KL = KU = Kmax :1629 :8344 :3390 1:6892 �:1168 �:2248 �:2199 �:4357 :4128 :8425

KL = KU = 1 :0480 :5513 :1086 1:1267 �:0043 �:0027 �:0022 �:0017 .2727 :5620
KL = KU = 2 :0148 :4524 :0425 :9314 �:0026 �:0001 �:0013 �:0001 .2237 :4644
KL = KU = 3 :0009 :3703 :0143 :7690 �:0026 �:0001 �:0017 �:0002 .1826 :3829

Part II: a11 6= 0 and/or �11 6= 0 (bias�10, T = 100, "t: normal)
�12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8

(a11; a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(�11; �22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp �:0059 �:0065 �:0024 �:0005 �:0048 �:0094 �:0031 �:0027 .1745 �:0012
AIC �:0056 �:0071 �:0022 �:0015 �:0048 �:0045 �:0044 �:0040 .2055 �:0013
AICc �:0059 �:0062 �:0019 �:0010 �:0046 �:0059 �:0039 �:0037 .2165 �:0013
BIC �:0049 �:0056 �:0016 �:0008 �:0046 �:0041 �:0023 �:0041 .2768 �:0013

Cp (KL = KU ) �:0060 �:0066 �:0031 �:0004 �:0065 �:0114 �:0031 �:0052 .1790 �:0010
AIC (KL = KU ) �:0077 �:0056 �:0024 �:0014 �:0050 �:0018 �:0048 �:0003 .2328 �:0017
AICc (KL = KU ) �:0061 �:0061 �:0024 �:0015 �:0063 �:0033 �:0036 �:0010 .2524 �:0016
BIC (KL = KU ) �:0049 �:0051 �:0021 �:0012 �:0048 �:0071 �:0027 �:0057 .3142 �:0015
KL = KU = Kmax �:0049 �:0050 �:0018 �:0011 �:0058 �:0104 �:0031 �:0066 .3587 �:0013
(Kmax = K12)

Cp �:0137 �:0121 �:0054 �:0033 :0026 :0095 �:0072 �:0095 :0270 �:0047
AIC �:0058 �:0094 �:0075 �:0036 :0000 :0051 �:0054 �:0037 :1066 �:0067
AICc �:0069 �:0084 �:0022 �:0029 �:0067 �:0048 �:0035 �:0042 :1591 �:0026
BIC �:0054 �:0077 �:0012 �:0031 �:0040 �:0027 �:0023 �:0032 :2624 �:0007

Cp (KL = KU ) �:0149 �:0119 �:0069 �:0032 �:0094 �:0054 �:0086 �:0096 :0268 �:0035
AIC (KL = KU ) �:0074 �:0132 �:0040 �:0058 �:0017 :0070 �:0037 �:0006 :1401 �:0065
AICc (KL = KU ) �:0073 �:0068 �:0023 �:0002 �:0060 �:0013 �:0031 :0006 :2344 �:0016
BIC (KL = KU ) �:0048 �:0047 �:0021 �:0013 �:0048 �:0073 �:0027 �:0057 :3111 �:0011
KL = KU = Kmax �:0086 �:0067 �:0038 �:0015 �:0086 �:0087 �:0046 �:0069 :4128 �:0019
KL = KU = 1 �:0054 �:0050 �:0023 �:0014 �:0071 �:0111 �:0035 �:0058 .2727 �:0016
KL = KU = 2 �:0053 �:0052 �:0024 �:0014 �:0043 :0021 �:0022 :0011 .2237 �:0016
KL = KU = 3 �:0054 �:0054 �:0027 �:0012 �:0046 �:0008 �:0034 �:0030 .1826 �:0016
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Table 2: Bias of the Estimates

Part I: a11 = �11 = 0 (bias�102, T = 100, "t: log-normal)
�12 = :4 �12 = :8 �12 = :4 �12 = :8 �12 = :4 �12 = :8

(a11; a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(�11; �22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp :0078 .4234 :0093 :4088 �:0064 �:0047 :0007 :0006 .2250 :2103
AIC :0172 .4444 :0132 :4078 �:0085 �:0078 :0009 :0007 .2527 :2147
AICc :0205 .4544 :0142 :4079 �:0096 �:0084 :0005 :0006 .2633 :2169
BIC :0345 .5515 :0202 :4169 �:0138 �:0158 �:0006 :0007 .3372 :2368

Cp (KL = KU ) :0127 .4528 :0089 :4189 �:0044 �:0032 :0007 :0001 .2436 :2162
AIC (KL = KU ) :0257 .5120 :0151 :4290 �:0101 �:0091 :0000 :0005 .2978 :2317
AICc (KL = KU ) :0293 .5443 :0173 :4366 �:0108 �:0110 �:0001 :0005 .3200 :2409
BIC (KL = KU ) :0440 .6975 :0275 :4800 �:0185 �:0243 �:0032 �:0001 .3921 :2883
KL = KU = Kmax :0667 .9647 :0727 :9509 �:0276 �:0551 �:0315 �:0634 .4823 :4757

(Kmax = K12)
Cp �:0083 .1096 :0001 :0994 �:0013 �:0008 �:0008 :0020 .0593 :0575
AIC :0045 .1780 :0113 :1416 �:0060 �:0097 :0010 :0023 .1198 :1022
AICc :0123 .2424 :0125 :1819 �:0083 �:0113 �:0003 :0015 .1722 :1309
BIC :0316 .4053 :0180 :2384 �:0131 �:0178 �:0008 :0016 .2894 :1771

Cp (KL = KU ) �:0085 .1071 �:0044 :0938 �:0006 :0013 �:0012 :0001 .0591 :0494
AIC (KL = KU ) :0135 .2280 :0108 :1517 �:0060 �:0089 �:0001 :0018 .1612 :1097
AICc (KL = KU ) :0236 .3859 :0161 :2560 �:0090 �:0134 :0001 :0019 .2542 :1808
BIC (KL = KU ) :0418 .6072 :0275 :3448 �:0173 �:0250 �:0031 :0002 .3610 :2553
KL = KU = Kmax :0762 1.1273 :0776 1:0753 �:0325 �:0639 �:0355 �:0696 .5631 :5369

KL = KU = 1 :0244 .7429 :0285 :7383 �:0012 �:0009 �:0004 �:0006 .3707 :3690
KL = KU = 2 :0093 .6158 :0128 :6101 �:0012 �:0010 :0003 �:0001 .3073 :3054
KL = KU = 3 :0030 .5114 :0064 :5048 �:0005 �:0001 :0009 :0005 .2553 :2530

Part II: a11 6= 0 and/or �11 6= 0 (bias�102, T = 100, "t: log-normal)
�12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8

(a11; a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(�11; �22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp :0003 .0287 �:0004 �:0071 �:0059 �:0300 :0012 :0039 .2250 �:0064
AIC :0026 .0321 �:0010 �:0079 �:0082 �:0437 :0019 :0088 .2527 �:0074
AICc :0034 .0334 �:0008 �:0085 �:0085 �:0473 :0019 :0084 .2633 �:0076
BIC :0055 .0420 �:0016 �:0105 �:0093 �:0669 :0016 :0115 .3372 �:0096

Cp (KL = KU ) :0014 .0301 �:0001 �:0067 �:0041 �:0250 :0014 :0045 .2436 �:0062
AIC (KL = KU ) :0040 .0360 �:0004 �:0080 �:0068 �:0458 :0022 :0076 .2978 �:0077
AICc (KL = KU ) :0041 .0383 �:0005 �:0088 �:0078 �:0502 :0018 :0087 .3200 �:0082
BIC (KL = KU ) :0067 .0480 �:0018 �:0111 �:0097 �:0697 :0013 :0131 .3921 �:0103
KL = KU = Kmax :0123 .0600 �:0024 �:0136 �:0122 �:0734 :0034 :0184 .4823 �:0122
(Kmax = K12)

Cp �:0062 .0006 �:0022 �:0049 �:0018 �:0115 �:0009 :0030 .0593 �:0033
AIC �:0024 .0073 :0001 �:0038 �:0058 �:0487 :0011 :0108 .1198 �:0025
AICc �:0004 .0124 �:0005 �:0050 �:0085 �:0606 :0003 :0137 .1722 �:0049
BIC :0048 .0297 �:0012 �:0087 �:0092 �:0760 :0017 :0160 .2894 �:0075

Cp (KL = KU ) �:0069 .0015 �:0034 �:0056 :0005 �:0031 �:0017 �:0001 .0591 �:0042
AIC (KL = KU ) :0002 .0117 :0005 �:0040 �:0036 �:0446 :0013 :0106 .1612 �:0045
AICc (KL = KU ) :0018 .0228 �:0003 �:0077 �:0058 �:0602 :0029 :0134 .2542 �:0062
BIC (KL = KU ) :0062 .0405 �:0014 �:0104 �:0084 �:0729 :0011 :0134 .3610 �:0091
KL = KU = Kmax :0139 .0704 �:0047 �:0169 �:0160 �:0896 :0021 :0183 .5631 �:0154
KL = KU = 1 :0039 .0461 �:0009 �:0105 �:0022 �:0054 �:0009 �:0027 .3707 �:0095
KL = KU = 2 :0012 .0384 :0004 �:0084 �:0023 �:0081 :0003 �:0016 .3073 �:0076
KL = KU = 3 �:0003 .0320 :0007 �:0071 �:0003 �:0007 :0018 :0043 .2553 �:0063
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Table 3: Bias of the Estimates

Part I: a11 = �11 = 0 (bias�10, T = 300, "t: normal)
�12 = :4 �12 = :8 �12 = :4 �12 = :8 �12 = :4 �12 = :8

(a11; a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(�11; �22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp .0049 .1046 :0025 :1847 :0002 :0001 :0000 :0000 .0560 :0926
AIC .0092 .1139 :0054 :1839 �:0008 :0000 :0001 :0001 .0658 :0928
AICc .0096 .1155 :0059 :1837 �:0008 �:0001 :0001 :0000 .0667 :0927
BIC .0241 .1597 :0142 :1827 �:0068 �:0008 :0000 :0000 .1010 :0983

Cp (KL = KU ) .0059 .1100 :0033 :1857 :0000 :0003 :0000 :0001 .0604 :0935
AIC (KL = KU ) .0131 .1311 :0080 :1861 �:0021 :0002 :0000 �:0001 .0788 :0957
AICc (KL = KU ) .0141 .1346 :0088 :1863 �:0023 :0000 �:0001 �:0001 .0811 :0963
BIC (KL = KU ) .0366 .2177 :0229 :1965 �:0161 �:0045 �:0002 �:0001 .1260 :1182
KL = KU = Kmax .0510 .2826 :0975 :5509 �:0294 �:0598 �:0595 �:1187 .1418 :2754

(Kmax = K12)
Cp :0005 :0262 :0003 :0319 :0000 :0001 :0000 :0000 .0153 :0172
AIC :0069 :0522 :0035 :0448 �:0005 :0002 :0000 �:0001 .0370 :0300
AICc :0080 :0586 :0041 :0489 �:0006 :0001 :0001 �:0001 .0425 :0333
BIC :0241 :1457 :0142 :0944 �:0068 �:0008 :0000 :0000 .0983 :0708

Cp (KL = KU ) :0012 :0304 :0001 :0349 :0002 :0004 �:0002 �:0003 .0171 :0191
AIC (KL = KU ) :0113 :0786 :0068 :0587 �:0019 :0002 �:0001 �:0001 .0573 :0417
AICc (KL = KU ) :0128 :0925 :0078 :0698 �:0022 :0001 :0000 �:0001 .0657 :0493
BIC (KL = KU ) :0366 :2148 :0229 :1501 �:0161 �:0045 �:0002 �:0001 .1257 :1092
KL = KU = Kmax :0539 :3014 :1047 :5904 �:0320 �:0644 �:0636 �:1272 .1510 :2952

KL = KU = 1 .0211 .2232 :0382 :4321 :0003 �:0002 �:0002 �:0001 .1120 :2160
KL = KU = 2 .0096 .1817 :0155 :3503 :0008 :0004 :0001 :0001 .0914 :1752
KL = KU = 3 .0045 .1474 :0061 :2836 :0004 :0001 �:0001 :0000 .0741 :1418

Part II: a11 6= 0 and/or �11 6= 0 (bias�10, T = 300, "t: normal)
�12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8

(a11; a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(�11; �22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp .0008 .0005 �:0004 �:0003 :0008 �:0003 :0002 :0004 .0560 �:0003
AIC .0007 .0006 �:0001 �:0002 :0010 :0007 :0001 :0000 .0658 �:0002
AICc .0009 .0007 :0000 �:0002 :0011 :0005 :0001 :0001 .0667 �:0002
BIC .0010 .0007 �:0001 �:0001 :0009 :0009 :0001 :0010 .1010 �:0001

Cp (KL = KU ) .0006 .0006 �:0002 �:0002 :0008 :0006 :0003 :0010 .0604 �:0001
AIC (KL = KU ) .0007 .0006 :0000 �:0001 :0008 :0006 :0002 :0008 .0788 �:0002
AICc (KL = KU ) .0008 .0006 �:0001 �:0002 :0009 :0010 :0001 :0007 .0811 �:0001
BIC (KL = KU ) .0010 .0007 �:0001 �:0002 :0010 :0022 :0000 :0012 .1260 �:0002
KL = KU = Kmax .0008 .0005 �:0002 �:0003 :0012 :0034 �:0001 :0002 .1418 �:0003
(Kmax = K12)

Cp �:0006 �:0005 �:0003 �:0005 :0005 :0006 �:0003 �:0008 .0153 �:0004
AIC :0005 �:0006 �:0004 �:0004 :0009 :0003 :0001 :0000 .0370 �:0001
AICc :0006 �:0004 �:0002 �:0003 :0010 �:0001 :0000 :0001 .0425 �:0003
BIC :0010 :0007 �:0001 :0000 :0009 :0009 :0001 :0010 .0983 �:0001

Cp (KL = KU ) �:0007 �:0005 �:0005 �:0003 :0005 :0008 �:0003 �:0009 .0171 �:0005
AIC (KL = KU ) :0004 :0001 �:0001 �:0001 :0009 :0004 :0002 :0005 .0573 �:0001
AICc (KL = KU ) :0006 :0001 �:0002 �:0001 :0010 :0005 :0001 :0007 .0657 �:0002
BIC (KL = KU ) :0010 :0007 �:0001 �:0001 :0010 :0022 :0000 :0012 .1257 �:0002
KL = KU = Kmax :0004 :0004 :0000 :0001 :0006 :0012 �:0001 �:0005 .1510 :0001

KL = KU = 1 .0009 .0007 �:0001 �:0002 :0007 �:0014 �:0002 �:0014 .1120 �:0002
KL = KU = 2 .0010 .0007 :0000 �:0002 :0013 :0027 :0001 :0008 .0914 �:0002
KL = KU = 3 .0007 .0006 �:0002 �:0003 :0008 :0012 �:0001 �:0001 .0741 �:0003
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Table 4: Bias of the Estimates

Part I: a11 = �11 = 0 (bias�103, T = 300, "t: log-normal)
�12 = :4 �12 = :8 �12 = :4 �12 = :8 �12 = :4 �12 = :8

(a11; a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(�11; �22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp �:0013 .3427 :0025 :3568 �:0059 �:0035 �:0008 �:0001 .1836 :1807
AIC :0049 .3594 :0047 :3569 �:0062 �:0056 �:0008 :0004 .2137 :1830
AICc :0057 .3640 :0046 :3574 �:0064 �:0058 �:0009 :0003 .2169 :1833
BIC :0277 .5095 :0098 :3599 �:0099 �:0064 �:0015 :0001 .3470 :1950

Cp (KL = KU ) :0077 .3856 :0006 :3587 �:0024 �:0013 �:0013 :0003 .2171 :1802
AIC (KL = KU ) :0159 .4423 :0040 :3606 �:0063 �:0036 �:0013 :0008 .2766 :1853
AICc (KL = KU ) :0163 .4522 :0046 :3611 �:0061 �:0035 �:0016 :0007 .2849 :1868
BIC (KL = KU ) :0418 .7135 :0163 :3821 �:0168 �:0105 �:0018 :0007 .4385 :2268
KL = KU = Kmax :0652 1.0822 :0758 1:0932 �:0335 �:0620 �:0391 �:0742 .5386 :5446

(Kmax = K12)
Cp �:0088 .0729 :0048 :0886 �:0046 �:0048 �:0006 �:0001 .0511 :0580
AIC :0009 .1451 :0053 :1143 �:0048 �:0075 �:0001 :0014 .1196 :0800
AICc :0018 .1673 :0053 :1216 �:0044 �:0083 �:0003 :0014 .1330 :0842
BIC :0264 .4492 :0090 :1941 �:0104 �:0087 �:0014 :0007 .3231 :1394

Cp (KL = KU ) :0010 .1245 :0036 :0774 �:0024 �:0029 �:0021 �:0003 .0801 :0487
AIC (KL = KU ) :0129 .2692 :0037 :1274 �:0054 �:0052 �:0010 :0009 .1926 :0895
AICc (KL = KU ) :0116 .3046 :0033 :1459 �:0055 �:0057 �:0012 :0007 .2124 :1054
BIC (KL = KU ) :0383 .6787 :0167 :2783 �:0173 �:0113 �:0017 :0011 .4186 :2053
KL = KU = Kmax :0748 1.1625 :0805 1:1551 �:0302 �:0605 �:0370 �:0725 .5813 :5768

KL = KU = 1 :0250 .8506 :0288 :8606 :0003 :0019 �:0006 :0006 .4246 :4294
KL = KU = 2 :0074 .6851 :0098 :6935 �:0020 �:0014 �:0014 �:0009 .3413 :3458
KL = KU = 3 :0003 .5508 :0019 :5574 �:0007 :0006 �:0004 :0007 .2744 :2780

Part II: a11 6= 0 and/or �11 6= 0 (bias�103, T = 300, "t: log-normal)
�12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8 �12 = 0:4 �12 = 0:8

(a11; a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(�11; �22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp :0007 .0364 �:0039 �:0121 �:0079 �:0353 �:0013 :0058 .1836 �:0113
AIC :0030 .0469 �:0048 �:0145 �:0116 �:0593 �:0010 :0082 .2137 �:0136
AICc :0032 .0483 �:0048 �:0147 �:0117 �:0601 �:0013 :0090 .2169 �:0138
BIC :0068 .0675 �:0059 �:0194 �:0160 �:0917 �:0020 :0136 .3470 �:0174

Cp (KL = KU ) :0011 .0403 �:0044 �:0130 �:0081 �:0336 �:0022 :0042 .2171 �:0121
AIC (KL = KU ) :0030 .0534 �:0049 �:0161 �:0137 �:0688 �:0035 :0052 .2766 �:0148
AICc (KL = KU ) :0034 .0549 �:0051 �:0166 �:0140 �:0690 �:0032 :0047 .2849 �:0152
BIC (KL = KU ) :0071 .0718 �:0059 �:0202 �:0174 �:0951 �:0018 :0131 .4385 �:0181
KL = KU = Kmax :0100 .0793 �:0072 �:0224 �:0204 �:0951 �:0008 :0162 .5386 �:0196
(Kmax = K12)

Cp �:0049 .0102 �:0004 �:0031 �:0071 �:0348 �:0006 :0071 .0511 �:0020
AIC �:0008 .0278 �:0029 �:0078 �:0082 �:0680 :0000 :0101 .1196 �:0078
AICc :0010 .0306 �:0023 �:0087 �:0086 �:0725 �:0004 :0127 .1330 �:0082
BIC :0052 .0634 �:0053 �:0179 �:0171 �:0998 �:0022 :0158 .3231 �:0163

Cp (KL = KU ) �:0023 .0149 �:0001 �:0034 �:0050 �:0309 �:0030 :0008 .0801 �:0026
AIC (KL = KU ) :0023 .0372 �:0045 �:0108 �:0114 �:0677 �:0029 :0077 .1926 �:0109
AICc (KL = KU ) :0017 .0413 �:0044 �:0121 �:0115 �:0695 �:0031 :0064 .2124 �:0116
BIC (KL = KU ) :0051 .0671 �:0055 �:0194 �:0183 �:0980 �:0018 :0134 .4186 �:0171
KL = KU = Kmax :0158 .0888 �:0051 �:0222 �:0158 �:0933 :0024 :0225 .5813 �:0192
KL = KU = 1 :0037 .0623 �:0033 �:0174 �:0002 :0052 �:0014 :0008 .4246 �:0151
KL = KU = 2 :0000 .0501 �:0024 �:0146 �:0034 �:0073 �:0025 �:0047 .3413 �:0127
KL = KU = 3 �:0015 .0401 �:0021 �:0124 �:0016 :0014 �:0008 :0033 .2744 �:0107
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Table 5: MSE of the Estimates

Part I: a11 = θ11 = 0 (MSE×10, T = 100, εt: normal)
σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8

(a11, a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(θ11, θ22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp .0398 .3031 .0172 .1863 .0060 .0023 .0026 .0009 .1081 .0619
AIC .0354 .2853 .0157 .1828 .0054 .0022 .0023 .0008 .0985 .0611
AICc .0339 .2807 .0152 .1808 .0053 .0022 .0022 .0008 .0959 .0607
BIC .0302 .2581 .0141 .1811 .0051 .0028 .0020 .0007 .0854 .0637

Cp (KL = KU ) .0398 .3074 .0175 .1948 .0061 .0024 .0027 .0010 .1079 .0643
AIC (KL = KU ) .0340 .2854 .0163 .2004 .0054 .0025 .0022 .0008 .0951 .0670
AICc (KL = KU ) .0326 .2765 .0158 .2045 .0052 .0026 .0022 .0008 .0916 .0686
BIC (KL = KU ) .0289 .2448 .0155 .2300 .0052 .0040 .0022 .0007 .0800 .0785
KL = KU = Kmax .0373 .3005 .0285 .4206 .0069 .0079 .0083 .0249 .1021 .1161
(Kmax = K12)

Cp .1459 .9807 .0680 .4590 .0207 .0092 .0097 .0035 .3620 .1699
AIC .0699 .7069 .0345 .3506 .0080 .0033 .0035 .0014 .2183 .1136
AICc .0449 .4926 .0203 .2572 .0058 .0025 .0025 .0009 .1472 .0819
BIC .0309 .3311 .0146 .2198 .0051 .0028 .0020 .0007 .0939 .0697

Cp (KL = KU ) .1563 1.0208 .0717 .4752 .0235 .0108 .0110 .0043 .3713 .1755
AIC (KL = KU ) .0637 .6961 .0334 .3700 .0072 .0034 .0031 .0014 .2044 .1205
AICc (KL = KU ) .0360 .3979 .0172 .2604 .0053 .0027 .0022 .0008 .1114 .0789
BIC (KL = KU ) .0289 .2736 .0155 .2607 .0052 .0040 .0022 .0007 .0810 .0811
KL = KU = Kmax .0642 .4999 .0464 .6442 .0123 .0137 .0138 .0401 .1715 .1802
KL = KU = 1 .0295 .2376 .0142 .2709 .0046 .0016 .0020 .0007 .0825 .0773
KL = KU = 2 .0340 .2583 .0144 .2277 .0054 .0020 .0023 .0008 .0918 .0682
KL = KU = 3 .0394 .2868 .0163 .2027 .0064 .0023 .0026 .0010 .1035 .0636

Part II: a11 6= 0 and/or θ11 6= 0 (MSE×10, T = 100, εt: normal)
σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8

(a11, a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(θ11, θ22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp .0148 .0158 .0063 .0065 .0149 .0416 .0065 .0184 .1081 .0062
AIC .0128 .0140 .0054 .0058 .0130 .0419 .0055 .0184 .0985 .0055
AICc .0123 .0135 .0052 .0056 .0126 .0430 .0054 .0186 .0959 .0053
BIC .0105 .0113 .0044 .0048 .0112 .0484 .0047 .0204 .0854 .0045

Cp (KL = KU ) .0147 .0158 .0062 .0066 .0154 .0464 .0065 .0194 .1079 .0062
AIC (KL = KU ) .0120 .0134 .0051 .0056 .0127 .0487 .0052 .0199 .0951 .0053
AICc (KL = KU ) .0114 .0125 .0048 .0053 .0120 .0486 .0050 .0204 .0916 .0050
BIC (KL = KU ) .0099 .0105 .0042 .0044 .0109 .0526 .0045 .0222 .0800 .0042
KL = KU = Kmax .0129 .0129 .0053 .0053 .0138 .0374 .0057 .0163 .1021 .0052
(Kmax = K12)

Cp .0589 .0591 .0256 .0259 .0516 .1355 .0257 .0575 .3620 .0248
AIC .0267 .0414 .0129 .0188 .0201 .0591 .0085 .0255 .2183 .0155
AICc .0160 .0260 .0069 .0112 .0144 .0465 .0060 .0195 .1472 .0086
BIC .0107 .0149 .0045 .0066 .0113 .0485 .0047 .0205 .0939 .0049

Cp (KL = KU ) .0616 .0616 .0264 .0269 .0590 .1557 .0282 .0702 .3713 .0256
AIC (KL = KU ) .0235 .0398 .0114 .0181 .0172 .0596 .0075 .0261 .2044 .0145
AICc (KL = KU ) .0124 .0200 .0052 .0082 .0123 .0500 .0051 .0206 .1114 .0059
BIC (KL = KU ) .0099 .0117 .0042 .0050 .0109 .0526 .0045 .0222 .0810 .0043
KL = KU = Kmax .0225 .0222 .0093 .0094 .0251 .0599 .0101 .0243 .1715 .0091
KL = KU = 1 .0112 .0114 .0047 .0048 .0119 .0399 .0051 .0173 .0825 .0047
KL = KU = 2 .0130 .0132 .0054 .0055 .0142 .0423 .0059 .0176 .0918 .0053
KL = KU = 3 .0151 .0153 .0062 .0063 .0167 .0444 .0068 .0181 .1035 .0061
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Table 6: MSE of the Estimates

Part I: a11 = θ11 = 0 (MSE×103, T = 100, εt: log-normal)
σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8

(a11, a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(θ11, θ22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp .0287 .2775 .0105 .1315 .0039 .0012 .0014 .0004 .0975 .0430
AIC .0262 .2735 .0098 .1276 .0036 .0011 .0013 .0004 .0950 .0419
AICc .0256 .2720 .0096 .1261 .0036 .0011 .0013 .0004 .0944 .0416
BIC .0240 .2717 .0092 .1228 .0035 .0011 .0012 .0003 .0921 .0417

Cp (KL = KU ) .0287 .2869 .0109 .1383 .0041 .0014 .0015 .0005 .0993 .0455
AIC (KL = KU ) .0262 .2878 .0103 .1396 .0038 .0013 .0014 .0004 .0974 .0461
AICc (KL = KU ) .0255 .2874 .0101 .1403 .0037 .0013 .0013 .0004 .0960 .0465
BIC (KL = KU ) .0243 .2881 .0097 .1455 .0036 .0014 .0013 .0004 .0931 .0491
KL = KU = Kmax .0296 .3450 .0147 .2809 .0048 .0039 .0031 .0071 .1108 .0791
(Kmax = K12)

Cp .0695 .5939 .0252 .2186 .0087 .0037 .0033 .0015 .2075 .0761
AIC .0367 .4696 .0136 .1773 .0044 .0016 .0017 .0006 .1452 .0565
AICc .0269 .3687 .0105 .1417 .0037 .0012 .0014 .0004 .1128 .0447
BIC .0229 .3087 .0092 .1255 .0033 .0011 .0012 .0003 .0943 .0413

Cp (KL = KU ) .0750 .6210 .0277 .2341 .0106 .0048 .0040 .0020 .2168 .0814
AIC (KL = KU ) .0363 .4773 .0148 .1980 .0049 .0020 .0019 .0008 .1426 .0625
AICc (KL = KU ) .0268 .3473 .0109 .1588 .0038 .0012 .0014 .0004 .1050 .0499
BIC (KL = KU ) .0240 .3132 .0099 .1576 .0037 .0013 .0013 .0004 .0958 .0498
KL = KU = Kmax .0474 .5321 .0255 .4677 .0086 .0094 .0063 .0164 .1693 .1301
KL = KU = 1 .0257 .2739 .0098 .1869 .0038 .0010 .0014 .0004 .0912 .0549
KL = KU = 2 .0280 .2690 .0101 .1614 .0042 .0012 .0015 .0004 .0920 .0493
KL = KU = 3 .0309 .2738 .0110 .1464 .0048 .0015 .0017 .0005 .0956 .0464

Part II: a11 6= 0 and/or θ11 6= 0 (MSE×103, T = 100, εt: log-normal)
σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8

(a11, a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(θ11, θ22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp .0103 .0113 .0036 .0040 .0103 .0239 .0037 .0087 .0975 .0037
AIC .0092 .0105 .0033 .0037 .0093 .0206 .0033 .0075 .0950 .0034
AICc .0090 .0103 .0032 .0036 .0091 .0200 .0033 .0072 .0944 .0033
BIC .0083 .0092 .0030 .0032 .0087 .0176 .0032 .0063 .0921 .0030

Cp (KL = KU ) .0102 .0112 .0037 .0040 .0105 .0256 .0038 .0093 .0993 .0037
AIC (KL = KU ) .0090 .0103 .0032 .0036 .0094 .0218 .0033 .0076 .0974 .0033
AICc (KL = KU ) .0088 .0099 .0032 .0035 .0092 .0201 .0033 .0071 .0960 .0032
BIC (KL = KU ) .0084 .0088 .0030 .0031 .0089 .0173 .0032 .0062 .0931 .0029
KL = KU = Kmax .0102 .0102 .0036 .0036 .0111 .0215 .0040 .0078 .1108 .0035
(Kmax = K12)

Cp .0259 .0315 .0093 .0116 .0241 .0694 .0086 .0254 .2075 .0103
AIC .0128 .0222 .0047 .0080 .0113 .0282 .0043 .0113 .1452 .0059
AICc .0097 .0159 .0036 .0054 .0095 .0210 .0035 .0075 .1128 .0042
BIC .0081 .0110 .0030 .0038 .0083 .0162 .0031 .0058 .0943 .0032

Cp (KL = KU ) .0277 .0336 .0102 .0122 .0281 .0847 .0104 .0327 .2168 .0109
AIC (KL = KU ) .0127 .0216 .0048 .0078 .0127 .0342 .0046 .0122 .1426 .0059
AICc (KL = KU ) .0094 .0131 .0035 .0047 .0095 .0190 .0035 .0072 .1050 .0038
BIC (KL = KU ) .0084 .0097 .0031 .0035 .0089 .0166 .0032 .0062 .0958 .0031
KL = KU = Kmax .0160 .0156 .0057 .0054 .0181 .0410 .0064 .0153 .1693 .0053
KL = KU = 1 .0094 .0092 .0033 .0033 .0103 .0240 .0037 .0088 .0912 .0032
KL = KU = 2 .0103 .0101 .0037 .0036 .0114 .0262 .0041 .0095 .0920 .0035
KL = KU = 3 .0114 .0111 .0041 .0040 .0129 .0310 .0046 .0109 .0956 .0039
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Table 7: MSE of the Estimates

Part I: a11 = θ11 = 0 (MSE×102, T = 300, εt: normal)
σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8

(a11, a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(θ11, θ22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp .0345 .3112 .0145 .1769 .0046 .0009 .0019 .0004 .1104 .0579
AIC .0329 .3070 .0140 .1727 .0044 .0009 .0018 .0004 .1096 .0566
AICc .0328 .3069 .0139 .1719 .0044 .0009 .0018 .0004 .1093 .0565
BIC .0312 .3137 .0135 .1660 .0044 .0009 .0017 .0003 .1092 .0572

Cp (KL = KU ) .0346 .3192 .0147 .1814 .0046 .0010 .0020 .0004 .1130 .0596
AIC (KL = KU ) .0330 .3251 .0143 .1819 .0044 .0009 .0018 .0004 .1135 .0607
AICc (KL = KU ) .0329 .3260 .0142 .1820 .0044 .0009 .0018 .0004 .1133 .0609
BIC (KL = KU ) .0322 .3409 .0143 .1910 .0048 .0013 .0018 .0004 .1128 .0695
KL = KU = Kmax .0369 .3941 .0293 .5945 .0060 .0071 .0080 .0246 .1288 .1608
(Kmax = K12)

Cp .0490 .4356 .0211 .1905 .0064 .0013 .0027 .0005 .1564 .0682
AIC .0377 .3852 .0163 .1722 .0047 .0010 .0020 .0004 .1322 .0607
AICc .0361 .3720 .0157 .1675 .0046 .0009 .0019 .0004 .1275 .0591
BIC .0312 .3236 .0135 .1511 .0044 .0009 .0017 .0003 .1106 .0556

Cp (KL = KU ) .0500 .4404 .0214 .1987 .0065 .0013 .0027 .0005 .1587 .0703
AIC (KL = KU ) .0355 .3827 .0158 .1877 .0046 .0009 .0019 .0004 .1292 .0652
AICc (KL = KU ) .0343 .3691 .0151 .1841 .0045 .0009 .0019 .0004 .1240 .0641
BIC (KL = KU ) .0322 .3437 .0143 .1888 .0048 .0013 .0018 .0004 .1130 .0701
KL = KU = Kmax .0459 .4862 .0365 .7217 .0077 .0088 .0097 .0294 .1596 .1965
KL = KU = 1 .0305 .3224 .0149 .3955 .0041 .0008 .0018 .0004 .1081 .1103
KL = KU = 2 .0313 .3106 .0135 .3017 .0043 .0009 .0018 .0004 .1066 .0874
KL = KU = 3 .0327 .3072 .0138 .2414 .0045 .0009 .0019 .0004 .1072 .0730

Part II: a11 6= 0 and/or θ11 6= 0 (MSE×102, T = 300, εt: normal)
σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8

(a11, a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(θ11, θ22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp .0125 .0128 .0052 .0055 .0124 .0261 .0052 .0111 .1104 .0054
AIC .0118 .0121 .0049 .0052 .0115 .0324 .0049 .0138 .1096 .0050
AICc .0116 .0121 .0049 .0051 .0115 .0330 .0049 .0140 .1093 .0050
BIC .0106 .0110 .0045 .0046 .0107 .0474 .0047 .0207 .1092 .0046

Cp (KL = KU ) .0124 .0127 .0052 .0054 .0124 .0306 .0053 .0131 .1130 .0053
AIC (KL = KU ) .0113 .0118 .0048 .0050 .0113 .0403 .0049 .0168 .1135 .0049
AICc (KL = KU ) .0112 .0117 .0048 .0050 .0112 .0410 .0048 .0171 .1133 .0048
BIC (KL = KU ) .0105 .0107 .0044 .0045 .0107 .0526 .0047 .0226 .1128 .0045
KL = KU = Kmax .0119 .0121 .0050 .0051 .0122 .0228 .0051 .0095 .1288 .0050
(Kmax = K12)

Cp .0181 .0193 .0076 .0081 .0169 .0294 .0071 .0118 .1564 .0080
AIC .0135 .0157 .0056 .0067 .0123 .0306 .0052 .0132 .1322 .0062
AICc .0128 .0151 .0054 .0064 .0120 .0309 .0051 .0133 .1275 .0059
BIC .0106 .0112 .0045 .0047 .0107 .0474 .0047 .0207 .1106 .0046

Cp (KL = KU ) .0182 .0193 .0076 .0080 .0173 .0323 .0072 .0138 .1587 .0079
AIC (KL = KU ) .0120 .0144 .0052 .0061 .0117 .0395 .0050 .0166 .1292 .0056
AICc (KL = KU ) .0115 .0135 .0050 .0057 .0113 .0404 .0049 .0169 .1240 .0053
BIC (KL = KU ) .0105 .0108 .0044 .0045 .0107 .0526 .0047 .0226 .1130 .0045
KL = KU = Kmax .0151 .0152 .0064 .0064 .0155 .0245 .0066 .0102 .1596 .0064
KL = KU = 1 .0109 .0112 .0046 .0047 .0113 .0309 .0048 .0132 .1081 .0047
KL = KU = 2 .0114 .0118 .0048 .0050 .0118 .0257 .0049 .0109 .1066 .0049
KL = KU = 3 .0120 .0124 .0051 .0052 .0122 .0230 .0051 .0097 .1072 .0051
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Table 8: MSE of the Estimates

Part I: a11 = θ11 = 0 (MSE×105, T = 300, εt: log-normal)
σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8 σ12 = .4 σ12 = .8

(a11, a22) (0, .4) (0, .8) (0, .4) (0, .8) (0, 0) (0, 0) (0, 0) (0, 0) (0, .8) (0, .8)
(θ11, θ22) (0, 0) (0, 0) (0, 0) (0, 0) (0, .4) (0, .8) (0, .4) (0, .8) (0, .4) (0, .4)

(Kmax = K4)
Cp .1041 .9804 .0379 .4089 .0135 .0022 .0049 .0008 .3496 .1400
AIC .1010 .9678 .0369 .4027 .0131 .0021 .0047 .0008 .3453 .1377
AICc .1008 .9670 .0368 .4018 .0131 .0022 .0047 .0008 .3446 .1376
BIC .0984 .9680 .0362 .3930 .0131 .0021 .0047 .0008 .3453 .1362

Cp (KL = KU ) .1051 1.0073 .0388 .4229 .0137 .0023 .0049 .0008 .3576 .1450
AIC (KL = KU ) .1017 1.0089 .0379 .4233 .0133 .0022 .0048 .0008 .3559 .1454
AICc (KL = KU ) .1013 1.0082 .0378 .4233 .0133 .0022 .0048 .0008 .3554 .1455
BIC (KL = KU ) .0998 1.0206 .0374 .4279 .0134 .0024 .0048 .0008 .3548 .1495
KL = KU = Kmax .1113 1.1701 .0529 .8979 .0159 .0093 .0098 .0205 .3940 .2617
(Kmax = K12)

Cp .1175 1.1857 .0435 .4308 .0147 .0026 .0054 .0009 .4128 .1512
AIC .1014 1.0732 .0379 .3979 .0130 .0022 .0047 .0008 .3660 .1384
AICc .1000 1.0503 .0373 .3910 .0129 .0021 .0047 .0008 .3590 .1359
BIC .0956 .9593 .0355 .3657 .0128 .0021 .0046 .0007 .3369 .1302

Cp (KL = KU ) .1199 1.2028 .0447 .4510 .0153 .0028 .0056 .0010 .4162 .1586
AIC (KL = KU ) .1026 1.0976 .0388 .4302 .0133 .0023 .0049 .0008 .3739 .1490
AICc (KL = KU ) .1015 1.0704 .0379 .4206 .0132 .0022 .0048 .0008 .3652 .1465
BIC (KL = KU ) .0983 1.0130 .0371 .4136 .0132 .0023 .0047 .0008 .3512 .1468
KL = KU = Kmax .1297 1.3728 .0635 1.1105 .0189 .0121 .0122 .0274 .4601 .3203
KL = KU = 1 .1010 1.0260 .0383 .6532 .0135 .0023 .0049 .0008 .3530 .1985
KL = KU = 2 .1035 .9990 .0375 .5523 .0140 .0024 .0050 .0008 .3489 .1740
KL = KU = 3 .1068 .9906 .0384 .4876 .0144 .0024 .0052 .0009 .3498 .1589

Part II: a11 6= 0 and/or θ11 6= 0 (MSE×105, T = 300, εt: log-normal)
σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8 σ12 = 0.4 σ12 = 0.8

(a11, a22) (.4, .4) (.8, .8) (.4, .4) (.8, .8) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.8, .8) (.8, .8)
(θ11, θ22) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) (.4, .4) (.8, .8) (.4, .4) (.8, .8) (.4, .4) (.4, .4)

(Kmax = K4)
Cp .0369 .0389 .0133 .0137 .0368 .0506 .0133 .0184 .3496 .0134
AIC .0356 .0375 .0128 .0132 .0356 .0479 .0129 .0174 .3453 .0129
AICc .0355 .0374 .0128 .0132 .0356 .0477 .0129 .0173 .3446 .0129
BIC .0346 .0353 .0124 .0125 .0351 .0450 .0126 .0160 .3453 .0123

Cp (KL = KU ) .0368 .0385 .0133 .0136 .0369 .0512 .0133 .0185 .3576 .0134
AIC (KL = KU ) .0353 .0368 .0128 .0130 .0357 .0478 .0129 .0172 .3559 .0128
AICc (KL = KU ) .0353 .0367 .0127 .0129 .0357 .0477 .0129 .0170 .3554 .0127
BIC (KL = KU ) .0347 .0350 .0125 .0124 .0354 .0448 .0127 .0159 .3548 .0123
KL = KU = Kmax .0382 .0378 .0137 .0133 .0394 .0507 .0141 .0181 .3940 .0133
(Kmax = K12)

Cp .0420 .0484 .0154 .0170 .0396 .0588 .0147 .0215 .4128 .0163
AIC .0358 .0423 .0131 .0148 .0353 .0485 .0128 .0176 .3660 .0139
AICc .0353 .0413 .0129 .0144 .0351 .0478 .0127 .0174 .3590 .0137
BIC .0337 .0349 .0122 .0125 .0343 .0430 .0124 .0155 .3369 .0122

Cp (KL = KU ) .0424 .0476 .0156 .0170 .0415 .0642 .0153 .0232 .4162 .0164
AIC (KL = KU ) .0359 .0403 .0130 .0142 .0359 .0508 .0130 .0172 .3739 .0134
AICc (KL = KU ) .0354 .0390 .0128 .0137 .0355 .0482 .0129 .0170 .3652 .0132
BIC (KL = KU ) .0343 .0348 .0124 .0124 .0350 .0434 .0127 .0158 .3512 .0123
KL = KU = Kmax .0444 .0439 .0157 .0153 .0461 .0647 .0164 .0237 .4601 .0153
KL = KU = 1 .0363 .0360 .0130 .0128 .0374 .0537 .0134 .0193 .3530 .0127
KL = KU = 2 .0375 .0371 .0134 .0132 .0386 .0547 .0137 .0196 .3489 .0131
KL = KU = 3 .0387 .0382 .0139 .0137 .0399 .0573 .0143 .0205 .3498 .0136
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