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Abstract

In this paper, we propose a simple methodology for investigating how shocks to
trend and cycle are correlated in unidentified unobserved components models, in
which the correlation is not identified. The proposed methodology is applied to
U.S. and U.K. real GDP data. We find that the correlation parameters are negative
for both countries. We also investigate how changing the identification restriction
results in different trend and cycle estimates.
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1 Introduction

In business cycle analysis, it is often supposed that real GDP consists of two un-
observed components (UC): a permanent and a transitory component. Shocks to
the permanent component have long-lasting effects, whereas shocks to the transitory
component are temporary and vanish in the long run. Following convention, we refer
to these two components as “trend” and “cycle”, respectively. Estimating these two
components has been an important issue in business cycle analysis. The UC model
is one of the most commonly used models for this purpose (see, for example, Watson
(1986), Clark (1987), Basistha (2007), Basistha and Nelson (2007), Oh, Zivot, and
Creal (2008), Sinclair (2009) and references therein for applications of UC models).

In this model, the trend is assumed to be a random walk process and the cycle
is assumed to be a stationary process. It is conventional to assume that shocks to
the trend and cycle are uncorrelated for the identification of model parameters al-
though this assumption is unreasonable, as argued by Clark (1987, pp.800-801) and
Zarnowitz and Ozyildirim (2006). Morley, Nelson, and Zivot (2003) (2003, hence-
forth MNZ) estimate a UC model with a stationary AR(2) cycle process, for U.S.
quarterly real GDP. They show that one can identify and estimate the correlation
parameter under this specification of cycle. Their estimate of the correlation pa-
rameter of —0.9062 is significantly different from zero according to their likelihood
ratio test. They show also that the trend and cycle estimates with and without the
zero correlation restriction are very different.

The main objective of this paper is to reinvestigate how shocks to these two com-
ponents are correlated by applying unidentified UC models, in which a correlation
is not identified unless we impose an identification restriction. We investigate how
different identification restrictions lead to different values of the correlation between
the two shocks. We also demonstrate how changing identification restriction results
in different trend and cycle estimates. The empirical analysis in Section 4 shows
that the trend and cycle estimates with different identification restrictions can be
substantially different.

We call a UC model with ARMA(p, q) cycle a UC-ARMA (p, q) model. In ex-
plaining our methodology in Sections 2 and 3, we mainly consider a UC-ARMA (2,
1) model, for ease of exposition. The proposed methodology can, in principle, be
extended to UC models with higher order ARMA cycles although the related calcu-
lations become more involved. In Section 1, first, we show that the UC-ARMA (2,
1) model is observationally equivalent to MNZ’s UC-AR(2) model in the sense that
these two UC models have the same autocovariance structure. A difficulty in ap-
plying the UC-ARMA(2, 1) model is that, unlike the UC-AR(2) model, it has a
correlation parameter that cannot be identified (and hence estimated) unless we
impose an identification restriction. Next, however, we show that for the correla-
tion parameter, there is an upper bound implied by an unrestricted ARIMA(2, 1,
2) model, which is an observationally equivalent alternative representation of the
UC-ARMA(2, 1) model. We propose a simple methodology for finding the implied
upper bound. The basic idea of the methodology is to examine how the value of the
correlation implied by an unrestricted ARIMA model changes when we impose dif-



ferent identification restrictions. In this way, we can obtain an implicit relationship
between the identification restrictions and the resulting values of the correlation. !
See Section 3 for more details.

The proposed methodology is applied to U.S. and U.K. real GDP data.? For
both countries, it is found that the upper bounds of the correlations are negative.
This implies that the two shocks are negatively correlated. We use UC-ARMA(2, 1)
models, estimated under different identification restrictions, to estimate the trend
and cycle. We find that estimates of the trend and cycle can vary substantially
depending on the identification restrictions imposed. We find also that setting the
MA (1) parameter equal to zero, or specifying the cycle as an AR(2) process, which
has been one of the most commonly used specification for the cycle in the UC model
literature, is not supported by the data on U.K. real GDP.

Our empirical analysis suggest that it is important to impose an appropriate
identification restriction for properly estimating the trend and cycle. We discuss
also on what is an appropriate identification restriction. In fact, it is confirmed
empirically that the trend (and cycle) estimates obtained under (different but) ap-
propriate identification restrictions are identical.

The rest of the paper is organized as follows. In the next section, we briefly
overview the identification problem of UC models. In Section 3, we propose a simple
methodology to find an upper bound of the correlation for unidentified UC models.
In Section 4, we apply the proposed methodology to U.S. and U.K. real GDP data.
The final section provides a summary and concluding remarks.

2 Overview of the identification problem of UC
models

Let {y;}L, be an observed time series, such as the log of real GDP. We suppose that
y; is the sum of two unobserved stochastic processes, a random walk process 7; and
a stationary finite order ARMA (p, q) process ¢;; these processes are conventionally
termed “trend” and “cycle”, respectively, in the literature on business cycle analysis.
The model is known as a UC model (hereafter, a UC-ARMA (p, ¢) model). Formally,
the model is defined as follows:

Y =T+ ¢, Tt=U+T—1+N, ¢(L)Ct = Q(L)fta
ope for s=0, (1)

T’t ~ ZZd(O, 0'72])7 €t ~ Zld(o, 0-?)7 COV(T]t, gtﬂ:s) = O Otherwise

where ¢(L) =1—¢ L —---—¢,LP and O(L) =1+ 6, L+ --- + 6,L7 are pth order
AR and gth order MA polynomials, respectively, that satisfy the stationarity and

LOh, Zivot, and Creal (2008) do a similar analysis. They focus on comparing the estimates
of trend and cycle obtained through the Beveridge-Nelson decomposition (Beveridge and Nelson,
1981) with the estimates of trend and cycle obtained from UC models with correlated shocks. By
contrast, our focus is an investigation of the correlation.

2In the previous version of the paper, we do the same analysis to G7 countries except for Japan
(Nagakura, 2007), and obtained results qualitatively similar to U.S. and U.K.



invertibility conditions; that is, the modulus of the roots of ¢(z) = 0 and 6(z) are
all outside the unit circle.
From (1), we have

(L)1 = L)y = (L) + (L) + (1 — L)O(L)e,. (2)
The right-hand side of (2) is the sum of two MA processes whose innovations are
correlated.?> However it can be shown that this part can be expressed by an MA (¢*)
process with the single innovation u;, where ¢* = max{p,q + 1} (see, for example,
Granger and Morris, 1976). This implies that y, can alternatively be represented as
an ARIMA(p, ¢* ) process, as follows:

H(L)(1 — L)y, = p* + 0*(L)ey,  uy ~ i.i.d(0,02), (3)

where y* = ¢(1)p, and 6*(L) = 1407 L+---46;. L. Note that the AR coefficients
in (2) and (3) are the same. This representation of the UC-ARMA(p, ¢) model is
commonly referred to as the ARIMA (p, 1, ¢*) reduced form.

MNZ point out that if one sets p = 2 and ¢ = 0, then the parameters of the
resulting UC-AR(2) model are uniquely identified from its ARIMA(2, 1, 2) reduced
form parameters. To see this, let ,; denote the jth order autocovariance of the MA
part of (3). The first three autocovariances, vy, 71 and 9, in terms of the ARIMA (2,
1, 2) reduced form parameters, are given by o = 02(1+0:2+032), v = 0205 (1+63),
Yo = 0203 and v; = 0 for j > 3. Given that the MA processes on the right-hand
sides of (2) and (3) must be identical, we can express these autocovariances in terms

of the UC model parameters, 0'%, o2, and 0,., as:

Yo = (14 ¢ + qb%)a% + 202 + 2(1 4 ¢1)0ye,

Y1 = (102 — ¢1)o; — 02 4 (¢2 — 1 — 1)0ye, (4)

T2 = —¢20727 — P20y
(See MNZ for a detailed derivation of the equations in (4)). Thus, given the
ARIMA(2, 1, 2) reduced form parameters, which include ¢; and ¢,, we can solve
the three equations in (4) for the three unknown UC model parameters, 0727, o2, and
0y, uniquely. The correlation p is calculated as p = 0,/ (0:0).

A problem occurs when p = 2 and ¢ = 1; then y; follows a UC-ARMA(2, 1)
process, and there is one additional parameter, namely, 6;, the MA(1) coefficient of
the ARMA(2, 1) cycle process. Although it is easy to show that its reduced form is
also an ARIMA (2, 1, 2) process, the four UC model parameters, o7, oy, o7 and 6,
cannot be uniquely identified from its ARIMA (2, 1, 2) reduced form parameters.
To show this, we compare the autocovariances of the MA parts of the models. In
terms of the UC model parameters, the autocovariances v;, j = 0, 1,2 are:

Yo = (1407 + ¢3)o7 + 2(1 — 01 + 607)02 + 2[1 + ¢1 + 01(d2 — b1)]0ye,

Y1 = (102 — d1)op — (1 = 01)%02 + [¢2 — ¢ — 1 = O1(dy — 1 — )]0y, (5)
Yo = =20, — 0107 — (01 + ¢2)0ye,

3The sum of two MA processes with correlated innovations can be expressed as the sum of
two MA processes with uncorrelated innovations. Let 6;(L)e; s ¢ = 1,2 be two MA processes with
git ~ 1.0.d.(0,0?) and cov(ey ¢, e2+) = 0. Define & = e2 — (0/03)e1 4. Then, cov(eq s, &:) = 0 and
S22 L 0i(L)eis = O(L)er s + 02(L)E;, where (L) = 01 (L) + (0/0%)02(L).
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where 6; is the MA (1) coefficient of the ARMA(2, 1) cycle process.

Note that there are only three equations for the four unknown UC model param-
eters, 0727, Ones 0727 and 6;. Thus, the equations in (5) cannot be uniquely solved for
these four UC model parameters. To solve these equations, we must impose a re-
striction, which we term an “identification restriction”, on ;. For example, setting
6, = 0 reduces the model to a UC-AR(2) model. This restriction is not testable
because under the alternative hypothesis the model parameters are not identified.
In general, the order condition for identification of the UC-ARMA (p, ¢) model is
satisfied when p > ¢+2. The model parameters are just identified when this equality
holds. Thus, although UC-ARMA(p, p — 2) and UC-ARMA(p, p — 1) models both
have an ARIMA (p, p) reduced form, the former model is identified while the latter
model is not identified.

MNZ apply a UC-AR(2) model to U. S. quarterly real GDP data and find that
the estimated correlation p is significantly negative. However, the point of our paper
is that the true data generating process may be the UC-ARMA(2, 1) model that
is observationally equivalent to the UC-AR(2) model. In that case, one cannot
identify p.

3 Methodology

In this section, we illustrate a simple method for finding an upper bound for the
correlation given the unrestricted ARIMA model parameters. The basic idea is to
examine how the value of the correlation implied by an unrestricted ARIMA model
changes when we impose different identification restrictions.

Lengthy calculations can be used to solve the equations in (5) to obtain the
following expressions for the three UC model parameters:*

5 Yot 27+ 2%

(R

2 —2(1 = @101 + P1 + P261) (72 + 207) — (61 + ¢2)[0 — (1 + 67 + ¢3)07] (©)
© 201(1 — ¢161 + @1 + Path) — 2(61 + ¢2) (1 — 01 + 07) ’

o 010 — (14 @7 + ¢3)oz] +2(1 — 01 + 07) (72 + $207)
T200(1 = ¢101 + ¢1 + Pa01) — 2(61 + o) (1 — 6, + 67)
Note that the variance of the trend shock, ag, is identified and is equivalent to the
long-run variance of the first differences of {y;}. This result holds in general: for
0.2
7 P12 — 1 —(1—1)?  [p2— 1 —1—01(d2 — p1 — 1)] [ Ug ] .
2 — 2 -0 _(01 + ¢2) One

We can show that the 3 by 3 matrix on the right hand side is non-singular if ¢; + ¢o # 1, 61 # 1,
and 601(0; + ¢1) # ¢2 (and we assume it). Then we can uniquely solve the equation for 072,, 02, ope
as in (6).

“Note that we can rewrite (5) as

{70] [1+¢%+¢% 2(1— 6, + 63 2[1 + @1+ 01(P2 — ¢1)




any UC-ARMA (p, ¢) model, the variance of the trend shock is always identified as
the long-run variance of the first differences; that is, o7 = 1(1)%c7, where 9(1) =
0*(1)/¢(1). This was first pointed out by Cochrane (1988, p.908).

Note that given the ARIMA(2, 1, 2) reduced form parameters, the three UC
model parameters above are functions of #,. Hence, given 6, these functions deter-
mine the values of the three UC model parameters that satisfy the equations in (5),
from which we can calculate p. In this way, we can obtain an implicit relationship
between the “identification restrictions” imposed on #; and the resulting values of
the correlation p. Figure 2(a) plots such pairs of values for 6; and p, given estimates
of the ARIMA(2, 1, 2) model for U.S. quarterly real GDP, which are reported in
the second column of Table 1.

The implied values of the correlations are all negative, and the upper bound of
the correlation is around —0.75. The dashed line shows that if we restrict 6; to be
0, in which case the UC-ARMA(2, 1) model reduces to the UC-AR(2) model, then
the resulting implied correlation is around —0.95, which is lower than the estimate
obtained by MNZ. This is because our data are different from theirs; in particular,
our data cover a longer sample period (more details on the data set are given in the
next section). Note that there are ranges of values for ¢; that imply correlations
of less than —1, which thus violate the condition for positive definiteness of the
covariance matrix. This means that UC-ARMA(2, 1) models with values of #; in
such ranges are inconsistent with the estimated unrestricted ARIMA (2, 1, 2) model.
We refer to such values of 6; as “improper identification restrictions”; values of 6,
at which |p| < 1 constitute “proper identification restrictions”. In the figure, we
display values of p based only on values of #; in a particular range; this is because
we confirmed that values for §; outside of the range are inconsistent with |p| < 1.

In this way, we can find an upper bound for the correlation parameter. The
methodology can be easily extended for other unidentified UC models.

4 Empirical applications

In this section, we apply the proposed methodology to U.S. and U.K. quarterly real
GDP data. These quarterly real GDP data cover the period from 1946:4 to 2006:3
(yielding 238 observations) for the U.S. and the period from 1955:4 to 2006:2 (yield-
ing 202 observations) for the U.K. For these periods, Figure 1 shows the percentage
growth rates in GDP.

Table 1 reports the estimates of the unrestricted ARIMA (2, 1, 2) model for each
(logged) GDP series. Figure 2 graphs the implied relationships between 6; and p
for these GDP data, obtained by using the methodology described in the previous
section. The implied values of the correlations are all negative for both countries.
The upper bound for the correlation differs between the two countries; it is about
—0.75 for U.S. and —0.993 for U.K. This implies that the two shocks are highly
negatively correlated. Note that because these values are upper bounds, the actual
correlations may be lower than these values. For the U.K. GDP data, the range of
0, values that satisfies the condition for positive definiteness of the the covariance
matrix (i.e., [p| < 1) does not include ¢, = 0. This implies that, for the U.K., the



restriction that #; = 0, under which the model reduces to the UC-AR(2) model, is
inconsistent with the estimated unrestricted ARIMA models. In other words, the
U.K. real GDP data do not support the UC — AR(2) specification.

The results show that for both countries, in particular U.K., the correlations of
two shocks are highly negative. One hypothesis for explaining these strong negative
correlations is that although we assumed that the real GDP is driven by two different
shocks, namely, trend and cycle shocks, the real GDP is actually driven by only one
shock that affects oppositely to trend and cycle. Another possible hypothesis is
that the trend is not a random walk process. As shown in Nagakura (2008) and
Nagakura and Zivot (2007), if the trend is not a random walk process but follows
a certain class of I(1) process, then estimates of the correlation in the UC model in
that the trend is assumed to be a random walk process tends to be negative. See
Nagakura (2008) and Nagakura and Zivot (2007) for more details.

If we set the value of 6, a priori to, for example, 6; = 0, we can directly estimate
the other three UC model parameters from a state space representation.®. How-
ever, the above result suggests that we should not arbitrarily choose the value of ;.
One would expect UC models estimated under different identification restrictions,
particularly improper identification restrictions, to produce different trend and cy-
cle estimates. To address this concern, we estimate the UC-ARMA(2, 1) model
directly under different identification restrictions, including proper and improper
restrictions, and then estimate the cycle and trend from these estimated UC mod-
els. In the estimation of UC models, we impose the positive definiteness condition
on the covariance matrix parameters and impose the stationarity conditions on the
AR(2) coefficients.

Table 2 reports the estimation results for the UC-ARMA(2, 1) model. The
values of #; in the first row are the restrictions imposed in advance. The asterisks
denote improper restrictions. When we impose proper restrictions, the values of
the log-likelihoods are the same as those of the unrestricted ARIMA model and are
higher than those obtained under improper restrictions. Figures 3 and 4 display
the cycle estimates for U.S. and U.K. real GDP, respectively. These are estimated
by using Kalman filtering on the state space representation of the UC-FARMA(2, 1)
model with estimated UC model parameters. For the U.S., Figures 3(a), (b) and (c)
illustrate the cycle estimates from the UC models estimated under the restrictions
0, =0, 0, = —0.5and #; = 0.5, respectively. The restrictions, #; = 0 and 6; = —0.5,
are consistent with the estimated unrestricted ARIMA(2, 1, 2) model, whereas the
restriction #; = 0.5 is not. The cycle estimates based on #; = 0 and ¢, = —0.5 are
identical; however, the cycle estimates based on #; = 0.5 are substantially different
from the other two. From Figure 4, findings for U.K. GDP are similar. Figures
4(a) and (b) illustrate the cycle estimates under proper identification restrictions
and Figures 4(c) and (d) present the cycle estimates based on improper restrictions.
The cycle estimates in (a) and (b) are identical. Although it is difficult to see
visually, the cycle estimates in (c¢) differ from those in (a) and (b).

5From footnote 4, it is obvious that if 8; is fixed, 7o, v1, and 72 are uniquely determined from
072,, o2, and One, wWhich implies that if 6; is fixed, we can estimate 0’,,2], o2, and one by the MLE

under Gaussian assumption for ¢; and 7.



5 Conclusion

In this paper, we proposed a simple methodology for investigating the correlation
between permanent and transitory shocks for unidentified UC models. Although
one cannot estimate the correlation in this case, our methodology can be used to
obtain an upper bound for the correlation. We applied our methodology to U.S. and
U.K. real GDP data. It was found that the upper bounds of the correlations are
negative for both countries. This implies that for these two countries, permanent
and transitory shocks are strongly negatively correlated.

Our results raise questions about the conventional identification scheme for UC
models, which involves setting the correlation parameter to zero. As argued by
MNZ in the context of U.S. GDP, imposing such a restriction distorts the estimates
of trend and cycle from UC models. Our results confirm this for the case of U.K.
GDP. We also showed that the UC model with a stationary AR(2) cycle process is
not supported by U.K. real GDP data.



Appendix A: State space representation of the UC-ARMA (2,
1) model

We adopt the following state space representation of the UC-ARMA(2, 1) model
for estimation of the model parameters and the cycle:

(Observation equation)

Tt

Ct
=/1100 ,

Yt [ ] ¢t
€t
(State equation)

T i 1 0 0 O Ti—1 10
Ct _ 0 + 0 o1 ¢2 6y Ct—1 + 0 1 Ul
Ct—1 0 0 1 0 0 Ct—2 00 g |’
€t 0 0 0 0 O €11 01

for t =1,...,T with E(n) = E(ey) = 0, var(n,) = o7, var(e;) = 02, and cov(n, 5) =
poyo. ift = s and 0 otherwise. We set the initial conditions, namely, the mean vector
and covariance matrix of (71, ¢y, co, €1)’, for starting the Kalman filter recursion, as
the stationary mean vector and covariance matrix of (¢, ¢;_1, ;)" for (¢1, co, 1), and
E(11) = y; and var(ry) = 107 for 7;. The covariances between 7, and (¢, ¢y, &1)" are
set to zero.

If our objective is only to estimate parameters, it is more convenient to use the

following state space representation of the first difference of 1

(Observation equation)

A'Tt
ACt
Ayy=[1 10 0 0] | Aciy
&t

Y

€t—1

(State equation)

AT, [ 00 0 0 0 AT, 10

ACt 0 0 ¢1 ¢2 91—1 91 ACt_l 01

A, |l=1l0]l+]l0 1 0 0 0 Acis | +10 0 [”t}.
& 0 00 0 0 0 e 0 1 |L°®
£i1 0 00 0 1 0 o 00

This is because then all state variables are stationary and we can avoid the problem of
initialization. The same technique can be used for higher order UC-ARMA models.
See Durbin and Koopman (2001) for more details of state space models.
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Table 1: Estimates of the ARIMA (2, 1, 2) parameters

US. UK.
¢ 1.3635  0.5605
(0.1447)  (0.0972)

¢y 07789  -0.2564
(0.1729)  (0.0981)

0r  -1.1068 —0.1361
(0.2148)  (0.0651)

;5 0.6187  0.7560
(0.2234)  (0.0692)

g 0.8299  0.6189
(0.0725)  (0.0661)

o2 0.8253 0.1645

o2 1253 0892
o2, 0970  0.301
(1) 12293 2.3278

L -315.04 -105.14

Note: the following ARIMA(2, 1, 2) model was estimated by using exact maximum
likelihood estimation:

O(L)(Ay, — p) = 0(L)uy, w ~ NID(0,07),

where ¢(L) = 1 — ¢ L — ¢oL?, and 0*(L) = 1 + 6;L + 03L%. Standard errors are
in parentheses. The rows with o7, 02, and (1) display estimates of the long-run
variance, the unconditional variance and the (cumulated) impulse response measure,

namely, ¥(1) = 0*(1)/¢p(1), respectively. The last row reports the log-likelihood.
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Table 2: Estimates of the UC-FARMA(2, 1) parameters

U.S. U.K.
01 0.0 -0.5 0.5 0.16 0.22 0.0* —0.5"
o1 1.3635 1.3635 1.4277 0.5605 0.5605 0.6462 1.6709
po  —0.7789 —0.7789 —0.6051 —0.2564 —0.2564 —0.3342 —0.7547
0727 1.2533 1.2533 0.8733 0.8914  0.8914  0.8751 0.7535
o? 0.3170 0.3798 0.4211 0.3276 0.3780 0.2864  0.7405
p —0.9483 —0.7429 —0.9517 —0.9937 —0.9948 —0.9983 —0.9381
! 0.8299 0.8299 0.8337 0.6189 0.6189 0.6186 0.6192
oy/0. 1.9883 1.8165 2.0741 1.6495 1.5356 3.0557 1.0087
L —-315.04 —315.04 —316.69 —105.14 —105.14 —-105.63 —111.35

Note: the following UC-ARMA(2, 1) model was estimated by maximum likelihood
estimation from a state space representation :

w=n+c, T=p+1-1+m o(L)e=0(L)e
poyo. for k=0,

N ~ 7,2([]\](07 O'%)7 €~ ZZdN(O, Ug), 007’7"(77t7 gt:i:k) = 0 otherwise

where ¢(L) =1 — ¢ L — ¢ L%, and O(L) = 1 + 6, L. The value of 6, was set before
estimation. For estimation, we imposed the condition for positive definiteness on
the covariance matrix parameters and imposed the stationarity conditions for the
AR(2) coefficients. The last row reports the value of the log-likelihood.
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Figure 1. Growth rates of U.S. and U.K. real GDP
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Figure 2: Implied relationship between the correlation and the MA(1) parameter
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Figure 3: Percentage deviation from trend of U.S. real GDP
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Note: these figures represent the cycle estimates from the UC models estimated under
the following restrictionson 6,:0, =0 for (a); 6, =05 for (b); and ¢, =-0.5 for (c).
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Figure 4. Percentage deviation from trend of U.K. real GDP
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Note: these figures represent the cycle estimates from the UC models estimated under the
following restrictions on 6,:0, =0.16 for (a); 9, =0.22 for (b); ¢, =0 for (c) and 6, =-05
for (d)
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