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Abstract

This paper presents a time series model that has an asymptotically efficient

ordinary least squares (OLS) estimator, irrespective of the singularity of its

limiting sample moment matrices. In the literature on stationary time series

analysis, Grenander and Rosenblatt’s (1957) (G–R) classical result is used to

judge the asymptotic efficiency of regression coefficients on deterministic regres-

sors satisfying Grenander’s condition. Without this condition, however, it is not

obvious that the model is efficient. In this paper, we introduce such a model by

proving the efficiency of the model with a slowly varying (SV) regressor under

the same condition on error terms constrained in G–R. This kind of regressor is

known to display asymptotic singularity in the sample moment matrices, as in

Phillips (2007), such that Grenander’s condition fails.

∗The author thanks Eiji Kurozumi for constructive remarks on an earlier version of this paper and

Katsumi Shimotsu for helpful suggestions in refining the current version. The author also appreciates

the useful comments of workshop participants at Hitotsubashi University along with delegates at the

2011 Japanese Joint Statistical Meeting held at Kyushu University and gratefully acknowledges the

financial support of a Japan Society for the Promotion of Science Research Fellowship for Young Sci-

entists. Address correspondence to Yoshimasa Uematsu, Graduate School of Economics, Hitotsubashi

University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan; e-mail: ed111001@g.hit-u.ac.jp.

1



1 INTRODUCTION

Discussion of the asymptotic efficiency of regression coefficients on time series models

dates from the middle of the 20th century. When the regressors are deterministic

functions of time such that the disturbances may be serially autocorrelated, Grenander

(1954), Rosenblatt (1956) and Grenander and Rosenblatt (1957) (G–R) have found

the necessary and sufficient condition for ordinary least squares (OLS) estimators to

be asymptotically efficient. In this situation, a theory is constructed for the class

of regressors that satisfy the so-called Grenander’s condition. However, while these

regressors may be sufficiently general in empirical work or in the theoretical analysis of

deterministically trending models, such as in Vogelsang (1998) and Perron and Yabu

(2009), theoretical studies of asymptotic efficiency without this condition have rarely

been seen.

Following the seminal work of G–R, there has been much attention to models with

stochastic regressors in particular. For example, Krämer (1986) has proved the asymp-

totic equivalence of the OLS and the GLS estimator when the regressor is a univariate

integrated process under stationary errors independent of the regressor. Subsequently,

Phillips and Park (1988) extended these results when dealing with multiple regressions.

Most recently, Krämer and Hassler (1998) studied the case where the regressors are

fractionally integrated, while Shin and Oh (2002) generalized the class of integrated

regressors to the class of unstable regressors containing seasonally integrated processes

including high order integrations as special cases.

The present paper, however, reconsiders a classical G–R type regression, that is,

a model with deterministic regressors. In this class of model, it is unclear whether

the model is efficient unless Grenander’s condition is satisfied and the G–R result

applied. This paper shows the existence of an asymptotically efficient model that

does not satisfy the condition through proving the asymptotic efficiency of the model

with a slowly varying (SV) regressor. That these kinds of regressors are asymptotically

collinear with the constant term and the other SV regressors is owed to Phillips (2007).

As a consequence, the asymptotic singularity of sample covariance matrix of regressors
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arise, that is, the Grenander condition fails. Thus, the efficiency of the model with an

SV regressor yields a simple but significant example of time series efficiency that does

not satisfy the Grenander condition. Some results on SV regressors investigated by

Phillips (2007) are fundamental to our theory, and hence are reviewed in the following

section.

Before proceeding to the general result, we study the regression model with a

certain error process {ut} as preparation.

yt = α + β log t + ut, or y = Xβ + u, say

Note that the logarithmic function is a typical example of SV functions. If we let

Dn = diag[
√

n,
√

n log n] and F−1
n = diag[

√
n log−1 n,

√
n], then the sample moment

matrices of the regressors Xt = [1, log t] and X = [X ′
1, . . . , X

′
n]′ asymptotically behave

so that

D−1
n (X ′X)D−1

n →

 1 1

1 1


 and F−1

n (X ′X)−1F−1
n →


 1 −1

−1 1


 . (1)

This is easily derived by a direct application of Lemma 1 described in the next section.

Therefore, we may confirm that the classical approach in G–R is no longer valid. Our

proof of the asymptotic equivalence of the OLS and GLS estimators is intuitively

understood because we prove later that

X ′ΓX ∼ σ2X ′X and X ′Γ−1X ∼ 1

σ2
X ′X (2)

holds, then we have the asymptotic equivalence of the variances,

(X ′X)−1X ′ΓX(X ′X)−1 ∼ σ2(X ′X)−1 and (X ′Γ−1X)−1 ∼ σ2(X ′X)−1,

where Γ = Var(u) and σ2 is the long-run variance of u if it is defined as a stationary

process. A difficulty arises when we take the determinant for inverse, i.e.,

det(X ′X) = n

n∑
t=1

log2 t−
(

n∑
t=1

log t

)2

.

The first and second asymptotically dominated terms of the difference offset each other

and only the third dominated term survives. (See (5).) Therefore, a rather accurate

approximation is required for (2).
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In a regression model with an SV regressor, assumptions concerning the error terms

are also important. Phillips (2007) and Mynbaev (2009) have defined {ut} as a linear

process with some moment conditions to derive the asymptotic distribution of the OLS

estimator. (See Remark 3.) Conversely, as we focus only on the second moments of the

OLS and GLS estimators, a general stationary process with continuous and positive

spectrum is required and is completely identical to the classical requirement in G–R.

(See Section 2.1.)

The remainder of the paper is organized as follows: Section 2 includes some as-

sumptions and provides some preliminary theory. We especially consider reviews of

the G–R result and Phillips (2007) on SV regressors. Section 3 states the main theo-

rem for asymptotic efficiency and Section 4 concludes. Appendixes A and B include

the proofs for the main result.

2 PRELIMINARY RESULTS AND ASSUMPTIONS

2.1 Classics for Asymptotic Efficiency

Consider a time series regression model as follows:

yt = β0x0,t + β1x1,t + ut, t = 1, . . . , n, (3)

where xi,t for i = 0, 1 are nonstochastic regressors and ut are stationary errors satisfying

Assumption 2 below. We write aij,n(h) =
∑n−h

t=1 xi,t+hxj,t, a product sum of xi,t’s for

t = 1, . . . , n and h = 0, 1, . . . . Further, we define the correlation matrix Rn(h) =

D−1
n An(h)D−1

n with Dn = diag[
√

a00,n(0),
√

a11,n(0)] and An(h) = [aij,n(h)]. In order

to verify the asymptotic efficiency of their regression coefficients, these regressors xi,t

should satisfy a set of reasonable conditions as follows.

Assumption 1 (Grenander) The regressors xi,t for i, j = 0, 1, t = 1, . . . , n and

h = 0, 1, . . . satisfy the following four conditions:

(a) lim
n→∞

aii,n(0) = ∞,
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(b) lim
n→∞

x2
i,n+1

aii,n(0)
= 0,

(c) For each element of Rn(h), lim
n→∞

rij,n(h) exists,

(d) lim
n→∞

Rn(0) is nonsingular.

If Assumption 1 is satisfied, there exists a Hermitian matrix M(λ) with positive

semidefinite increments such that

R(h) =

∫ π

−π

eihλdM(λ),

where i =
√−1. This Hermitian matrix M(λ) is one of the keys to the result in G–R.

An assumption on the regression errors ut in the model (3) is also required, but

what we really need should be sufficiently general to include a very wide class of

stationary processes.

Assumption 2 The error process {ut} for t = 1, . . . , n is stationary with Eut = 0

and Eutut+h = γh having a spectral density f(λ) that is continuous and positive for

all λ ∈ [−π, π].

Remark 1 Throughout the paper, we let

σ2
n := nVar(ū) =

1

n

n∑
s=1

n∑
t=1

γs−t and σ2 := 2πf(0),

where σ2 is the long-run variance. If Assumption 2 holds, then we have σ2
n → σ2 as

n → ∞ (see Fuller (1996, p. 310)). The boundedness of the limit is ensured by the

continuity of f . In addition, both the G–R result and our subsequent analysis require

the positiveness of f because its reciprocal is needed for the expression of the GLS

estimator.

Under such reasonable conditions, G–R derives the necessary and sufficient condition

for the OLS estimator to be asymptotically efficient, or for the variances of the OLS

and GLS estimators to be asymptotically equivalent.
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Theorem 1 (Grenander–Rosenblatt) Under Assumptions 1 and 2, the OLS esti-

mator of the model (3) is asymptotically efficient relative to the GLS estimator if and

only if M(λ) increases at not more than two points of λ ∈ [0, π] and the sum of the

ranks of the increases in M(λ) is two.

For a proof and further discussion, see Anderson (1971, Sect. 10.2.3) for example.

We should emphasize that this theorem only works for regressors that satisfy the

Grenander condition (Assumption 1). Our aim is then to seek an asymptotically

efficient model without satisfying this condition.

We should also note that the result holds for a general multiple regression model,

but we concentrate on the model (3) because the corresponding result in Section 3 is

given with a simple regression.

2.2 Slowly Varying Regressors

These kind of regressors are known to display asymptotic singularity in the sample

moment matrix (see Phillips (2007)), such that the G–R result may not be applied

to the asymptotic efficiency of the regression coefficients. Our main objective here is

to prove the asymptotic equivalence of the variances of the OLS and GLS estimators

in a model with a SV regressor and reveal the existence of an asymptotically efficient

model that does not satisfy the Grenander condition. For this purpose, we start with a

definition of SV functions. A positive valued function L on R+ is called slowly varying

if it satisfies, for any r > 0, L(rn)/L(n) → 1 as n →∞. In order to deal with such an

SV function L(t), the following Karamata’s representation theorem is well known and

essential. That is, the function L is SV if and only if it may be written in the form

L(n) = c(n) exp

(∫ n

a

ε(s)

s
ds

)
for n > a

for some a > 0, where c(n) → c ∈ (0,∞) and ε(n) → 0 as n → ∞. Considering

regression theory, however, we require a stronger assumption.

Assumption 3 L is an SV function satisfying the conditions below:

6



(a) L(t) is a smoothly slowly varying (SSV) function with Karamata representation

L(n) = c exp

(∫ n

a

ε(s)

s
ds

)
for n > a

for some a > 0, and where c > 0, ε ∈ C∞ and ε(n) → 0 as n →∞.

(b) |ε(n)| is SSV, and ε has Karamata representation

ε(n) = cε exp

(∫ n

a

η(s)

s
ds

)
for n > a,

where cε > 0, η ∈ C∞, |η(n)| is SSV and η(n)2 = o(ε(n)) → 0 as n →∞.

(c) L is SV with remainder φ, that is, as n →∞,

L(rn)

L(n)
= 1 + O

(
1

φ(n)

)
,

where φ is such that, for some α > 0 and n ≥ α,

1

αφ(n)
≤ |ε(n)| ≤ α

φ(n)
.

(d) L(n) is monotonically increasing.

Remark 2 Conditions (a) and (b) are more restrictive assumptions than in Kara-

mata’s representation. These conditions also appeared in Phillips (2007) and Mynbaev

(2009). Mynbaev (2009) introduced condition (c) to ensure discussion of the asymp-

totic analysis of regressions was more rigorous. Many SV functions, including all the

L(n) tabulated in Table 1, possess the remainder φ = ε. For further discussion of SV

with a remainder, see Mynbaev (2009) and Bingham Goldie and Teugels (1987) Sects.

2.3 and 3.12. Condition (d) is for convenience.

Under Assumption 3, we have an important result useful for deriving asymptotic

theory

ε(n) =
nL′(n)

L(n)
→ 0 and η(n) =

nε′(n)

ε(n)
→ 0 as n →∞. (4)

This is easily obtained by the representation theorem. Consequently (4) produces some

examples of L(n) in Table 1. Conversely, typical SV functions L in Table 1 satisfy

Assumption 3 (a)-(c). Another application of Assumption 3 leads to the following

lemma. This is used for the asymptotic expansion of the sum of the SV functions in

order to evaluate their limiting behavior.
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Table 1: ε(n) and η(n) corresponding to L(n). γ > 0.

L(n) ε(n) η(n)

logγ n γ/ log n −1/ log n

1/ logγ n −γ/ log n −1/ log n

log log n 1/(log n log log n) −1/(log n log log n)− 1/ log n

1/ log log n −1/(log n log log n) −1/(log n log log n)− 1/ log n

Lemma 1 (Phillips) If L(t) satisfies Assumption 3, then we have:

1

n

n∑
t=1

L(t)k = L(n)k − kL(n)kε(n) + k2L(n)kε(n)2 + kL(n)kε(n)η(n)

− k3
[
L(n)kε(n)3 + 3L(n)kε(n)2η(n) + L(n)kε(n)η(n)2

]

+ o
(
L(n)kε(n)

[
ε(n)2 + ε(n)η(n) + η(n)2

])
.

As in Phillips (2007, p. 568), we particularly let,

L12(n) = L(n)− L(n)ε(n) + L(n)ε(n)2 + L(n)ε(n)η(n)

+ o(L(n)ε(n)[ε(n) + η(n)]),

L22(n) = L(n)2 − 2L(n)2ε(n) + 4L(n)2ε(n)2 + 2L(n)2ε(n)η(n)

+ o(L(n)2ε(n)[ε(n) + η(n)]),

(5)

which are the asymptotic expansions of n−1
∑n

t=1 L(t) and n−1
∑n

t=1 L(t)2 respectively

owing to Lemma 1.

3 RESULT

3.1 Regression Model

Consider the following regression model, for t = 1, . . . , n,

yt = β0 + β1L(t) + ut, or y = Xβ + u, (6)
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where y = [y1, . . . , yn]′, β = [β0, β1]
′ and X = [ι, L] with ι = [1, . . . , 1]′ and L =

[L(1), . . . , L(n)]′. Moreover, we write Xt = [1, L(t)]. The error process {ut} is supposed

to satisfy Assumption 2 and let u = [u1, . . . , un]′ with notation

Var(u) =




γ0 γ1 · · · γn−1

γ1 γ0 · · · γn−2

...
...

. . .
...

γn−1 γn−2 · · · γ0




= [Γ0, Γ1, . . . , Γn−1] = Γ.

Using these notations, we may define the OLS and GLS estimators as β̂OLS − β =

(X ′X)−1X ′u and β̂GLS − β = (X ′Γ−1X)−1X ′Γ−1u, respectively.

Remark 3 {ut} in the model (6) with Assumption 2 is sufficiently general in that the

G–R result requires the same conditions. Phillips (2007) and Mynbaev (2009) assume

that {ut} is a linear process with more restrictive conditions as they consider it to

derive the asymptotic distributions of the OLS estimator. The former requires one

summability condition of the coefficients and the existence of a finite 2pth moment

for {ut} for some p > 2, whereas the latter requires the absolute summability of the

coefficients and uniform integrability on the innovations of {ut}.

3.2 Asymptotic Variances

We now attempt to derive the asymptotic expression for the variance of the OLS and

GLS estimators of (6), and show that the basic definition of asymptotic efficiency

F−1
n

[
Var(β̂OLS)− Var(β̂GLS)

]
F−1

n = o(1) (7)

is true for some common standardizing matrix F−1
n . The first result yields the asymp-

totic variance of the OLS estimator.

Lemma 2 If L(t) satisfies Assumption 3, then under Assumption 2, the OLS estima-

tor of the model (6) has asymptotic variance

Var(β̂OLS) = σ2




1

nε(n)2
− 1

nL(n)ε(n)2

− 1

nL(n)ε(n)2

1

nL(n)2ε(n)2




(1 + o(1)).
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This result is the same as the asymptotic variance derived as a by-product of the

limiting normal distribution in Theorem 3.1 in Phillips (2007).

We next derive the asymptotic variance of the GLS estimator.

Lemma 3 If L(t) satisfies Assumption 3, then under Assumption 2, the GLS estima-

tor of the model (6) has asymptotic variance

Var(β̂GLS) = σ2




1

nε(n)2
− 1

nL(n)ε(n)2

− 1

nL(n)ε(n)2

1

nL(n)2ε(n)2




(1 + o(1)).

To summarize, we state the theorem below.

Theorem 2 Under Assumption 3, the OLS estimator of (6) is asymptotically effi-

cient. In fact, (7) is true with the normalizing matrix

F−1
n =




√
nε(n) 0

0
√

nL(n)ε(n)


 .

Remark 4 This result is given by the simple regression (6), although Phillips (2007)

dealt with polynomial and multiple regressions as well as simple regression. With

the same proof, we could extend our analysis to these general models. However, the

computation required would be burdensome. Accordingly, we have only focused on

the simple regression (6).

4 CONCLUSIONS

In the literature on stationary time series analysis, or the classical G–R result, re-

gressors are required to satisfy the Grenander condition when we wish to observe the

asymptotic efficiency of the regression coefficients of the model. In the present paper,

we have revealed the existence of an asymptotically efficient model that does not sat-

isfy the Grenander condition through proving the asymptotic equivalence of the OLS
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and GLS estimators of the model with an SV regressor. The assumptions needed for

the error term are so general and identical that the G–R result is required. Thus, we

may consider the paper as a form of compensation for the G–R result.
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APPENDIX A: A Lemma for the Main Proofs

Lemma 4 Let σ2
n = n−1

∑∑n
u,s=1 γs−u. For any t = 1, . . . , n and n ≥ 1, the following

statements are true:

(a)
t−1∑
u=1

n∑
s=1

γs−u − (t− 1)σ2
n < ∞,

(b)
t−1∑
u=1

n∑
s=1

L(s)γs−u −
(

t−1∑
u=1

L(u)

)
σ2

n = o(tL(n)ε(n)).

Proof (a) Let g̃n(t− 1) denote the left-hand side of (a). From (2), the autocovariance

may be written as

γh =

∫ π

−π

eihλf(λ)dλ, (8)

where f is the continuous spectral density. Hence, we have

|g̃n(t− 1)| =
∣∣∣∣∣

t−1∑
u=1

n∑
s=1

γs−u − t− 1

n

n∑
u=1

n∑
s=1

γs−u

∣∣∣∣∣

=

∣∣∣∣∣
∫ π

−π

(
t−1∑
u=1

e−iuλ

n∑
s=1

eisλ − t− 1

n

n∑
u=1

e−iuλ

n∑
s=1

eisλ

)
f(λ)dλ

∣∣∣∣∣

=

∣∣∣∣∣
∫ π

−π

(
sin

(t− 1)λ

2
sin

nλ

2
cos

(n− t + 1)λ

2
− t− 1

n
sin2 nλ

2

)
f(λ)

sin2 λ
2

dλ

∣∣∣∣∣

≤ max
−π≤λ≤π

|f(λ)|
∫ π

−π

∣∣∣∣sin
(t− 1)λ

2
sin

nλ

2
cos

(n− t + 1)λ

2
− t− 1

n
sin2 nλ

2

∣∣∣∣
dλ

sin2 λ
2

.

(9)

This integrand is clearly found to be bounded on [−π, π] for all t = 1, . . . , n and n ≥ 1

except at λ = 0. Only at this point, the ratio is of indeterminate form. Even if the

point λ = 0 is included, however, boundedness can be proved uniformly on [−π, π] as

follows:
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Transforming the product of the trigonometric functions to their summations, and

applying l’Hospital’s rule twice, we obtain

lim
λ→0

(
sin

(t− 1)λ

2
sin

nλ

2
cos

(n− t + 1)λ

2
− t− 1

n
sin2 nλ

2

)
1

sin2 λ
2

= lim
λ→0

(
−cos nλ

4
+

cos(t− 1− n)λ

4

+
1− cos(t− 1)λ

4
− 2(t− 1)(1− cos nλ)

4n

)
1

(1− cos λ)/2

= lim
λ→0

(
n sin nλ

4
− (t− 1− n) sin(t− 1− n)λ

4

+
(t− 1) sin(t− 1)λ

4
− 2n(t− 1) sin nλ

4n

)
1

(sin λ)/2

= lim
λ→0

(
n2 cos nλ

4
− (t− 1− n)2 cos(t− 1− n)λ

4

+
(t− 1)2 cos(t− 1)λ

4
− 2n(t− 1) cos nλ

4

)
1

(cos λ)/2

=

(
n2

4
− (t− 1− n)2

4
+

(t− 1)2

4
− 2n(t− 1)

4

)
1

1/2

= 0

(10)

identically for all t = 1, . . . , n and n ≥ 1. Thus, the integral in (9) is finite for all

t = 1, . . . , n and n ≥ 1, and this gives the proof of (a).

(b) Let h̃n(t − 1) denote the left-hand side of (b). Applying summation by parts

and collecting terms gives

h̃n(t− 1) =
n∑

v=1

L(v)
t−1∑
u=1

γv−u −
∑t−1

u=1 L(u)

n

n∑
u=1

n∑
v=1

γv−u

= L(n)
n∑

v=1

t−1∑
u=1

γv−u −
n∑

s=2

s−1∑
v=1

t−1∑
u=1

γv−u∆L(s)−
∑t−1

u=1 L(u)

n

n∑
u=1

n∑
v=1

γv−u

=
n∑

s=2

(
n∑

v=1

t−1∑
u=1

γv−u −
s−1∑
v=1

t−1∑
u=1

γv−u −
∑t−1

u=1 L(u)

nL(n)

n∑
u=1

n∑
v=1

γv−u

)
∆L(s).

(11)
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If we use (8) like (a), the parentheses in (11) may be expressed as an integration of

some trigonometric functions
∫ π

−π

(
sin

(t− 1)λ

2
sin

nλ

2
cos

(n− t + 1)λ

2

− sin
(t− 1)λ

2
sin

(s− 1)λ

2
cos

(s− t)λ

2

−
∑t−1

u=1 L(u)

nL(n)
sin2 nλ

2

)
f(λ)

sin2 nλ
2

dλ.

(12)

If we write the integrand of (12) as Tn,s,t(λ)f(λ), (i.e., Tn,s,t(λ) is a polynomial of the

ratio of the trigonometric functions), then the absolute value of (12) is
∣∣∣∣
∫ π

−π

Tn,s,t(λ)f(λ)dλ

∣∣∣∣ ≤ max
−π≤λ≤π

|f(λ)|
∫ π

−π

|Tn,s,t(λ)| dλ. (13)

As in (a), the integrand |Tn,s,t(λ)| is bounded in [−π, π] except at the indeterminate

point λ = 0. In this case, however, the behavior of the integrand |Tn,s,t(λ)| around

λ = 0 is different from that of (a) in that it depends on s, t and n, and we now observe

this. For deriving the form of the first and second terms of Tn,s,t(λ) around λ = 0, the

computational method is the same as (10), although it is also more tedious. For the

third term, we note that

∑t−1
u=1 L(u)

nL(n)
=

(t− 1)L(t− 1)(1 + O(ε(t)))

nL(n)

=
t− 1

n
(1 + O(ε(n)))(1 + O(ε(t)))

for large n because of Assumption 3 (c) and Lemma 1. Thus, after collecting terms,

we can observe for small |λ| and large n that

Tn,s,t(λ) ∼ t− st + s− 1 + tnO(ε(t)).

Returning to the integral (13), we split the area of the integral (−δ/n, δ/n) and

[−π, π]\(−δ/n, δ/n) for any fixed δ > 0. Then the last integral in (13) becomes

∫

[−π,π]

|Tn,s,t(λ)| dλ =

(∫

(−δ/n,δ/n)

+

∫

[−π,π]\(−δ/n,δ/n)

)
|Tn,s,t(λ)| dλ

=
δ

n
O(t− st + s− 1 + tnε(t)) + O(1)

= δO(tε(t)) = o(tε(t))

(14)
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since δ > 0 is arbitrary. Finally, from (11) and (14), we obtain

∣∣∣h̃n(t− 1)
∣∣∣ ≤

n∑
s=2

(∫

[−π,π]

|Tn,s,t(λ)| dλ

)
∆L(s) = o (tε(t))

n∑
s=2

∆L(s)

= o(tL(n)ε(t)).

This is the desired result. ¥

APPENDIX B: Proofs for Section 3

Proof of Lemma 2 We can write

X ′ΓX =




ι′Γι ι′ΓL

ι′ΓL L′ΓL


 and σ2

n =
1

n

n∑
s=1

n∑
t=1

γs−t,

and first show that

(i) ι′Γι = σ2
nn,

(ii) ι′ΓL = σ2
nι
′L + o

(
nL(n)ε(n)2

)
, and

(iii) L′ΓL = σ2
nL′L + o

(
nL(n)2ε(n)2

)
.
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If these equations are true, the variance leads to

Var(β̂OLS) = (X ′X)−1X ′ΓX(X ′X)−1

=




n ι′L

ι′L L′L




−1 


ι′Γι ι′ΓL

L′Γι L′ΓL







n ι′L

L′ι L′L




−1

=
1

(nL′L− (ι′L)2)2




L′L −ι′L

−L′ι n




× σ2
n




n ι′L + o(nL(n)ε(n)2)

L′ι + o(nL(n)ε(n)2) L′L + o(nL(n)2ε(n)2)







L′L −ι′L

−L′ι n




=
σ2

n

n4L(n)4ε(n)4(1 + o(1))

×




n3L(n)4ε(n)2(1 + o(1)) −n3L(n)3ε(n)2(1 + o(1))

−n3L(n)3ε(n)2(1 + o(1)) n3L(n)2ε(n)2(1 + o(1))




=
σ2

n

1 + o(1)




1

nε(n)2
− 1

nL(n)ε(n)2

− 1

nL(n)ε(n)2

1

nL(n)2ε(n)2




(1 + o(1)),

(15)

where we have used the fact that

nL′L− (ι′L)2 = n2L(n)2ε(n)2(1 + o(1))

due to Lemma 1. Thus, it suffices to prove (i), (ii) and (iii).

(i) is trivial by definition of σ2
n. Next, for (ii), we can write

∣∣ι′ΓL− σ2
nι′L

∣∣ =

∣∣∣∣∣
n∑

t=1

L(t)

(
n∑

s=1

γs−t − σ2
n

)∣∣∣∣∣ =

∣∣∣∣∣
n∑

t=1

L(t)gn(t)

∣∣∣∣∣ , (16)

where gn(t) =
∑n

s=1 γs−t − σ2
n and let g̃n(t) =

∑t
u=1 gn(u). Applying summation by

parts to (16), we have, together with the monotonicity of L,
∣∣∣∣∣g̃n(n)L(n)−

n∑
t=2

g̃n(t− 1)∆L(t)

∣∣∣∣∣ ≤
n∑

t=2

|g̃n(t− 1)|∆L(t), (17)
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where ∆L(t) = L(t)−L(t−1). This notation may be used repeatedly. Here we remark

that max1≤t≤n |g̃n(t)| is bounded because of Lemma 4 (a). Therefore, for a sufficiently

large n, (17) is less than or equal to:

max
1≤t≤n

|g̃n(t)|
n∑

t=2

∆L(t) = max
1≤t≤n

|g̃n(t)| (L(n)− L(1)) = O(L(n)), (18)

which is certainly o(nL(n)ε(n)2).

We prove (iii) in a similar way. We write

∣∣L′ΓL− σ2
nL′L

∣∣ =

∣∣∣∣∣
n∑

t=1

L(t)

(
n∑

s=1

L(s)γs−t − σ2
nL(t)

)∣∣∣∣∣ =

∣∣∣∣∣
n∑

t=1

L(t)hn(t)

∣∣∣∣∣ , (19)

where hn(t) signifies
∑n

s=1 L(s)γs−t − σ2
nL(t) and let h̃n(t) =

∑t
u=1 hn(u). Applying

summation by parts to (19) yields

∣∣∣∣∣L(n)h̃n(n)−
n∑

t=2

h̃n(t− 1)∆L(t)

∣∣∣∣∣

≤
∣∣∣L(n)h̃n(n)

∣∣∣ +

∣∣∣∣∣
n∑

t=2

h̃n(t− 1)∆L(t)

∣∣∣∣∣ = A(n) + B(n), say.

Because of the symmetry of γs−t and the result of (ii), the first term A(n) is calculated

so that

A(n) = L(n)

∣∣∣∣∣
n∑

t=1

(
n∑

s=1

L(s)γs−t − σ2
nL(t)

)∣∣∣∣∣

= L(n)

∣∣∣∣∣
n∑

t=1

L(t)

(
n∑

s=1

γs−t − σ2
n

)∣∣∣∣∣ = O(L(n)2).

(20)

Meanwhile, owing to Lemma 4 (b) directly, the second term B(n) is written as

B(n) =

∣∣∣∣∣
n∑

t=2

h̃n(t− 1)∆L(t)

∣∣∣∣∣ ≤
n∑

t=2

|o(tL(n)ε(t))|∆L(t)

= o

(
L(n)

n∑
t=2

n
t

n
ε

(
n

t

n

)
∆L

(
n

t

n

))

= o

(
nL(n)

∫ 1

0

rε (nr) dL (nr)

)
(21)
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under Assumption 3. Changing variables and the formula (4) imply that (21) leads to

o

(
L(n)

∫ n

0

tε (t) dL (t)

)
= o

(
L(n)

∫ n

0

tε (t) L′ (t) dt

)

= o

(
L(n)

∫ n

0

tε (t)
L(t)ε(t)

t
dt

)

= o(nL(n)2ε(n)2).

(22)

From (20) and (22), the desired result of (iii) is given by

∣∣L′ΓL− σ2
nL′L

∣∣ ≤ A(n) + B(n) = o(nL(n)2ε(n)2). (23)

In consequence, we obtain the asymptotic form of Var(β̂OLS) as in (15) from (i), (ii)

and (iii). ¥

Proof of Lemma 3 First, it should be proved for the element γs−t of Γ−1 that

(i) ι′Γ−1ι = ω2
nn,

(ii) ι′Γ−1L = ω2
nι
′L + o

(
nL(n)ε(n)2

)
, and

(iii) L′Γ−1L = ω2
nL′L + o

(
nL(n)2ε(n)2

)
,

where

ω2
n :=

1

n

n∑
s=1

n∑
t=1

γs−t.

They can be shown from the proof of Lemma 2 as long as the spectral density of γs−t

is continuous on [−π, π]. But this is true for a sufficiently large n because of the fact

given in Shaman (1975) that Γ−1 can be asymptotically replaced by the matrix Γi,

whose (s, t) element is defined by

γis−t :=
1

(2π)2

∫ π

−π

ei(s−t)λ 1

f(λ)
dλ.

Here we note that f > 0 on [−π, π] by Assumption 2. That is, the spectral density of

γs−t is given by (2π)−2f(λ)−1 in the asymptotic sense, and hence is continuous under

Assumption 2.
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Thus, we obtain the expression from (i), (ii) and (iii) that

Var(β̂GLS) = (X ′Γ−1X)−1 =




ι′Γ−1ι ι′Γ−1L

L′Γ−1ι L′Γ−1L




−1

=
ω−2

n

nL′L− (ι′L)2 + o(n2L(n)2ε(n)2)

×




L′L + o(nL(n)2ε(n)2) −ι′L + o(nL(n)ε(n)2)

−L′ι + o(nL(n)ε(n)2) n




=
ω−2

n

n2L(n)2ε(n)2(1 + o(1))




nL(n)2(1 + o(1)) −nL(n)(1 + o(1))

−nL(n)(1 + o(1)) n




=
ω−2

n

1 + o(1)




1

nε(n)2
− 1

nL(n)ε(n)2

− 1

nL(n)ε(n)2

1

nL(n)2ε(n)2




(1 + o(1)),

Finally, we specify the asymptotic form of ω2
n, but we know that the value converges

to the long-run variance, or 2π times the spectrum evaluated at the origin. Therefore,

it follows that

ω2
n → 2π

1

4π2f(0)
=

1

2πf(0)
=

1

σ2
,

which yields the desired result. ¥
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