
H
i-

St
at

 D
is

cu
ss

io
n 

P
ap

er

Research Unit for Statistical
and Empirical Analysis in Social Sciences (Hi-Stat)

Hi-Stat
Institute of Economic Research

Hitotsubashi University
2-1 Naka, Kunitatchi Tokyo, 186-8601 Japan

http://gcoe.ier.hit-u.ac.jp

Global COE Hi-Stat Discussion Paper Series

May 2009

Bayesian Analysis of Time-Varying Parameter Vector 
Autoregressive Model for the Japanese Economy and 

Monetary Policy

Jouchi Nakajima
Munehisa Kasuya

Toshiaki Watanabe

072



Bayesian Analysis of Time-Varying Parameter Vector

Autoregressive Model for the Japanese Economy and

Monetary Policy∗

Jouchi Nakajima

Institute for Monetary and Economic Studies, Bank of Japan

Munehisa Kasuya

Research and Statistics Department, Bank of Japan

Toshiaki Watanabe

Institute of Economic Research, Hitotsubashi University

May 2009

Abstract

This paper analyzes the time-varying parameter vector autoregressive (TVP-VAR)

model for the Japanese economy and monetary policy. The time-varying parameters are

estimated via the Markov chain Monte Carlo method and the posterior estimates of pa-

rameters reveal the time-varying structure of the Japanese economy and monetary policy

during the period from 1981 to 2008. The marginal likelihoods of the TVP-VAR model

and other VAR models are also estimated. The estimated marginal likelihoods indicate

that the TVP-VAR model best fits the Japanese economic data.
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1 Introduction

The Japanese economy has experienced several distinct periods of macroeconomic activity in

recent decades, resulting in many of Japan’s macroeconomic variables exhibiting changing be-

haviors over time. Since Miyao (2000, 2002) analyzed the Japanese economy using a vector au-

toregressive (VAR) model, the time variation of the relations among Japanese macroeconomic

variables has been investigated in several studies (e.g., Fujiwara (2006), Inoue and Okimoto

(2008) using a Markov-switching VAR model, and Kimura et al. (2003) using a VAR model

with time-varying coefficients). In these studies, the changes in the coefficients in the VAR

system are well studied, although the variance of the structural shocks is assumed constant

over the sample period or subsample period. This paper estimates a time-varying parameter

vector autoregressive (TVP-VAR) model for the Japanese economy and monetary policy, which

allows both the coefficients and the variance of structural shock to vary over time.

From a methodological viewpoint, the TVP-VAR model has recently become increasingly

popular in the macroeconomics literature following the use of this estimation technique by

Primiceri (2005) using data for the US economy. The spirit of its specification is derived

from Cogly and Sargent (2005). Benati and Mumtaz (2005) provide empirical results for the

TVP-VAR model for the UK economy and Baumeister et al. (2008) for the Euro economy.

D’Agostino et al. (2008) show the superior forecasting performance of the TVP-VAR specifi-

cation over other VAR models using US macroeconomic data. We apply their method to the

Japanese economy with a slight modification. Their scheme of sampling from the posterior

distribution of the stochastic volatility of the TVP-VAR model uses a mixture sampler, which

was originally developed by Kim et al. (1998) in the context of the stochastic volatility model

in financial econometrics. The mixture sampler draws sample from the approximated poste-

rior density and its approximation error is small enough to implement the overall model, as

discussed by Omori et al. (2007). However, the multimove sampler proposed by Shephard and

Pitt (1997) and modified by Watanabe and Omori (2004) can draw sample from the exact pos-

terior density of the stochastic volatility, and this method is incorporated into the TVP-VAR

model in this paper. Furthermore, Yano and Yoshino (2008) estimate the TVP-VAR model

using a Monte Carlo particle filtering approach.

In our empirical analysis using Japanese data, a four-variable VAR system is estimated. The

model includes the inflation rate, industrial production, nominal short-term interest rate, and

money supply. The stochastic volatilities and time-varying impulse responses of the macroeco-
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nomic variables are shown over time. The marginal likelihoods of the TVP-VAR specification

and other VAR models are also estimated under different estimation conditions. The estimated

marginal likelihood indicates the good performance of the TVP-VAR model.

The paper is organized as follows. In Section 2, we introduce the TVP-VAR specification.

Section 3 illustrates the estimation procedure for the TVP-VAR model. Section 4 presents our

empirical results. Finally, Section 5 concludes.

2 Structural VAR models

2.1 Preliminary

We begin with a basic structural VAR model defined as

Ayt = F1yt−1 + · · · + Fsyt−s + ut, t = s + 1, . . . , n, (1)

where yt is an k×1 vector of observed variables, A, F1, . . . , Fs are k×k matrices of coefficients,

and ut is a k×1 structural shock. We specify the simultaneous relations of the structural shock

by recursive identification, assuming that A is lower-triangular,

A =




1 0 · · · 0

a21
. . . . . .

...
...

. . . . . . 0

ak1 · · · ak,k−1 1




.

We rewrite model (1) as the following reduced form VAR model,

yt = B1yt−1 + · · · + Bsyt−s + A−1Σεt, εt ∼ N(0, Ik),

where Bi = A−1Fi, for i = 1, . . . , s, and

Σ =




σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 σk




.
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The σi (i = 1, . . . , k) is the standard deviation of the structural shock. Stacking the elements

in the rows of the Bi’s to form β (k2s× 1 vector), and defining Xt = Ik ⊗ (y′t−1, . . . , y
′
t−k), the

model can be written as

yt = Xtβ + A−1Σ εt. (2)

All parameters in equation (2) are time-invariant. In the next section, we construct the model

by allowing these parameters to vary over time.

2.2 Time-Varying Parameter VAR

We consider a time-varying parameter VAR (TVP-VAR) model specified by

yt = Xtβt + A−1
t Σt εt, t = s + 1, . . . , n, (3)

where the coefficients βt, and the parameters At, and Σt are all time varying. There would

be many ways to model the process for these time-varying parameters. Let at be a stacked

vector of the lower-triangular elements in At and ht = (h1t, . . . , hkt)′ with hjt = log σ2
jt, for

j = 1, . . . , k, t = s+1, . . . , n. As suggested by Primiceri (2005), we assume that the parameters

in (3) follow a random walk process as follows:

βt+1 = βt + uβt,

at+1 = at + uat,

ht+1 = ht + uht,




εt

uβt

uat

uht




∼ N




0,




I O O O

O Σβ O O

O O Σa O

O O O Σh







,

for t = s + 1, . . . , n, where βs+1 ∼ N(µβ0 , Σβ0), as+1 ∼ N(µa0 , Σa0) and hs+1 ∼ N(µh0 , Σh0).

The shocks to the innovations of the time-varying parameters are assumed uncorrelated among

the parameters βt, at and ht. We further assume that Σβ , Σa and Σh is all diagonal matrices.

The drifting coefficients and parameters are modeled to fully capture possible changes of the

VAR structure over time. Our dynamic specification is adequate to permit the parameters to

vary even if the shocks in the processes driving the time-varying parameters are uncorrelated.

Note that the log of variance (σ2
t ) for the structural shocks is modeled to follow a random

walk process, which belongs to the class of stochastic volatility (e.g., Shephard (2005)). In

financial literature, the log volatility (ht) is often formulated to follow a stationary process such
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as the first-order autoregressive process. The random walk process is non-stationary and it

would be undesirable to analyze long-series behavior of market products such as financial daily

data, while the purpose of our study is the empirical analysis for the quarterly macroeconomics

data whose sample size is around one hundred. Moreover, as discussed by Primiceri (2005),

the random-walk assumption can capture possible gradual (or sudden) structural changes.

3 Bayesian inference

The TVP-VAR model includes a number of parameters, while the estimation procedure can be

constructed using the MCMC methods. In a Bayesian inference, under certain prior probability

distributions, the MCMC algorithm produces the sample drawn from a high-dimensional pos-

terior distribution of parameters including unobserved latent variables (see e.g., Chib (2001)).

Using the time-varying parameters in our model as latent variables, the model forms a state

space specification. The key to constructing an efficient sampling scheme for the TVP-VAR

model is the joint sampling of β = {βt}n
t=s+1 (and in turn, a = {at}n

t=s+1, h = {ht}n
t=s+1)

conditioned on the rest of the parameters, which is better than the approaches that rely on

one-at-a-time sampling. To accomplish this strategy, the simulation smoother (de Jong and

Shephard (1995), Durbin and Koopman (2002)) is suitable for sampling the time-varying co-

efficient β and parameter a because the model can be written in a linear Gaussian state space

form.

Regarding the stochastic volatility h, the model forms a non-linear non-Gaussian state

space form; thus, we need more technical methods of sampling. One way to sample stochastic

volatility is the approach of Kim et al. (1998), called the mixture sampler. This method has

been widely used in the financial and macroeconomics literature (Omori et al. (2007), Primiceri

(2005)). The other way is the multimove sampler of Shephard and Pitt (1997) and Watanabe

and Omori (2004). The former method deals with the approximated linear state space model.

As studied by Kim et al. (1998) and Omori et al. (2007), its approximation error is small

enough to implement the original model and can be corrected by the compensation step (see

the details in Kim et al. (1998)). On the other hand, the latter algorithm approaches the

model by drawing from the exact conditional posterior density. Both methods are appropriate

to implement the volatility part in the TVP-VAR model, while we use the latter method in

this paper for its direct sampling from the original form of the model.
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3.1 MCMC algorithm

Let y = {yt}n
t=1 and ω = (Σβ , Σa, Σh). We set the prior probability density as π(ω) for

ω. Given the data y, we draw sample from the posterior distribution, π(β, a, h, ω|y), by the

MCMC method. There are several ways of sampling the posterior distribution; we apply the

following MCMC algorithm:

1. Initialize β, a, h, ω.

2. Sample β|a, h,Σβ, y.

3. Sample Σβ |β.

4. Sample a|β, h, Σa, y.

5. Sample Σa|a.

6. Sample h|β, a,Σh, y.

7. Sample Σh|h.

8. Go to 2.

As mentioned above, Steps 2 and 4 are conducted with the help of the simulation smoother,

and Step 6 requires the multi-move sampler for the stochastic volatility. The assumption of the

diagonal matrix of Σh makes the conditional posterior distribution of {hjt}n
t=s+1 independent

with respect to the series j (= 1, . . . , k) and the sampling algorithm for h becomes simple.

Steps 3, 5, and 7 are straightforward, drawing sample from a Wishart or Gamma distribution

under conjugate priors. The details of the procedure are illustrated in Appendix.

3.2 Priors

The priors should be carefully chosen because the TVP-VAR model has many state variables in

the VAR specification and their process is modeled as a non-stationary random walk process.

The TVP-VAR model is so flexible that the state variables can capture both gradual and sudden

changes of the underlying economic structure. On the other hand, allowing time variation in

every parameter in the VAR may cause an over-identification problem in the finite period

data sample. As mentioned by Primiceri (2005), the tight prior for the covariance matrix of

the disturbance in the random walk process avoids implausible behaviors of the time-varying
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parameters. A tighter prior should sometimes be avoided in empirical econometrics, although

the TVP-VAR model needs slightly tighter priors to provide reasonable identification.

In this paper, the time-varying coefficient (β) needs a tighter prior than the simultaneous

relations (a) and the volatility (h) of the structural shock for the variance of the disturbance

in their time-varying process. The structural shock we consider in the model unexpectedly

hits the economic system and its size would more widely fluctuate over time than the possible

change of the autoregressive system of the economic variables specified by VAR coefficients.

Through the estimation procedure in the following sections, we set a slightly tighter prior

for Σβ and a rather diffuse prior for Σa and Σh. Of course, a prior sensitivity analysis is

necessary in this situation to check the robustness of the empirical result with respect to the

prior tightness. Section 4.3 reports the robustness check.

An additional remark is required for the prior of the initial state of the time-varying param-

eters. When the time series to estimate is modeled as a stationary process, we often assume

the initial state follows a stationary distribution of the process. However, our time-varying

parameters are random walks; thus, we specify the prior of the normal distribution for the

initial state of each time-varying parameter. Following Primiceri (2005), we determine the

mean of these normal priors with the estimates of a time-invariance VAR model using the

pre-sample period. It is possible to specify a flat prior for the initial state to draw the sample

of the posterior fully using information from data. However, we consider it is reasonable to

use the economic structure estimated from the pre-sample period up to the start of the main

sample data.

3.3 Marginal likelihood

In a Bayesian framework, we can compare model fit given data using the posterior probabilities

of the models. The posterior probability of each model is proportional to the prior probability

of the model, times the marginal likelihood. The ratio of two posterior probabilities is also well

known as a Bayes factor. If the prior probabilities are assumed equal, we choose the model

that yields the largest marginal likelihood. The marginal likelihood is defined as the integral

of the likelihood with respect to the prior density of the parameter. There are several ways to

estimate the marginal likelihood for the model including state variables; we use the harmonic

mean method (e.g., Geweke (1999)). The simulation-based harmonic mean estimator of the
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marginal likelihood, denoted by m̂(y), is obtained by

1
m̂(y)

=
1
M

M∑
j=1

g(ω(j))
f(y|ω(j), ϑ(j))π(ω(j))

,

where ϑ = (β, a, h), f(y|ω(j), ϑ(j)) and π(ω(j)) denote the likelihood function and prior density,

respectively, and M is the iteration size of the MCMC. If the fraction g(ω)/f(y|ω, ϑ)π(ω) is

bounded above, then the approximation is simulation consistent and the rate of convergence

is likely to be practical. While g(ω) can be any p.d.f. with support contained in the parameter

space of the model, Geweke (1999) recommends the choice of g for the modified harmonic mean

estimator to guarantee the boundness of this fraction. Consider the normal density with the

tails truncated, namely

g(ω(j)) =
1

τ(2π)p/2|V̂ |1/2
exp

{
−1

2
(ω(j) − ω̂)′V̂ −1(ω(j) − ω̂)

}

× I
[
(ω(j) − ω̂)′V̂ −1(ω(j) − ω̂) ≤ χ2

τ (p)
]
,

where I[Ω] is an indicator function that takes the value of one if Ω is satisfied and zero

otherwise, p is the number of elements in ω, and χ2
τ (p) denote the τ percentile of the Chi-

square distribution with p degrees of freedom. By cutting off the tails, sample that drop in

the potentially problematic regions are avoided for the computation of the marginal likelihood.

We set ω̂ and V̂ equal to the sample mean and covariance matrix computed from the posterior

draws {ω(j)}M
j=1, and τ = 0.99 in this paper. As mentioned by Schorfheide (2000), interestingly,

the estimated marginal likelihood does not so serially depend on τ . We also computed the

marginal likelihood of the TVP-VAR model with τ = 0.95, 0.90, and found the estimated

marginal likelihood is seldom sensitive to the value of τ .

4 Empirical evidences for Japanese economy and monetary

policy

4.1 Data and estimation procedure

In this section, we estimate the TVP-VAR model for the Japanese economy. Our main dataset

is quarterly and the sample period is from 1981/1Q to 2008/3Q. The pre-sample period from

1970/2Q to 1980/4Q is used for the prior distribution of the initial state in the process of
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the time-varying parameters, which is explained in detail below. The model includes four

macroeconomic variables: inflation rate, industrial production, nominal short-term interest

rate, and monetary base.1 Recursive identification is assumed in this order. These variables

are used for a standard VAR model of the Japanese economy, analyzed by several papers

(Miyao (2000, 2002), Fujiwara (2006), Inoue and Okimoto (2008), Yano and Yoshino (2008)).

Most of these studies use monthly data for the estimation, while we change the data to a

quarterly base by monthly average. The VAR estimation with monthly data often needs many

lags (for example, Miyao (2000) sets 10 lags), because the changes and shocks in the economic

variables are considered to affect the other variables of the system with a delay. As mentioned

above, the TVP-VAR model has so many parameters and our choice of quarterly data reduces

the number of parameters to estimate. The lags are determined by the estimated marginal

likelihood. We estimate the model with one to four lags and choose the lags whose marginal

likelihood is the highest among them. As shown below, the main empirical results are obtained

with two lags.

The following priors are assumed for the i-th diagonals of the covariance matrices:

(Σβ)−2
i ∼ Gamma(10, 0.01), (Σa)−2

i ∼ Gamma(2, 0.01), (Σh)−2
i ∼ Gamma(2, 0.01). (4)

For the initial state of the time-varying parameters, µβ0 = β̂0, µa0 = â0, µh0 = log σ̂2
0, and

Σβ0 = Σa0 = Σh0 = 4 × I, where β̂0, â0 and σ̂0 are the OLS estimators obtained using the

pre-sample period.

We draw M = 10, 000 sample after the initial 1,000 sample are discarded. The computa-

tional results are generated using Ox version 5.0 (Doornik (2006)). Figure 1 shows the sample

autocorrelation function, the sample paths and the posterior densities for selected parameters.

After discarding the sample in the burn-in period, the sample paths look stable and the sample

autocorrelations drop stably, indicating our sampling method efficiently produces uncorrelated

samples.

Table 1 gives the estimates for posterior means, standard deviations, the 95% credible

intervals, the convergence diagnostics (CD) of Geweke (1992) and inefficiency factors. Geweke

1The inflation rate is taken from the CPI (consumer price index, general excluding fresh food, the effects
of the increase in the consumption tax removed, and seasonally adjusted). Industrial production is seasonally
adjusted. The nominal short-term interest rate is the overnight call rate. The monetary base is the average
outstanding, adjusted for the reserve requirement ratio changes, and seasonally adjusted. For the sudden and
temporal increases of the monetary base around December 1999 and February 2002, a linear interpolation is
used. Except for the call rate, all the variables are transformed in logarithm, and multiplied by 100. In the
estimation, we take the first difference of all variables including the call rate.
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(1992) suggests a comparison between the first n0 draws and the last n1 draws, dropping

out the middle draws. The CD statistics is computed by CD = (x̄0 − x̄1)/
√

σ̂2
0/n0 + σ̂2

1/n1,

where x̄j = 1
nj

∑mj+nj−1
i=mj

x(i), x(i) is the i-th draw, and
√

σ̂2
j /nj is the standard error of x̄j ,

respectively, for j = 0, 1. If the sequence of the MCMC sampling is stationary, it converges in

distribution to a standard normal. We set m0 = 1, n0 = 1, 000, m1 = 5, 001, and n1 = 5, 000.

The σ̂2
j is computed using a Parzen window with bandwidth, Bm = 500. The inefficiency

factor is defined as 1 + 2
∑Bm

s=1 ρs, where ρs is the sample autocorrelation at lag s, which is

computed to measure how well the MCMC chain mixes (see e.g., Chib (2001)). It is the ratio of

the numerical variance of the posterior sample mean to the variance of the sample mean from

uncorrelated draws. The inverse of the inefficiency factor is also known as relative numerical

efficiency (Geweke (1992)). When the inefficiency factor is equal to m, we need to draw m times

as many MCMC sample as uncorrelated samples. In our empirical result, the null hypothesis

of the convergence to the posterior distribution is not rejected for the parameters at the 5%

significance level based on the CD statistics, and the inefficiency factors are very low, which

indicates an efficient sampling for the parameters and state variables.
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Figure 1: Estimation results for selected parameters in the TVP-VAR model. Sample auto-
correlations (top), sample paths (middle) and posterior densities (bottom).

10



Parameter Mean Stdev. 95% interval CD Inefficiency
(Σβ)5 0.1037 0.0355 [0.0570, 0.1919] 0.974 8.01
(Σβ)15 0.1104 0.0387 [0.0579, 0.2061] 0.075 10.11
(Σβ)25 0.1149 0.0413 [0.0594, 0.2175] 0.700 10.90
(Σa)3 0.1652 0.0610 [0.0827, 0.3178] 0.922 24.62
(Σa)6 0.9300 0.8759 [0.0174, 3.4204] 0.149 68.76
(Σh)2 0.1748 0.1047 [0.0411, 0.4419] 0.215 23.41
(Σh)4 0.8198 0.4306 [0.2516, 1.9022] 0.622 44.64

Table 1: Estimation results for selected parameters in the TVP-VAR model (the estimates of
Σβ and Σa are multiplied by 100).

4.2 Empirical results

This section provides quantitative empirical results for the Japanese economy and monetary

policy of the TVP-VAR model. Through the sample period from 1981 to 2008, the Japanese

economy experienced several different periods. The bubble economy burst in the early 1990s,

and the Bank of Japan introduced the zero interest rate policy from 1999 to 2000 and the

quantitative easing policy from 2001 to 2006. Using the TVP-VAR model, we investigate the

time-varying structure of the Japanese economy and monetary policy, as follows.

4.2.1 Time-varing volatility

Figure 2 plots the series for estimated stochastic volatility of the structural shock on four

variables, based on the posterior mean, and the 16-th and 84-th quantile2 intervals of the

standard deviation of the shock, σit = exp(hit/2). It presents the dynamics of the volatility

over time, which differs across variables.

Figure 2(i) plots the time-varying volatility of the inflation rate. The period 1981–1985

exhibits a relatively higher volatility because of the second oil shock. The additional reduction

is observed around 1998 to 2006, when the Japanese economy experienced deflation. The time-

varying volatility of industrial production, displayed by Figure 2(ii), shows that its standard

deviation increased substantially from the mid-1990s to the first half of the 2000s compared

with the preceding period. Sakura et al. (2005) point out that the variance of real GDP became

more volatile during the 1990s compared with the 1980s. They estimate the time-invariant

VAR model by dividing the sample into subsamples and find that both the parameters in the

VAR and the shock contribute to the fluctuation of real GDP. One source of the fluctuation

is considered to be the higher volatility of firm investment after the bubble economy burst, as
2As Primiceri (2005) uses, the 16-th and 84-th quantiles correspond to the one-standard-deviation band

under normality.
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Figure 2: Posterior estimates for stochastic volatility of structural shock, σit = exp(hit/2).
Posterior mean (solid line), 16-th and 84-th percentiles (dotted line).

discussed by Sakura et al. (2005). The same fluctuation in the shock of industrial production

is observed in our analysis. The TVP-VAR model has an advantage over the constant VAR

models in the sense that it need not divide data into subsamples to confirm the change of the

structure of the model.

Figure 2(iii) and (iv) plots the series of stochastic volatility for the call rate and the mon-

etary base, respectively. The BOJ’s policy instrument of the overnight uncollateralized call

rate decreased to 0.25% in 1995. Then, the BOJ implemented the zero interest rate policy3 in

1999 and the quantitative easing policy in 2001. During the quantitative easing policy period,

the outstanding balance of the current account is the target of the BOJ’s monetary policy,

and expansions of the monetary base were observed by March 2006, when the BOJ altered the

policy instrument to the call rate again. The estimated variances of the call rate and monetary

base show these changes in monetary policy; that is, the stochastic volatility of the call rate

3In our specification of the TVP-VAR model, the zero lower bound of the nominal interest rate is not
considered. While it may be possible to incorporate the lower bound for a certain variable on the TVP-VAR
model, it requires a computational burden. Thus, in the current paper, this issue is left for future work.
Regarding the model fit of the time-varying parameters, the estimation of the subsample period that excludes
the zero interest rate regime is also examined below. One way to solve this econometric issue is well discussed
by Iwata and Wu (2006) with a censored variable.
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drops close to zero around the mid-1990s and the monetary base increases rapidly from the

beginning of the 2000s, and a hike is marked in 2006, which corresponds to the termination of

the quantitative easing policy. The spike around 1986 for the volatility of the call rate would

indicate that the easing policy in this period is measured as the structural shock. After that,

the volatility of the call rate is relatively low and looks moderate.

Overall, the time-varying volatility contributes to the VAR estimation, identifying the

structural shock with the appropriate variance of the shock size. For the data we analyze

here, the estimates of the time-invariant VAR model with constant parameters would result in

biases in the covariance matrix for the disturbances and at the same time in the autoregressive

coefficients because of the misspecification of the dynamics of the parameters. Again, the

nominal interest rate lower bound is not explicitly incorporated into the model, although the

estimated volatility for the call rate that stays low enough would help the VAR system to

identify exogenous shocks better than the time-invariant VAR model.

4.2.2 Time-varying impulse responses

Impulse response analyses are provided for the time series in the TVP-VAR model. Because the

coefficients are time varying, the impulse responses are calculated at each date over the sample

period. In our study, the shock size for the responses is set equal to the time-series average of

the stochastic volatility for each series over the sample period. Note that the shock size for the

response is not based on the estimated variance each time. The impulse summarizes the effects

of average-sized experimental structural shocks hitting the VAR system. The impulse responses

are calculated for each iteration of the MCMC with the current draw of the parameters, and

the sample mean and standard deviation of the responses are computed. Figure 3–6 plot the

results of the main responses.

Figure 3 reports the impulse responses of industrial production to a positive interest

rate shock. The time series of the response and the responses in three different dates with

one-standard-deviation bands are shown. The dates for the comparison are (ii)1986/1Q,

(iii)1994/1Q, and (iv)2002/1Q, which are chosen arbitrarily, while the overall time variation

of the response is summarized in the time-series plot(i). The period around (iii)1994/1Q rep-

resents the typical economic conditions after the bubble burst and (iv)2002/1Q under the

quantitative easing policy. The interest rate shock has a negative effect on industrial produc-

tion, although its impact seems to exhibit time variation. It is natural that the response of

industrial production becomes smaller from the second half of the 1990s to the 2000s because

13
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Figure 3: Impulse responses of industrial production to a positive interest rate shock. (i)
Time series of response after one, two and three years, (ii)–(iv) response in each period with
one-standard-deviation bands.

of the environment where the call rate stays close to zero. This behavior of the response is

consistent with the result of Kimura et al. (2003). In addition, the estimation result indicates

that the bottom of the impact of the interest rate shock is around 2006, when the quantitative

easing policy is terminated. The time-varying impulse response implies that the increase in

the policy interest rate in 2006 does not decrease industrial production.

Second, Figure 4 shows the responses of inflation to a positive interest rate shock. A rise

in inflation after a monetary tightening using VAR estimates is well known as the price puzzle

(Sims (1992), Eichenbaum (1992)). In our empirical estimates of the TVP-VAR model, the

impulse response exhibits a different shape in each period. For 1981–1987, the impulse response

falls sufficiently in response to the positive interest rate shock and Figure 4(ii) shows a slight

and temporary price puzzle in 1986/1Q. On the other hand, from 1988 to the mid-1990s, the

impulse response keeps rising and stays high even at a three-year horizon. As plotted in 4(iii),

the impulse response is a positive domain over all of 1990/1Q. There are several explanations

for the price puzzle and the VAR estimates would depend on the lags or some omitted variables

in the VAR system to some extent. Figure 4(iv) shows that the impulse response stays near
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Figure 4: Impulse responses of inflation to positive interest rate shock. (i) Time series of
response after one, two and three years, (ii)–(iv) response of each period with one-standard-
deviation bands.

zero and the one-standard-deviation bands includes zero for 2002/1Q because the call rate

is close to zero and the structural shock to the interest rate diminishes in this period. Our

estimation result indicates that the TVP-VAR model has an advantage in the sense that it can

assess the time-varying dynamics of the relation among economic variables.

Third, the responses of the interest rate to a positive inflation rate shock are shown in

Figure 5. This response is one measure of monetary policy activism with respect to inflation.

Similar to the previous figure, the response of the interest rate has time variation and the

impact of the response seems to diminish for the period of the zero interest rate policy and the

quantitative easing policy. In Figure 5(i), the time-series line of the response after one year

does not seem to fluctuate for 1981–1998, while the response after two and three years shows

a high degree of time variation commencing in the early 1990s. It means that the response

increases smoothly in reaching the three-year horizon of the response. For the other periods,

the response seems to reach the three-year horizon of the response in the first year. From

another point of view, the time-varying impulse response shows variation of the weight of

inflation in the monetary policy reaction function throughout the sample period.
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Figure 5: Impulse responses of interest rate to positive inflation rate shock. (i) Time series of
response after one, two and three years, (ii)–(iv) response in each period with one-standard-
deviation bands.

Fourth, Figure 6 reports the impulse responses of industrial production to a positive mone-

tary base shock. Overall, the monetary base shock has a positive effect on industrial production

during the sample period including the quantitative easing policy period, and in particular, the

time series of the response after one year seems to be stable for 1990 to 2000, while the size of

the response decreases around the mid-2000s. Throughout the sample period, industrial pro-

duction seems to reach the three-year horizon response level in two years. Because we observe

that the rise in the monetary base is followed by a positive interest rate shock in our estimation

results (not shown here), the monetary base shock can be interpreted as a shock to the money

demand function. This indicates that the money demand shock would have a positive effect

through bank lending or other financial market variables. However, when the nominal interest

rate is close to zero, the response becomes smaller than the one in the 1980s and the first half of

the 1990s. For the impulse response of (iv)2002/1Q, the one-standard-deviation bands include

zero. This result indicates that the effect of an increase in the monetary base is uncertain, as

discussed by Kimura et al. (2003) and Fujiwara (2006). Similar to the interest rate shock, the

impulse response of the monetary base shock reaches its bottom around 2006, when the quan-
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Figure 6: Impulse responses of industrial production to positive monetary base shock. (i)
Time series of response after one, two and three years, (ii)–(iv) response of each period with
one-standard-deviation bands.

titative easing policy is terminated and the monetary base decreases. The estimation results

show that the rapid decrease in the monetary base does not decrease industrial production

after 2006. It implies that this period would have been an appropriate time to terminate the

quantitative easing policy.

4.3 Model selection and robustness

In the previous section, we showed the empirical results of the TVP-VAR model for the main

dataset with the specified priors. Below, we examine whether the TVP-VAR model also fits the

data better than other VAR models. We estimate the marginal likelihood using the modified

harmonic mean method in Section 3.3 for different model specifications, lags, and priors. The

competing model specifications are a constant parameter VAR model (CP-VAR) and a semi

time-varying parameter VAR model (STVP-VAR). The CP-VAR model refers to the equation

(2). The STVP-VAR model allows only the coefficients (β) and the simultaneous relations of

structural shock (a) to vary over time, and the volatility of structural shock is time invariant

with Σt = Σ, for all t = s + 1, . . . , n. By comparing the model fit between the TVP-VAR
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Lag CP-VAR STVP-VAR TVP-VAR Lag CP-VAR STVP-VAR TVP-VAR

(i) Full sample, Prior1 (ii) Full sample, Prior2

1 -519.01 -457.41 -339.11 1 -535.90 -515.79 -369.87
2 -548.76 -430.67 -311.24 2 -577.73 -527.24 -382.85
3 -581.30 -404.67 -327.12 3 -622.73 -535.14 -397.44
4 -621.13 -442.36 -346.30 4 -675.30 -567.05 -407.87

(iii) Subsample, Prior1 (iv) Subsample, Prior2

1 -267.08 -266.23 -265.31 1 -284.13 -298.07 -263.43
2 -292.63 -282.30 -278.17 2 -321.82 -307.57 -287.26
3 -315.38 -292.20 -279.30 3 -357.18 -322.95 -305.14
4 -350.11 -315.50 -285.77 4 -404.59 -347.79 -329.82

Table 2: Estimated marginal likelihood for competing VAR models (logarithm scale; CP:
constant parameter, STVP: semi time-varying parameter, TVP: time-varying parameter).

and STVP-VAR models, the advantage of the stochastic volatility of the structural shock, as

emphasized by Cogly and Sargent (2005), is examined. The lag is set one up to four. We

specify additional priors for the CP-VAR and STVP-VAR models and alternative priors for

the TVP-VAR model, as follows:

Prior1 :

(4) and β ∼ N(0, 2 × I), ᾱ ∼ N(0, 2 × I), σ−1
i ∼ Gamma(2, 0.02),

Prior2 :

(Σβ)−2
i ∼ Gamma(20, 0.01), (Σa)−2

i ∼ Gamma(5, 0.01), (Σh)−2
i ∼ Gamma(2, 0.01),

β ∼ N(0, 10 × I), ᾱ ∼ N(0, 10 × I), σ−1
i ∼ Gamma(2, 0.02),

where ᾱ denotes the stacked vector of the elements in A.

In addition to the estimation with the full sample period, we estimate the marginal likeli-

hood using the subsample period from 1981/1Q to 1995/4Q. The period of the zero interest

rate policy and the monetary easing policy is omitted in this subsample period. We estimate

three competing models for the subsample data with Prior1 and Prior2.

Table 2 reports the estimated marginal likelihoods for competing models under four con-

ditions: (i) full sample, Prior1, (ii) full sample, Prior2, (iii) subsample, Prior1, and (iv) sub-

sample, Prior2. The iteration size of MCMC is the same as in the main empirical results.

For all the conditions, the TVP-VAR model has the highest marginal likelihood. The STVP-

VAR model is favored over the CP-VAR model model, while the marginal likelihood of the

TVP-VAR model is much higher than for the STVP-VAR model for the full-sample period.
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Interestingly, the difference in the marginal likelihood between the competing models is

smaller for the subsample period than for the full-sample period under both priors. In par-

ticular, the marginal likelihood of the STVP-VAR model becomes close to the one for the

TVP-VAR model in the subsample estimation. One possible reason for this result is that the

full-sample period includes the zero interest rate policy and the monetary easing policy; thus,

the posterior distribution of constant volatility estimated through the full-sample period would

be biased and unable to follow the volatility dynamics, especially that seen for the call rate

and money supply, as shown in Figure 2. We understand that the TVP-VAR specification is a

very flexible model for analyzing the economic variables including the period when the nominal

interest rate is close to zero.

Overall, the time-varying parameter contributes to the VAR model based on the esti-

mated marginal likelihoods. The time-varying coefficients increase the marginal likelihood,

although not by enough, and the time-varying simultaneous relations and stochastic volatility

of structural shock contributes the model fit over our data set, especially for the sample period

including the zero interest rate policy. These results are robust as shown by the estimations

under different priors and lags.

5 Conclusion

This paper analyzes the TVP-VAR models of the Japanese economy and monetary policy. The

time-varying parameters are estimated via the Markov chain Monte Carlo method and the

posterior estimates of parameters reveal the time-varying structure of the Japanese economy

and monetary policy during the period from 1981 to 2008. The marginal likelihoods of the

TVP-VAR model and other VAR models are estimated under different priors, lags, and sample

periods. The estimated marginal likelihoods indicate that the TVP-VAR model best fits the

Japanese economic data over; in particular, it marks much higher marginal likelihoods for the

sample period that includes the zero interest rate policy.
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Appendix. MCMC algorithm for the TVP-VAR model

A.1 Sampling β

To sample β from the conditional posterior distribution π(β|a, h,Σβ , y), we write the model in

the state space form as

yt = Xtβt + A−1
t Σtεt, t = s + 1, . . . , n,

βt+1 = βt + uβt, t = s, . . . , n − 1,

where βs = µβ0 , and uβs ∼ N(0, Σβ0). It is possible to draw sample from the joint posterior

distribution π(βs+1, . . . , βn|a, h,Σβ, y). Following de Jong and Shephard (1995), we show the

algorithm of the simulation smoother on the state space model

yt = Ztαt + Gtut, t = s + 1, . . . , n,

αt+1 = Ttαt + Htut, t = s, . . . , n − 1,

where ut ∼ N(0, I) and GtH
′
t = O. The simulation smoother draws η = (ηs, . . . , ηn−1) ∼

π(η|y, θ) where ηt = Htut for t = s, . . . , n − 1, and θ denotes the rest of the parameters in the

model. We run the Kalman filter:

et = yt − Ztat, Dt = ZtPtZ
′
t + GtG

′
t, Kt = TtPtZ

′
tD

−1
t ,

Lt = Tt − KtZt, at+1 = Ttat + Ktet, Pt+1 = TtPtL
′
t + HtH

′
t,

for t = s + 1, . . . , n, where as+1 = Tsαs and Ps+1 = HsH
′
s. Then, letting Λt = HtH

′
t, we run

the simulation smoother:

Ct = Λt − ΛtUtΛt, ηt = Λtrt + εt, εt ∼ N(0, Ct), Vt = ΛtUtLt,

rt−1 = Z ′
tD

−1
t et + L′

trt − V ′
t C−1

t εt, Ut−1 = Z ′
tD

−1
t Zt + L′

tUtLt + V ′
t C−1

t Vt,

for t = n, n−1, . . . , s+1, with rn = Un = 0. Finally, we can draw ηs = Λsrs+εs, εs ∼ N(0, Cs)

with Cs = Λs − ΛsUsΛs. We construct the sample of {αt}n
t=s+1 via the state equation using

{ηt}n−1
t=s drawn through the simulation smoother. In the case of sampling β, we coordinate

the parameters as Zt = Xt, Tt = I, Gt = (A−1
t Σt, O), Ht = (O, Σ1/2

β ), for t = s + 1, . . . , n,

Tsαs = µβ0 , and Hs = (O, Σ1/2
β0

).
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A.2 Sampling a

For sampling a from its conditional posterior distribution π(a|β, h, Σa, y), the expression of the

state space form with respect to a is beneficial to see the implementation, namely,

ŷt = X̂tat + Σtεt, t = s + 1, . . . , n,

at+1 = at + uat, t = s, . . . , n − 1,

where as = µa0 , uas ∼ N(0, Σa0), ŷt = yt − Xtβt, and

X̂t =




0 · · · 0

−ŷ1t 0 0 · · · ...

0 −ŷ1t −ŷ2t 0 · · ·
0 0 0 −ŷ1t · · ·
...

. . . 0 · · · 0

0 · · · 0 −ŷ1t · · · −ŷk−1,t




,

for t = s + 1, . . . , n. Similar to sampling β, we use the simulation smoother with Zt = X̂t,

Tt = I, Gt = (Σt, O), Ht = (O, Σ1/2
a ) for t = s + 1, . . . , n, Tsαs = µa0 , and Hs = (O, Σ1/2

a0 ).

A.3 Sampling h

The state space equations for state variable h belong to a non-linear state space class. Because

we assume Σh and Σh0 are diagonal matrices, we make the inference for {hjt}n
t=s+1 separately

for j (= 1, . . . , k). Let y∗it denote the i-th element of Atŷt. Then, we can write

y∗it = exp(hit/2)εit, t = s + 1, . . . , n,

hi,t+1 = hit + ηit, t = s, . . . , n − 1,
 εit

ηit


 ∼ N


0,


 1 0

0 v2
i




 ,

where ηis ∼ N(0, v2
i0

), and v2
i and v2

i0
are the i-th diagonal elements of Σh and Σh0 , respectively,

and ηit is the i-th element of uht. We sample (hi,s+1, . . . , hin) from its conditional posterior

density by running the multi-move sampler for the non-linear Gaussian state space model,

developed by Shephard and Pitt (1997) and Watanabe and Omori (2004).
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We divide (hi,s+1, . . . , hin) into K +1 blocks and sample each block from its joint posterior

density conditioned on the other blocks and parameters. Now we focus on sampling a typical

block (hir, . . . , hi,r+d) from its joint posterior density, (note that r ≥ s + 1, d ≥ 1, r + d ≤ n).

The conditional posterior distribution is given by

π(ηi,r−1, . . . , ηi,r+d−1|θi) ∝
r+d∏
t=r

1
ehit/2

exp
(
− y∗2it

2ehit

)
×

r+d−1∏
t=r−1

f(ηit) × f(hi,r+d), (5)

where

f(ηit) =




exp

(
− η2

is

2v2
i0

)
(if t = s),

exp
(
− η2

it

2v2
i

)
(if t ≥ s + 1),

f(hi,r+d) =




exp
{
−(hi,r+d+1 − hi,r+d)2

2v2
i

}
(if r + d < n),

1 (if r + d = n),

and θi = (hi,r−1, hi,r+d+1, y
∗
ir, . . . , y

∗
i,r+d, vi, vi0). The posterior draw of (hir, . . . , hi,r+d) can be

obtained by running the state equation with this draw of (ηi,r−1, . . . , ηi,r+d−1) given hi,r−1.

We sample (ηi,r−1, . . . , ηi,r+d−1) from (5) using the AR-MH algorithm (Tierney (1994),

Chib and Greenberg (1995)) with the following proposal distribution. Our construction of the

proposal density begins with the second-order Taylor expansion of

g(hit) ≡ −hit

2
− y∗2it

2ehit
,

around the certain point ĥt discussed later, namely,

g(hit) ≈ g(ĥit) + g′(ĥit)(hit − ĥit) +
1
2
g′′(ĥit)(hit − ĥit)2

∝ 1
2
g′′(ĥit)

{
hit −

(
ĥit − g′(ĥit)

g′′(ĥit)

)}2

,

where

g′(ĥit) = −1
2

+
y∗2it

2ehit
, g′′(ĥit) = − y∗2it

2ehit
.
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We use the proposal density formed as

q(ηi,r−1, . . . , ηi,r+d−1|θi) ∝
r+d∏
t=r

exp
{
−(h∗

it − hit)2

2σ∗2
it

}
×

r+d−1∏
t=r−1

f(ηit),

where

σ∗2
it = − 1

g′′(ĥit)
, h∗

it = ĥit + σ∗2
it g′(ĥit), (6)

for t = r, . . . , r + d − 1 and t = r + d (when r + d = n). For t = r + d (when r + d < n),

σ∗2
i,r+d =

1

−g′′(ĥi,r+d) + 1/v2
i

, (7)

h∗
i,r+d = σ∗2

i,r+d

{
g′(ĥi,r+d) − g′′(ĥi,r+d)ĥi,r+d + hi,r+d+1/v2

i

}
. (8)

The choice of this proposal density is derived from its correspondence to the state space model

h∗
it = hit + ζit, t = r, . . . , r + d,

hi,t+1 = hit + ηit, t = r − 1, . . . , r + d − 1, (9)
 ζit

ηit


 ∼ N


0,


 σ∗2

it 0

0 v2
i




 , t = r, . . . , r + d,

with ηi,r−1 ∼ N(0, v2
i ) when r ≥ 2, and ηis ∼ N(0, v2

i0
). Given θi we draw the candidate point

of (ηi,r−1, . . . , ηi,r+d−1) for the AR-MH algorithm by running the simulation smoother over the

state space representation (9).

Now we come to find (ĥir, . . . , ĥi,r+d) which is near the mode of the posterior density for

an efficient sampling. We loop the following steps several times to reach near the mode:

1. Initialize (ĥir, . . . , ĥi,r+d).

2. Compute (h∗
ir, . . . , h

∗
i,r+d), (σ2∗

ir , . . . , σ2∗
i,r+d) by (6) and (8).

3. Run the simulation smoother using current (h∗
ir, . . . , h

∗
i,r+d), (σ2∗

ir , . . . , σ2∗
i,r+d) on (9) and

obtain ĥ∗
it ≡ E(hit|θi) for t = r, . . . , r + d.

4. Replace (ĥir, . . . , ĥi,r+d) by (ĥ∗
ir, . . . , ĥ

∗
i,r+d).

5. Go to 2.
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Note that the E(hit|θi) is the product in the simulation smoother as Λtrt with εt = 0.

Finally, we remark the selection of the blocks. A typical block can be denoted as (hi,kj−1+1,

. . . , hi,kj ) for j = 1, . . . , K + 1 with k0 = s and kK+1 = n and Shephard and Pitt (1997)

suggests the determination of (k1, . . . , kK), called stochastic knots. It leads to

kj = int
[
n(j + Uj)

K + 2

]
,

for j = 1, . . . , K, where Uj is the random sample from the uniform distribution U [0, 1]. We

randomly choose (k1, . . . , kK) for every iteration of MCMC sampling to obtain a flexible draw

of (hi,s+1, . . . , hin).

A.4 Sampling ω

Given β, we can derive the conditional posterior density of Σβ . Let σβi denote the i-th

diagonal element of Σβ . Because we assume that Σβ is a diagonal matrix, we sample σβi

independently for i = 1 . . . , k. If we specify the prior as σ−2
βi

∼ Gamma(sβ0/2, Sβ0/2), we

obtain the conditional posterior distribution as σ−2
βi

|β ∼ Gamma(ŝβi/2, Ŝβi/2) where

ŝβi = sβ0 + n − s − 1, Ŝβi = Sβ0 +
n−1∑

t=s+1

(βi,t+1 − βit)2,

and βit is the i-th element of βt. The gamma prior is conjugate in this case and the posterior

draw is straightforward. We sample the diagonal elements of Σa|a and Σh|h in the same way.

24



References

Baumeister, C., E. Durinck, and G. Peersman (2008). Liquidity, inflation and asset prices in a time-

varying framework for the Euro area. Manuscript.

Benati, L. and H. Mumtaz (2005). The ‘Great Stability’ in the U.K.: good policy or good luck?

Manuscript, Bank of England.

Chib, S. (2001). Markov chain Monte Carlo methods: Computation and inference. In J. J. Heckman and

E. Leamer (Eds.), Handbook of Econometrics, Volume 5, pp. 3569–3649. Amsterdam: North-Holland.

Chib, S. and E. Greenberg (1995). Understanding the Metropolis-Hastings algorithm. The American

Statistician 49, 327–335.

Cogly, T. and T. J. Sargent (2005). Drifts and volatilities: monetary policies and outcomes in the post

WWII U.S. Review of Economic Dynamics 8, 262–302.

D’Agostino, A., L. Gambetti, and D. Giannone (2008). Macroeconomic forecasting and structural

change. Manuscript.

de Jong, P. and N. Shephard (1995). The simulation smoother for time series models. Biometrika 82,

339–350.

Doornik, J. (2006). Ox: Object Oriented Matrix Programming. London: Timberlake Consultants Press.

Durbin, J. and S. J. Koopman (2002). Simple and efficient simulation smoother for state space time

series analysis. Biometrika 89, 603–616.

Eichenbaum, M. (1992). Interpreting the macroeconomic time series facts: the effects of monetary

policy – comments. European Economic Review 36, 1001–1011.

Fujiwara, I. (2006). Evaluating monetary policy when nominal interest rates are almost zero. Journal

of Japanese and International Economies 20, 434–453.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior

moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian

Statistics, Volume 4, pp. 169–188. New York: Oxford University Press.

Geweke, J. (1999). Using simulation methods for Bayesian econometric models: inference, development

and communication. Econometric Reviews 18, 1–126.

Inoue, T. and T. Okimoto (2008). Were there structural breaks in the effects of Japanese mone-

tary policy? Re-evaluating policy effects of the lost decade. Journal of Japanese and International

Economies 22, 320–342.

25



Iwata, S. and S. Wu (2006). Estimating monetary policy effects when interest rates are close to zero.

Journal of Monetary Economics 53, 1395–1408.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and comparison

with ARCH models. Review of Economic Studies 65, 361–393.

Kimura, T., H. Kobayashi, J. Muranaga, and H. Ugai (2003). The effect of the increase in monetary

base on Japan’s economy at zero interest rates: an empirical analysis. In Bank for International

Settlement (Ed.), Monetary policy in a changing environment, 276–312.

Miyao, R. (2000). The role of monetary policy in Japan: a break in the 1990s? Journal of Japanese

and Interenational Economies 14, 366–384.

Miyao, R. (2002). The effects of monetary policy in Japan. Journal of Money, Credit, and Banking 34,

376–392.

Omori, Y., S. Chib, N. Shephard, and J. Nakajima (2007). Stochastic volatility with leverage: fast

likelihood inference. Journal of Econometrics 140, 425–449.

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. Review

of Economic Studies 72, 821–852.

Sakura, K., H. Sasaki, and M. Higo (2005). Japan’s economic fluctuation since the 1990s: fact finding

(in Japanese). Bank of Japan Working Paper Series, 05-J-10.

Schorfheide, F. (2000). Loss function-based evaluation of DSGE models. Journal of Applied Economet-

rics 15, 645–670.

Shephard, N. (Ed.) (2005). Stochastic Volatility: Selected Readings. Oxford: Oxford University Press.

Shephard, N. and M. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series.

Biometrika 84, 653–667.

Sims, C. A. (1992). Interpreting the macroeconomic time series facts: the effects of monetary policy.

European Economic Review 36, 975–1001.

Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics 21, 1701–

1762.

Watanabe, T. and Y. Omori (2004). A multi-move sampler for estimating non-Gaussian time series

models: comments on Shephard and Pitt (1997). Biometrika 91, 246–248.

Yano, K. and N. Yoshino (2008). Japanese monetary policy reaction function and time-varying structural

vector autoregressions: a Monte Carlo particle filering approach. Manuscript.

26


	072cover.pdf
	072text

