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Abstract

This article studies the optimal design of scoring auction used in public pro-

curement. In this auction, each supplier’s offer consists of both price and quality,

and a supplier whose offer achieves the highest score wins. The environment we

consider has the feature that quality is multi-dimensional. We show that there

exists a quasi-linear scoring rule which implements the optimal mechanism for the

buyer and is supermodular in quality if the virtual surplus is quasisupermodular

in quality. We further investigate how the buyer should classify quality attributes

when using a scoring rule which is additively separable in the attributes.
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1 Introduction

Auction rules of public procurement have changed from one-dimensional bidding to multi-

dimensional bidding. In contrast with the former traditional rule in which each supplier

submits only a price-bid, the latter auction rule requires suppliers to offer not only price

but also quality they promise to ensure in a project. For instance, in the EU, Article

53 of Directive 2004/18/EC specifies the “Most Economically Advantageous Tender”,

in which the procurement authorities award contracts based on various criteria such as

price, technical merit, aesthetic characteristics, delivery date, and so on. The design of

the multi-dimensional auction is a matter of great concern to the procurement authorities,

reflecting the fact that public procurement accounts for about 16% of GDP in OECD

member countries (OECD, 2008).

The essential element of the multi-dimensional auction is a scoring rule. The rule,

which evaluates suppliers’ offers and gives them scores, should be carefully designed

because it considerably affects suppliers’ decisions what offers to make. There are many

examples of scoring rules adopted by state departments of transportation in the US:

“A+B bidding” (Arizona, etc.), “weighted criteria” (Delaware, Idaho, Massachusetts,

Oregon, Utah, Virginia, etc.), “adjusted bid” (Arizona, Maine, Michigan, North Carolina,

South Carolina, South Dakota, etc.), and so on (see Molenaar and Yakowenko, 2007).

For instance, the rule of “weighted criteria” puts a weight on each of price and quality

attributes (e.g. delivery date, safety level) and evaluates each attribute individually, so

that a total score of each offer is a weighted sum of subscores and a supplier with the

highest total score wins a contract.

The previous studies have confirmed that the scoring auction performs very well from

the buyer’s point of view. A common feature of the environments is that a buyer pro-
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cures a single product (e.g. highway) differentiated by its quality from one of suppliers,

who have private information about cost parameters. In a seminal article, Che (1993)

shows that a scoring auction with a properly designed scoring rule implements the buyer’s

optimal (i.e. utility-maximizing) mechanism characterized by Laffont and Tirole (1987),

McAfee and McMillan (1987), and Riordan and Sappington (1987). Branco (1997) ex-

tends this result to an environment where each supplier’s production cost has a common-

cost component, so that his cost is correlated with the other suppliers’ costs.

In contrast with Che and Branco, who assume that both quality and each supplier’s

type are one-dimensional, Asker and Cantillon (2008) consider a fully general environment

where both elements are multi-dimensional. Although the main results of Asker and

Cantillon are the characterization of equilibrium bidding behavior and the expected utility

equivalence between some formats of scoring auction, they also show that the scoring

auction outperforms some other mechanisms from the buyer’s viewpoint. On the other

hand, they have not investigated whether a scoring auction can implement the optimal

mechanism. The likely reason is that it is extremely difficult to characterize the optimal

mechanism when the supplier has multi-dimensional private information. However, Asker

and Cantillon (2010) characterize the optimal mechanism in a specific environment where

quality is one-dimensional, each supplier’s type consists of two parameters (fixed cost

and marginal cost) and each parameter is a binary random variable. They show that the

scoring auction yields a performance close to that of the optimal mechanism, taking a

numerical simulation approach.

All of the above studies focus on “quasi-linear” scoring rules under which a total score

of each offer is given by a quality score minus price. A typical example of quasi-linear rule

is “weighted criteria”. In a recent study, Hanazono et al. (2011) consider “price-quality
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ratio” scoring rules under which a total score of each offer is given by price divided by a

quality score, and analyze the equilibrium bidding behavior.

In addition to these theoretical studies, there is some experimental evidence support-

ing the high performance of scoring auction compared to that of traditional price-only

auction (Bichler, 2000; Chen-Ritzo et al., 2005).

Although many scoring rules used in practice apply multiple quality criteria, there

are no theoretical studies investigating whether a scoring auction can implement the

optimal mechanism in an environment where quality is multi-dimensional. It is by no

means trivial to answer the question and show what form of scoring rule succeeds in

the implementation, at least from the Revelation Principle (see, e.g., Myerson, 1981).

Moreover, with the model of multi-dimensional quality, it will be anticipated that the

interaction among quality attributes significantly affects the optimal form of scoring rule.

These observations motivate our current work. We generalize the model of Che (1993) by

allowing for multi-dimensional quality. A scoring rule announced by the buyer induces

the following auction game. First, all suppliers’ (one-dimensional) cost parameters are

realized, and each supplier is privately informed about his own parameter respectively.

Second, each supplier simultaneously and independently offers both price and quality. A

supplier wins if the score of his offer is the highest among suppliers and higher than the

predetermined reserve score.1 The winner’s offer becomes a binding contract.

We derive two results. First, we show that there exists a quasi-linear scoring rule

which implements the optimal mechanism and is supermodular in quality if the so-called

“virtual surplus” is quasisupermodular in quality. These properties of supermodularity

and quasisupermodularity, which represent the concept of complementarity between qual-

1The introduction of reserve score is also an extension of Che (1993).
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ity attributes, are specific to the model of multi-dimensional quality (see Topkis, 1998 for

the definitions). In particular, our result implies that the scoring rule should evaluate all

quality attributes as a whole (not separately) to give a total score in a complementary

way. Second, we derive a necessary condition and a sufficient condition for the existence

of a quasi-linear scoring rule which implements the optimal mechanism and is additively

separable in some quality attributes. Our results imply that when the buyer establishes

some sets of subcriteria to use the additively separable rule, each pair of quality attributes

in the distinct sets should be complementary in terms of the production cost.

This article contributes to the literature on scoring auction in two ways. First, we

construct the optimal scoring rule in a different manner from Che (1993) and Branco

(1997). When quality is one-dimensional, the scoring rule constructed by them provides

suppliers with incentives to offer the appropriate quality level. On the other hand, our

example shows that when quality is multi-dimensional, a natural extension of their scoring

rule may induce unsuitable quality offers from the buyer’s viewpoint. To resolve this

problem, we construct the optimal scoring rule by applying the method of monotone

comparative statics (Topkis, 1998). The constructed rule satisfies supermodularity in

quality to deter a supplier’s deviation from the desirable quality offer for the buyer.

Also, as a by-product of using the monotone comparative statics method, we require no

assumptions of concavity (or convexity) and differentiability in quality of the value and

cost functions, and allow quality attributes to be discrete. Second, we provide a useful

guide to designing scoring rules which are additively separable in some quality attributes.

The result has important policy implications because additively separable scoring rules

(e.g. “weighted criteria”) are widely adopted and it must be easier for procurement

authorities to administer those rules.
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The article is organized as follows. Section 2 presents the model which generalizes that

of Che (1993). Section 3 derives the equilibrium bidding strategy. Section 4 shows how

to design a scoring rule to implement the optimal mechanism. Section 5 investigates how

the buyer should classify quality attributes when using a scoring rule which is additively

separable in the attributes. Section 6 concludes. All proofs are in the Appendix.

2 The model

Consider a buyer who procures a single product from one of N suppliers. A (production)

contract between the buyer and a supplier i ∈ {1, ..., N} is denoted by (pi, qi) ∈ R+×Q,

under which the supplier i must deliver a product of quality qi = (q1
i , ..., q

M
i ) ∈ Q ⊂ RM

in exchange for price pi ∈ R+.2 For each m ∈ {1, ...,M}, qmi represents a level of quality

(non-monetary) attribute. The supplier i’s cost parameter is given by θi ∈ [θ, θ̄] ⊂ R. The

suppliers’ types (θ1, ..., θN) are random variables which are independent across suppliers.

The cumulative distribution function of θi is given by F , with a density function f that

is strictly positive everywhere. Each supplier has private information about his realized

type respectively, but the prior probability distribution is common knowledge.

A supplier i of type θi earns profits p−c(q, θi) from a contract (p, q), where c(q, θi) > 0

is his production cost. The buyer’s utility from a contract (p, q) with a supplier of type

θi is a weighted sum of consumers’ surplus and profits, i.e. v(q) − p + α(p − c(q, θi)),

where v(q) is the valuation for a product of quality q and α ∈ [0, 1] is a weight on profits.

We make the following assumptions.

Assumption 1. Q = ×Mm=1Qm, where Qm ⊂ R is a closed interval or a finite set.

2In this article, bold letters denote some vectors: q ≥ q̂ means qm ≥ q̂m for each m; q > q̂ means
q ≥ q̂ and q 6= q̂; q � q̂ means qm > q̂m for each m.
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Assumption 2. v is continuous in q.

Assumption 3. c is continuous in (q, θ) and strictly increasing in q. c is differentiable and

strictly increasing in θ. cθ ≡ ∂c/∂θ is continuous in (q, θ) and increasing in θ.

Assumption 4. c has strictly increasing differences in (q, θ), i.e. c(q′, θ)−c(q, θ) is strictly

increasing in θ for each q′ > q in Q. cθ has increasing differences in (q, θ), i.e. cθ(q
′, θ)−

cθ(q, θ) is increasing in θ for each q′ > q in Q.

Assumption 5. F
f

is increasing in θ.

We will apply the monotone comparative statics method. See Topkis (1998) for some

notions. Assumption 1 ensures that Q is a compact lattice. The notions of increasing

differences express the concept of complementarity between quality attributes and a cost

parameter. Assumptions 4 and 5 ensure that the “virtual surplus” defined later has

strictly decreasing differences in (q, θ).

There is an auction rule (mechanism) that is feasible for the buyer: a scoring auction.

We first define a scoring rule as S : R+ × Q → R. In a scoring auction, each supplier

offers both price and quality, and the scoring rule S assigns a score S(p, q) to each offer

(p, q). With a reserve score which is normalized to zero, a supplier i wins only if his score

is nonnegative and the highest among suppliers.3 We consider a first-score (sealed-bid)

format, in which a winner i is awarded a binding contract (pi, qi) he offered in the auction;

this format corresponds to the first-price format in the standard auction. We focus on a

quasi-linear scoring rule, which takes a form of S(p, q) = s(q)−p. We also call the function

s : Q → R a (quasi-linear) scoring rule. We assume that s is upper semicontinuous in q,

and s has a cost parameter θ̄s ∈ (θ, θ̄] which satisfies maxq∈Q[s(q)− c(q, θ̄s)] = 0.

3We assume that if there is a nonnegative tie score, then each supplier achieving the highest score
wins with equal probability. All results hold for any other tie-breaking rule.
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A scoring rule s publicly announced by the buyer induces the following auction game.

First, all suppliers’ types θ = (θ1, ..., θN) are realized, and each supplier is privately

informed about his own type respectively. Second, each supplier i simultaneously and

independently submits an offer (pi, qi). Then, the game ends. If a supplier i of type θi who

offers (pi, qi) such that s(qi)−pi = maxj[s(qj)−pj] ≥ 0 wins, then he receives pi−c(qi, θi),

the other suppliers receive zero payoffs, and the buyer receives v(qi)−pi+α(pi−c(qi, θi)).

If no supplier wins, then the buyer and all suppliers receive zero payoffs.

In the next section, we explore the Bayesian Nash equilibrium of the auction game.

With a slight abuse of notation, we denote a supplier i’s bidding strategy by (pi, qi) :

[θ, θ̄]→ R+ ×Q. We assume that no supplier uses weakly dominated strategies.

3 Equilibrium bidding strategy

In this section, we derive the equilibrium bidding strategy. The following lemma char-

acterizes a symmetric equilibrium, where all suppliers use the same bidding strategy.

Although our environment is substantially more general than Che (1993) and there are

slight technical difficulties, we can apply his technique to prove the lemma.

Lemma 1. The auction game induced by a quasi-linear scoring rule s has a symmetric

equilibrium in which (i) the bidding strategy (p∗, q∗) is such that for each θ ∈ [θ, θ̄s],

q∗(θ) ∈ arg max
q∈Q

[s(q)− c(q, θ)] (1)

p∗(θ) = c(q∗(θ), θ) +

∫ θ̄s

θ

cθ(q
∗(z), z)

(
1− F (z)

1− F (θ)

)N−1

dz, (2)

and for each θ ∈ (θ̄s, θ̄], (p∗(θ), q∗(θ)) is an arbitrary offer which satisfies s(q∗(θ)) −

p∗(θ) < 0, and (ii) a supplier of type θi wins only if θi = min{θ1, ..., θN , θ̄
s}. Moreover,

for each θ ∈ [θ, θ̄s], any offer (p′, q′) such that q′ 6∈ arg maxq∈Q [s(q)− c(q, θ)] is weakly
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dominated by (p, q∗(θ)) such that s(q∗(θ))− p = s(q′)− p′.

It is important to note that in equilibrium any supplier who wins with positive prob-

ability chooses quality so as to maximize a quality score minus his production cost, as

in (1). Actually, any offer which does not maximize s(q) − c(q, θ) is weakly dominated

by the quality offer q∗(θ) with some price offer. Given the optimal quality offer q∗(θ),

the optimal price offer p∗(θ) is determined by (2). The price offer is greater than the

production cost due to the “shading behavior”.

Lemma 1 also implies that in equilibrium the most efficient supplier wins provided

that his type is lower than θ̄s. Let θ(N) ≡ min{θ1, ..., θN} be the lowest cost parameter

among suppliers, which is also a random variable. We denote the cumulative distribution

function of θ(N) by F(N)(·) = 1 − (1 − F (·))N . Then, the buyer’s expected utility from

announcing a quasi-linear scoring rule s is

F(N)(θ̄
s)E

[
v(q∗(θ(N)))− p∗(θ(N)) + α[p∗(θ(N))− c(q∗(θ(N)), θ(N))] | θ(N) ≤ θ̄s

]
=

∫ θ̄s

θ

[
v(q∗(θ))− c(q∗(θ), θ)− (1− α)cθ(q

∗(θ), θ)
F (θ)

f(θ)

]
dF(N)(θ),

where the equality follows from the substitution of p∗(θ(N)) and the interchange of the

order of integration. We now define the virtual surplus as the function Φ ≡ v − c− (1−

α)cθ
F
f

. Its value Φ(q, θ) = v(q) − c(q, θ) − (1 − α)cθ(q, θ)
F (θ)
f(θ)

times the density f(θ) is

the social surplus generated by trading a product of quality q between the buyer and a

supplier of type θ, minus the sum of information rents paid to the more efficient supplier

than θ. Using this virtual surplus, the buyer’s expected utility can be rewritten as

∫ θ̄s

θ

Φ(q∗(θ), θ)dF(N)(θ).
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4 Optimal scoring rule

In this section, we study the implementation problem. The analysis proceeds in two

steps. First, we characterize an optimal mechanism, following the standard mechanism-

design approach with the envelope theorem of Milgrom and Segal (2002). Second, we

find the condition under which a scoring auction implements the optimal mechanism,

and investigate how the scoring rule should be designed.

In a first step, we use the Revelation Principle to focus on “incentive compati-

ble direct mechanisms”. A direct mechanism is an 3N -tuple of measurable functions

(Pi,Qi, Xi)i∈{1,...,N} where (Pi,Qi, Xi) : [θ, θ̄]N → R×Q× [0, 1]. For each profile of types

θ̂ = (θ̂1, ..., θ̂N) reported by suppliers, a payment schedule Pi(θ̂) specifies the expected

payment from the buyer to the supplier i, a quality schedule Qi(θ̂) specifies quality the

supplier i must ensure when delivering the product, and Xi(θ̂) with
∑N

i=1Xi(θ̂) ≤ 1 spec-

ifies the trading probability between the buyer and the supplier i. A direct mechanism

(P ∗i ,Q
∗
i , X

∗
i )i∈{1,...,N} is optimal (for the buyer) if it solves the following problem:

max
ρ=(Pi,Qi,Xi)i∈{1,...,N}

N∑
i=1

E [Xi(θ)v(Qi(θ))− Pi(θ) + α[Pi(θ)−Xi(θ)c(Qi(θ), θi)]]

s.t. Πρ
i (θi | θi) ≥ Πρ

i (θ̂i | θi) for each θi, θ̂i ∈ [θ, θ̄], i ∈ {1, ...N} (3)

Πρ
i (θi | θi) ≥ 0 for each θi ∈ [θ, θ̄], i ∈ {1, ...N} (4)

where Πρ
i (θ̂i | θi) ≡ Eθ−i

[Pi(θ̂i,θ−i)−Xi(θ̂i,θ−i)c(Qi(θ̂i,θ−i), θi)]. The first constraint is

the interim incentive compatibility (IC) constraint for each supplier, and the second one

is the interim individual rationality (IR) constraint for each supplier.

The next lemma characterizes an optimal mechanism. To explain the hypothesis of

the lemma and the related notions, we introduce some definitions. Denote q ∧ q̂ ≡

(min{q1, q̂1}, ...,min{qM , q̂M}) and q ∨ q̂ ≡ (max{q1, q̂1}, ...,max{qM , q̂M}). Notice that
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q, q̂ ∈ Q implies q ∧ q̂, q ∨ q̂ ∈ Q because Q is a lattice. The virtual surplus Φ is

quasisupermodular in quality if, for each q, q̂ ∈ Q and each θ ∈ [θ, θ̄], Φ(q∧q̂, θ) ≤ Φ(q, θ)

implies Φ(q̂, θ) ≤ Φ(q ∨ q̂, θ), and Φ(q ∧ q̂, θ) < Φ(q, θ) implies Φ(q̂, θ) < Φ(q ∨ q̂, θ).

The virtual surplus Φ is supermodular in quality if, for each q, q̂ ∈ Q and each θ ∈ [θ, θ̄],

Φ(q, θ)−Φ(q∧ q̂, θ) ≤ Φ(q∨ q̂, θ)−Φ(q̂, θ); we apply the same definition to a scoring rule

s. It is easy to show that if Φ is supermodular in quality, then Φ is quasisupermodular

in quality. Thus, quasisupermodularity is a weaker notion than supermodularity. These

notions express the concept of complementarity between non-monetary attributes.

Lemma 2. Suppose that the virtual surplus Φ is quasisupermodular in quality. Then, the

following direct mechanism (P ∗i ,Q
∗
i , X

∗
i )i∈{1,...,N} is optimal for the buyer:

X∗i (θ) =


1 if θi < min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

∗}

1
]{j|θj=θi} if θi = min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

∗}

0 if θi > min{θ1, ..., θi−1, θi+1, ..., θN , θ̄
∗}

(5)

Q∗i (θ) = Q∗(θi) ∈ arg max
q∈Q

Φ(q, θi) (6)

P ∗i (θ) = X∗i (θ)

[
c(Q∗(θi), θi) +

∫ θ̄∗

θi

cθ(Q
∗(z), z)

(
1− F (z)

1− F (θi)

)N−1

dz

]
, (7)

where θ̄∗ ∈ [θ, θ̄] is a cost parameter such that Φ(Q∗(θ), θ) ≥ 0 iff θ ∈ [θ, θ̄∗]. Moreover,

Q∗(θi) is decreasing in θi.

The quasisupermodularity of the virtual surplus, which is trivially satisfied if quality

is one-dimensional, plays a key role in determining the property of the optimal quality

schedule Q∗i . The proof shows that a necessary and sufficient condition for the IC con-

straints (3) is given by the two conditions. With these conditions, we can rewrite the
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buyer’s maximization problem as follows:

max
(Qi,Xi)i∈{1,...,N}

N∑
i=1

E [Xi(θ)Φ(Qi(θ), θi)]

s.t. For each θ, θ̂ ∈ [θ, θ̄] with θ < θ̂ and each i ∈ {1, ...N},∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)−Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz ≥ 0. (8)

The condition (8), which we call the monotonicity condition, is automatically satisfied if

both Qi and Xi are decreasing in θi. Using the result of Milgrom and Shannon (1994),

the proof shows that the quasisupermodularity of the virtual surplus in quality together

with Assumptions 4 and 5 imply that a quality schedule Qi which maximizes the vir-

tual surplus Φ(q, θi) is decreasing in θi; notice that this quality schedule Q∗ depends

only on a supplier’s type report because all suppliers are ex ante symmetric. The proof

also shows that the maximized virtual surplus Φ(Q∗(θi), θi) is decreasing in θi. As a re-

sult, the quality schedule Q∗ and the trading probability X∗i defined in Lemma 2 satisfy

the monotonicity condition (8) and constitute the optimal mechanism with the payment

schedule P ∗i . Thus, the more efficient a supplier is, the higher levels of all non-monetary

attributes he is required to achieve. On the other hand, without the quasisupermodular-

ity, the optimal quality schedule Q∗ may be nonmonotonic in θi. This is because even if

Qm∗ is not decreasing in θi for some m, the monotonicity condition (8) can be satisfied

when cθ(Q(θi), z) is decreasing in θi. The following example shows that this is the case.4

Example 1. Assume that M = 2, Q1 = Q2 = {1, 2}, v(q1, q2) = 0 if q1 = q2 = 1 and

v(q1, q2) = 100 otherwise, c(q1, q2, θ) = 6θq1 +(3θ+9)q2−q1q2, θ is uniformly distributed

on [1, 3], and α = 0. Then, one can show that Φ(q1, q2, θ) = v(q1, q2) − (12θ − 6)q1 −

(6θ + 6)q2 + q1q2, and Φ is not quasisupermodular in quality. Actually, Φ is submodular

4This can occur even in a single-agent screening model. See Laffont and Martimort (2002).
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in quality, i.e. −Φ is supermodular in quality. The following levels of non-monetary

attributes maximizes Φ(q1, q2, θ) for each θ:

Q∗(θ) = (Q1∗(θ), Q2∗(θ)) =


(2, 1) if θ ∈ [1, 2)

(1, 2) if θ ∈ [2, 3].

The quality schedule Q∗ together with X∗i defined in Lemma 2 and θ̄∗ = θ̄ = 3 satisfy the

monotonicity condition (8) because cθ(Q
∗(θ), z) = 15 if θ ∈ [1, 2) and cθ(Q

∗(θ), z) = 12

if θ ∈ [2, 3], and thus cθ(Q
∗(θ), z) is decreasing in θ. Therefore, the optimal quality

schedule Q∗ is nonmonotonic in θ because Q1∗ is decreasing whereas Q2∗ is increasing.

In a second step, we discuss the implementation of the optimal mechanism via a

scoring auction. We say that a (quasi-linear) scoring rule s implements the optimal

mechanism if the auction game induced by s has a Bayesian Nash equilibrium which

yields the same outcome as (P ∗i ,Q
∗, X∗i )i∈{1,...,N} for each realization of θ. Lemmas 1

and 2 imply that the buyer’s goal is to construct a scoring rule s so that each supplier’s

equilibrium offer q∗(θ) is equal to Q∗(θ) for each θ ∈ [θ, θ̄∗] and the inefficient suppliers

(θ ∈ (θ̄∗, θ̄]) are excluded by the reserve score. The next proposition demonstrates how

the scoring rule should be constructed under the same condition as Lemma 2.

Proposition 1. Suppose that the virtual surplus Φ is quasisupermodular in quality. Then,

there exists a quasi-linear scoring rule s∗ which implements the optimal mechanism and

is supermodular in quality.

In the construction of the optimal scoring rule s∗, we fully utilize the monotonicity of

the optimal quality schedule Q∗, which is guaranteed by the quasisupermodularity of the

virtual surplus in quality. Comparing (1) with (6), we see that if a weight α on profits

is equal to one so that the buyer does not care about information rents, then the scoring

rule s which is equal to her valuation v succeeds in the implementation. In general,
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however, because α < 1, we must carefully devise the optimal scoring rule. Figure 1

shows how the rule s∗ is constructed. Suppose that quality is two-dimensional. In the

left figure, the solid curve represents the qualities which the optimal quality schedule Q∗

requires suppliers to ensure for each type θ ∈ [θ, θ̄∗]. Lemma 2 implies that this curve

is upward sloping due to the monotonicity of Q∗. The rule s∗ is constructed so that a

score remains constant even if, starting from any point on the curve, the level of only

one attribute increases, and a score falls to zero if the level of at least one attribute is

lower than Qm∗(θ̄∗). Thus, any supplier who wishes to win has no incentive to make a

quality offer other than offers on the solid curve. In the right figure, the three solid curves

below the dotted curve represent the production costs for some cost parameters. These

production costs have the “single-crossing property” due to the monotonicity of Q∗ with

the assumption that the incremental cost is increasing in a cost parameter. Thus, there

exists a “lower envelope” of the cost curves shifted up, which is described by the dotted

curve and given by the following function of θ̂:

c(Q∗(θ̂), θ̂) +

∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz.

This is used as a score of the quality offer Q∗(θ̂) with θ̂ ∈ [θ, θ̄∗]. The second term is

a score added to the production cost c(Q∗(θ̂), θ̂) to facilitate the separation of types.

Then, each supplier of type θ optimally makes the quality offer Q∗(θ̂) = Q∗(θ) so as to

maximize a quality score s∗(Q∗(θ̂)) minus his production cost c(Q∗(θ̂), θ).

Proposition 1 states that the quasi-linear scoring rule s∗, which is supermodular in

quality, implements the optimal mechanism. The supermodularity is derived from the

Leontief-like shape of s∗. With the quasisupermodularity of the virtual surplus in quality,

the buyer desires a more efficient supplier to achieve higher levels of all non-monetary

attributes, so that a scoring rule which gives a score in a complementary way works well.
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On the other hand, without the quasisupermodularity, a supermodular scoring rule s may

fail in the implementation. This problem arises from the nonmonotonicity of the optimal

quality schedule, as shown in Example 1. The next example shows that this is the case.

Example 2. We make the same assumptions as Example 1. Suppose that a quasi-linear

scoring rule s which is supermodular in quality implements the optimal mechanism.

Because the optimal quality schedule satisfies Q∗(θ) = (1, 2) for θ = 2, Lemma 1 implies

that s(2, 2) − s(1, 2) ≤ c(2, 2, θ = 2) − c(1, 2, θ = 2) = 10. Now, c(2, 1, θ) − c(1, 1, θ) =

6θ − 1 > 10 for each θ > 11/6. Because s is supermodular in quality, s(2, 1)− s(1, 1) ≤

s(2, 2)−s(1, 2). Hence, c(2, 1, θ)− c(1, 1, θ) > s(2, 1)−s(1, 1) for each θ > 11/6, and thus

a supplier of type θ ∈ (11/6, 2) never chooses Q∗(θ) = (2, 1) in any equilibrium. This

contradicts the hypothesis that s implements the optimal mechanism.

We construct the scoring rule s∗ in a different way from Che (1993) (and Branco

(1997)). We now show that a scoring rule a la Che (1993) which is naturally extended

to an environment where quality is multi-dimensional may fail in the implementation.

Suppose first that quality is one-dimensional and a continuous variable, and the opti-

mal quality schedule Q∗ is strictly decreasing in θ. Then, a quasi-linear scoring rule s

constructed by Che is

s(q) = v(q)− (1− α)

∫ q

0

∂2c

∂q∂θ
(y, (Q∗)−1(y))

F ((Q∗)−1(y))

f((Q∗)−1(y))
dy,

where (Q∗)−1 is the inverse function of Q∗. The rule underrewards quality relative to the

valuation because the quality level which maximizes the social surplus v(q) − c(q, θ) is

excessive from the buyer’s viewpoint. With some differentiability assumptions and Inada

conditions, the first-order condition of the problem maxq[s(q)− c(q, θ)] is given by

dv

dq
(q)− (1− α)

∂2c

∂q∂θ
(q, (Q∗)−1(q))

F ((Q∗)−1(q))

f((Q∗)−1(q))
− ∂c

∂q
(q, θ) = 0,
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which is satisfied if q = Q∗(θ). Moreover, together with the assumptions in this article,

the assumption that v, −c and −cθ are concave in quality imply that s is also concave, as

shown by Che (1993). Thus, q = Q∗(θ) is a global optimal solution to maxq[s(q)−c(q, θ)].

Suppose now that quality is multi-dimensional. Consider the following scoring rule:

s(q) = v(q)− (1− α)
M∑
m=1

∫ qm

0

∂2c

∂qm∂θ
(y,Q−m∗(θm(y)), θm(y))

F (θm(y))

f(θm(y))
dy, (9)

where θm is the inverse function of Qm∗. With some differentiability assumptions and

Inada conditions, the first-order conditions of maxq[s(q)− c(q, θ)] are given by

∂v

∂qm
(q)− (1− α)

∂2c

∂qm∂θ
(qm,Q−m∗(θm(qm)), θm(qm))

F (θm(qm))

f(θm(qm))
− ∂c

∂qm
(q, θ) = 0

for each m, which are satisfied if q = Q∗(θ). However, even if v, −c and −cθ are concave

in quality, the scoring rule s defined by (9) may not be concave and cannot implement

the optimal mechanism. The next example shows that this is the case.

Example 3. Assume that M = 2, Q1 = Q2 = [0, 1], v(q) = q1 + q2 + 100, c(q, θ) =

θ((q1)2 + (q2)2) + q1q2, θ is uniformly distributed on [1, 2], and α = 0. Note that because

v is linear in q and both −c and −cθ are strictly concave in q, Φ is strictly concave

in q. One can show that Φ(q, θ) = (q1 + q2) + 100 − (2θ − 1)((q1)2 + (q2)2) − q1q2,

Q∗(θ) = (1/(4θ − 1), 1/(4θ − 1)), and θ̄∗ = θ̄ = 2. The scoring rule s defined by (9) is

s(q) = v(q)−
2∑

m=1

∫ qm

0

2y

(
1

4y
− 3

4

)
dy =

1

2
(q1 + q2) +

3

4
((q1)2 + (q2)2) + 100.

Then, for some θ, s − c is not concave in q, so that the quality offer Q∗(θ) = (1/(4θ −

1), 1/(4θ− 1)) may not be a global optimal solution to maxq[s(q)− c(q, θ)]. Actually, for

θ = 1, s(Q∗(θ))− c(Q∗(θ), θ) = 100 + 1/6 < 100 + 1/4 = s(1, 0)− c(1, 0, θ).
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5 Additively separable scoring rule

In this section, we investigate whether a quasi-linear scoring rule which is additively

separable in some quality attributes can implement the optimal mechanism.

The scoring rule s∗ constructed in Proposition 1 is supermodular in quality. Then, a

question arises: Can an additively separable scoring rule such as “weighted criteria” men-

tioned in the Introduction implement the optimal mechanism? To answer this question,

we introduce a definition. We assume that the set of quality attributes {1, ...,M} is parti-

tioned into two nonempty subsetsM1 andM2 of criteria; our analysis can be extended to

the case of more than two subsets at the expense of notational complexity. A quasi-linear

scoring rule s is additively separable if the rule takes a form of s(q) = s1(q1) + s2(q2) for

each q = (q1, q2) with q1 ∈ ×m∈M1Qm and q2 ∈ ×m∈M2Qm. In the next example, an

additively separable scoring rule can never implement the optimal mechanism.

Example 4. Assume that M = 2, Q1 = Q2 = {1, 2}, v(q1, q2) = 9(q1 + q2) + 100,

c(q1, q2, θ) = 3θ(q1 + q2) + (3 − θ)q1q2, θ is uniformly distributed on [1, 3], and α = 0.

Then, one can show that Φ(q1, q2, θ) = (12− 6θ)(q1 + q2)− (4− 2θ)q1q2 + 100, and Φ is

quasisupermodular in quality. The optimal quality schedule is given by

Q∗(θ) = (Q1∗(θ), Q2∗(θ)) =


(2, 2) if θ ∈ [1, 2)

(1, 1) if θ ∈ [2, 3]

and θ̄∗ = θ̄ = 3. Suppose that a quasi-linear scoring rule s which is additively separable

implements the optimal mechanism. Because Q∗(θ) = (1, 1) for θ = 2, Lemma 1 implies

that s(1, 2) − s(1, 1) ≤ c(1, 2, θ = 2) − c(1, 1, θ = 2) = 7. Now, c(2, 2, θ) − c(2, 1, θ) =

6 + θ > 7 for each θ > 1. Hence, c(2, 2, θ) − c(2, 1, θ) > 7 ≥ s(1, 2) − s(1, 1) = [s1(1) −

s1(1)] + [s2(2)− s2(1)] = [s1(2)− s1(2)] + [s2(2)− s2(1)] = s(2, 2)− s(2, 1) for each θ > 1,

and thus a supplier of type θ ∈ (1, 2) never chooses Q∗(θ) = (2, 2) in any equilibrium.
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This contradicts the hypothesis that s implements the optimal mechanism.

What is the cause of the failure? One can find the answer in the functional form of

the production cost. For each type except θ = 3, the incremental cost for each attribute

is strictly increasing in the level of the other attribute. That is, the two quality attributes

are substitutable in terms of the production cost. Now, the set of types is partitioned

into two groups: From the buyer’s point of view, each type in the efficient group [1, 2)

should offer the greatest quality (2, 2), and each type in the inefficient group [2, 3] should

offer the least quality (1, 1). Then, given any additively separable rule which deters the

inefficient suppliers’ deviations, an incentive for a supplier of type θ = 2 to deviate from

the quality offer (1, 1) to (1, 2) is weaker than that for a supplier of type θ ∈ (1, 2) to

deviate from the quality offer (2, 2) to (2, 1) because of the substitutability. This means

that any additively separable rule causes deviations of some types in either group. As

one would expect, if the production cost has decreasing differences in (q1, q2), then we

can construct an additively separable scoring rule which is immune to the deviation.

We can obtain the more general results although the underlying structure is the same

as Example 4. Here, the notion of increasing (decreasing) differences expresses the concept

of complementarity (substitutability) between some quality attributes in terms of the

production cost. The following proposition gives a necessary condition and a sufficient

condition for the existence of an additively separable scoring rule which implements the

optimal mechanism.

Proposition 2. Suppose that the virtual surplus Φ is quasisupermodular. Then: (i) If

c has increasing differences in (q1, q2) and there exists (m,m′) ∈ M1 ×M2 such that

c has strictly increasing differences in (qm, qm
′
), Qm∗(θ−) > Qm∗(θ+) and Qm′∗(θ−) >

Qm′∗(θ+) for some θ ∈ (θ, θ̄∗), then there is no additively separable scoring rule which
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implements the optimal mechanism. (ii) If c has decreasing differences in (q1, q2) and Qm

is finite for each m, then there is an additively separable scoring rule which implements

the optimal mechanism.

This proposition has several implications. First, the implementation possibility via

an additively separable scoring rule heavily depends on whether the cost function has

increasing differences or decreasing differences in quality attributes in the distinct sets

of subcriteria, rather than the property of the value function. In particular, Example 4

shows that an additively separable scoring rule cannot implement the optimal mechanism

even if the value function is additively separable in quality.

Second, the results of Proposition 2 provide a useful guide to designing additively

separable scoring rules. Consider an example of the highway construction. Suppose

that the quality attributes represent delivery date (m = 1), durability of the highway

(m = 2), maintenance service after delivery (m = 3), respectively. Moreover, we consider

the following plausible scenario: as the delivery date is earlier, it is more costly to increase

the durability level; as the durability level is higher, it is less costly to increase the level

of maintenance service; the incremental cost for the maintenance service is independent

of the delivery date. That is, the production cost has strictly increasing differences in

(q1, q2), decreasing differences in (q2, q3), and is additively separable in (q1, q3). Thus,

the cost function has decreasing differences in (q1, q2) with M1 = {1, 2} and M2 = {3}

whereas the cost function has increasing differences in (q1, q2) with M1 = {1} and

M2 = {2, 3}. Proposition 2 then implies that the buyer should classify quality attributes

so that s(q) = s1(q1, q2)+s2(q3) not s(q) = s1(q1)+s2(q2, q3). When the buyer establishes

some sets of subcriteria to use the additively separable rule, each pair of quality attributes

in the distinct sets should be complementary in terms of the production cost.
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6 Concluding remarks

We have studied the optimal design of scoring auction in an environment where quality is

multi-dimensional. Our main result shows that if the virtual surplus is quasisupermodular

in quality, then there exists a quasi-linear scoring rule which implements the optimal

mechanism and is supermodular in quality. Thus, when the virtual surplus exhibits a

kind of complementarity between quality attributes, a scoring rule which gives a quality

score in a complementary way works well. This in turn implies that the buyer should

carefully design scoring rules which are additively separable in some quality attributes.

One may wonder why each supplier should offer all quality attributes in a scoring

auction. Alternatively, the buyer can require each supplier to offer only one quality

attribute (with price). Then, with a scoring rule a la Che (1993), the most efficient

supplier achieves the highest score, and the winner’s type is revealed to the buyer. If

the levels of the remaining quality attributes are properly specified based on the winner’s

type, then this mechanism can implement the optimal mechanism. The mechanism or

procedure, however, requires the buyer to prespecify the levels of the remaining quality

attributes for each cost parameter. In practice, it may be prohibitively costly for the buyer

to do so. For instance, the buyer may not be able to specify aesthetic and functional

characteristics of highway although suppliers with expertise can offer these characteristics.

Therefore, when there are at least two such quality attributes, this study is of significance.

Finally, we should point out a potential limitation of this analysis. In our model, a

more efficient supplier (i.e. a supplier with less cost parameter) has a superior technology

of increasing the levels of all quality attributes. Thus, our model does not cover the

case in which one type of supplier has a superior technology of increasing the level of

one quality attribute to another type of supplier whereas the latter type has a superior
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technology of increasing the level of another quality attribute to the former type. To cover

the case, we need to allow each supplier’s type to be multi-dimensional. It is interesting

and challenging to study the optimal design of scoring auction in an environment where

both quality and a supplier’s type are multi-dimensional. This is left for future research.

Appendix

Proof of Lemma 1. (i) First, note that arg maxq∈Q[s(q) − c(q, θ)] is nonempty for each

θ because Q is compact and s − c is upper semicontinuous in q. (See, for example,

Kolmogorov and Fomin (1975).) We now show that in equilibrium a supplier of type

θ ∈ [θ, θ̄s] never offers (p′, q′) such that q′ 6∈ arg maxq̂∈Q[s(q̂)− c(q̂, θ)]. Suppose, on the

contrary, that a supplier of type θ ∈ [θ, θ̄s] makes such an offer (p′, q′). Consider another

offer (p, q) such that q ∈ arg maxq̂∈Q[s(q̂)− c(q̂, θ)] and s(q)− p = s(q′)− p′. The score

of (p, q) is equal to that of (p′, q′), so that both offers yield the same winning probability

given the other suppliers’ strategies. The supplier’s expected profit from (p′, q′) is not

higher than his expected profit from (p, q) because

[p′ − c(q′, θ)]Prob[win | S(p′, q′)]

≤ [p′ − c(q′, θ) + (s(q)− c(q, θ)− (s(q′)− c(q′, θ)))]Prob[win | S(p′, q′)]

= [p− c(q, θ)]Prob[win | S(p, q)],

where the inequality follows from the hypothesis that q′ 6∈ arg maxq̂∈Q[s(q̂) − c(q̂, θ)] 3

q, and the equality follows from the construction of (p, q). The inequality is strict if

Prob[win | S(p, q)] > 0, which occurs for some strategies of the other suppliers. This

contradicts the assumption that no supplier uses weakly dominated strategies. Thus, the

latter statement holds, and we can assume that a symmetric equilibrium bidding strategy
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(p, q∗) satisfies q∗(θ) ∈ arg maxq∈Q[s(q)− c(q, θ)] for each θ ∈ [θ, θ̄s].

Second, consider the following change of variable: k(θ) ≡ s(q∗(θ)) − c(q∗(θ), θ) for

each θ ∈ [θ, θ̄s]. Because cθ is continuous and thus bounded on [θ, θ̄], it follows from the

integral form envelope theorem of Milgrom and Segal (2002) (see also Theorem 3.1 of

Milgrom (2004)) that k is absolutely continuous, and is given by

k(θ) = k(θ)−
∫ θ

θ

cθ(q
∗(z), z)dz.

Finally, we show that the bidding strategy (p∗, q∗) in the lemma constitutes a sym-

metric equilibrium. For each θ ∈ [θ, θ̄s], the score s(q∗(θ))− p∗(θ) is given by

s(q∗(θ))− p∗(θ) = s(q∗(θ))− c(q∗(θ), θ)− [p∗(θ)− c(q∗(θ), θ)]

= k(θ)−
∫ θ̄s

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz.

Note that s(q∗(θ̄s))− p∗(θ̄s) = s(q∗(θ̄s))− c(q∗(θ̄s), θ̄s) = 0 by assumption. Because k is

continuous in θ ∈ [θ, θ̄s], so is s(q∗(θ)) − p∗(θ). Moreover, the score s(q∗(θ)) − p∗(θ) is

strictly decreasing in θ ∈ [θ, θ̄s] because for each θ, θ′ ∈ [θ, θ̄s] with θ < θ′,

[s(q∗(θ))− p∗(θ)]− [s(q∗(θ′))− p∗(θ′)]

= (k(θ)− k(θ′))−

[∫ θ̄s

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz −

∫ θ̄s

θ′
cθ(q

∗(z), z)
1− F(N−1)(z)

1− F(N−1)(θ′)
dz

]

> (k(θ)− k(θ′))−
∫ θ′

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz

> (k(θ)− k(θ′))−
∫ θ′

θ

cθ(q
∗(z), z)dz

=

∫ θ′

θ

[cθ(q
∗(z), z)− cθ(q∗(z), z)] dz = 0.

When the other suppliers follow the strategy (p∗, q∗), the expected profit of a supplier of

type θ ∈ [θ, θ̄s] from offering (p, q∗(θ)) such that s(q∗(θ))− p = s(q∗(θ̂))− p∗(θ̂) for some

22



θ̂ ∈ [θ, θ̄s] can be written as

[p− c(q∗(θ), θ)]Prob[win | S(p, q∗(θ))]

= [s(q∗(θ))− c(q∗(θ), θ)− s(q∗(θ̂)) + p∗(θ̂)]Prob[win | S(p∗(θ̂), q∗(θ̂))]

= [k(θ)− s(q∗(θ̂)) + p∗(θ̂)](1− F(N−1)(θ̂))

= (k(θ)− k(θ̂))(1− F(N−1)(θ̂)) +

∫ θ̄s

θ̂

cθ(q
∗(z), z)(1− F(N−1)(z))dz,

where the second equality follows from the observation that the score S(p∗(θ̂), q∗(θ̂)) =

s(q∗(θ̂))− p∗(θ̂) is strictly decreasing in θ̂. The supplier cannot obtain a higher expected

profit by deviating from (p∗(θ), q∗(θ)) to (p, q∗(θ)) such that s(q∗(θ)) − p = s(q∗(θ̂)) −

p∗(θ̂) because the difference between the expected profits is given by

− (k(θ)− k(θ̂))(1− F(N−1)(θ̂)) +

∫ θ̂

θ

cθ(q
∗(z), z)(1− F(N−1)(z))dz

=

∫ θ̂

θ

[
−cθ(q∗(z), z)(1− F(N−1)(θ̂)) + cθ(q

∗(z), z)(1− F(N−1)(z))
]
dz

=

∫ θ̂

θ

cθ(q
∗(z), z)(F(N−1)(θ̂)− F(N−1)(z))dz ≥ 0.

It is easy to show that the supplier cannot obtain a higher expected profit by deviating

from (p∗(θ), q∗(θ)) to (p, q∗(θ)) such that s(q∗(θ)) − p 6∈ [0, s(q∗(θ)) − p∗(θ)]. Also, a

supplier of type θ ∈ (θ̄s, θ̄] obtains a negative expected profit if he offers (p, q) such

that s(q) − p ≥ 0 whereas he obtains zero profit by offering (p∗(θ), q∗(θ)) such that

s(q∗(θ))− p∗(θ) < 0. This completes the proof of part (i).

(ii) In the above equilibrium, the score s(q∗(θi)) − p∗(θi) is strictly decreasing in

θi ∈ [θ, θ̄s] with s(q∗(θ̄s)) − p∗(θ̄s) = 0, and is negative for each θi ∈ (θ̄s, θ̄]. Thus, a

supplier of type θi wins only if θi = min{θ1, ..., θN , θ̄
s}.

Proof of Lemma 2. (i) We show that a necessary and sufficient condition for the IC con-

straints (3) is given by the two conditions: envelope condition and monotonicity condition.
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We say that a direct mechanism ρ satisfies the envelope condition if for each i and θ,

Πρ
i (θ) = Πρ

i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz,

where Πρ
i (θ) ≡ Πρ

i (θ | θ). We say that a direct mechanism ρ satisfies the monotonicity

condition if for each i, θ and θ̂ with θ̂ > θ,

∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)−Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz ≥ 0.

Because c has (strictly) increasing differences in (q, θ), it must hold that for each q, q′ ∈ Q

with q ≤ q′ and each z, z′ ∈ [θ, θ̄] with z ≤ z′, c(q′, z)− c(q, z) ≤ c(q′, z′)− c(q, z′), and

thus cθ(q
′, z) ≥ cθ(q, z) > 0. Therefore, if both Xi(θi,θ−i) and Qi(θi,θ−i) are decreasing

in θi for each θ−i, then the monotonicity condition is automatically satisfied.

First, we prove sufficiency. Suppose that a supplier i’s IC constraint is not satisfied.

Then, there exist θ and θ̂ such that Πρ
i (θ̂ | θ) > Πρ

i (θ). Hence, Eθ−i
[Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ̂)−

Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] > Πρ
i (θ) − Πρ

i (θ̂) by definition of Πρ
i . Rewriting the left-hand

side as the definite integral and applying the envelope condition to the right-hand side,

we obtain

∫ θ̂

θ

Eθ−i
[Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz >

∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz.

This contradicts the monotonicity condition.

Next, we prove necessity. Using the integral form envelope theorem of Milgrom and Se-

gal (2002), the IC constraints (3) imply that for each i and θ, Πρ
i (θ) = maxθ̂ Eθ−i

[Pi(θ̂,θ−i)−

Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] is given by

Πρ
i (θ) = Πρ

i (θ̄)−
∫ θ̄

θ

∂Πρ
i

∂θ
(z | z)dz = Πρ

i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz.

We thus obtain the envelope condition. Also, the IC constraints (3) imply that for each

i, θ and θ̂, Eθ−i
[Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ̂)−Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] ≤ Πρ

i (θ)− Πρ
i (θ̂).
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Rewriting the left-hand side as the definite integral and applying the envelope condition

to the right-hand side, we obtain the monotonicity condition.

(ii) We solve the optimization problem. The IC constraints (3) imply that for each

i, Πρ
i (θ) is decreasing in θ because Πρ

i (θ) ≥ Πρ
i (θ
′ | θ) ≥ Πρ

i (θ
′) for each θ < θ′; the

second inequality follows from the assumption that c is (strictly) increasing in θi. Hence,

the IR constraints (4) are replaced by Πρ
i (θ̄) ≥ 0 for each i. Using the result (i), the

IC constraints (3) are replaced by the envelope and monotonicity conditions. By the

envelope condition and the interchange of the order of integration, E[Πρ
i (θi)] is given by∫ θ̄

θ

Πρ
i (θi)f(θi)dθi = Πρ

i (θ̄) +

∫ θ̄

θ

∫ θ̄

θi

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dzf(θi)dθi

= Πρ
i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]

F (z)

f(z)
f(z)dz.

Hence, the buyer’s objective function is rewritten as

N∑
i=1

E [Xi(θ)v(Qi(θ))− Pi(θ) + αΠρ
i (θi)]

=
N∑
i=1

E [Xi(θ)[v(Qi(θ))− c(Qi(θ), θi)]− (1− α)Πρ
i (θi)]

=
N∑
i=1

E

[
Xi(θ)

[
v(Qi(θ))− c(Qi(θ), θi)− (1− α)cθ(Qi(θ), θi)

F (θi)

f(θi)

]
− (1− α)Πρ

i (θ̄)

]

=
N∑
i=1

E
[
Xi(θ)Φ(Qi(θ), θi)− (1− α)Πρ

i (θ̄)
]
.

Note that arg maxq∈QΦ(q, θi) is nonempty for each θi because Q is compact and Φ is

continuous in q. The above objective function is maximized when Πρ
i (θ̄) = 0, and Qi(θ)

and Xi(θ) are respectively given by Q∗(θi) and X∗i (θ) in the lemma. This is because

Q∗(θi) maximizes Φ(q, θi) and the maximized value Φ(Q∗(θi), θi) is strictly decreasing

in θi. The latter fact follows from Φ(Q∗(θ), θ) ≥ Φ(Q∗(θ′), θ) > Φ(Q∗(θ′), θ′) for each

θ < θ′; the second inequality follows from the assumptions that c is strictly increasing in

θi, and both cθ and F/f are increasing in θi.
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Finally, we show that the direct mechanism ρ∗ = (P ∗i ,Q
∗
i , X

∗
i )i∈{1,...,N} satisfies the

ignored monotonicity condition. Now, Φ is quasisupermodular in q by hypothesis, and

has strictly increasing differences in (q,−θi) from Assumptions 4 and 5. It then follows

from Theorem 2.8.7 of Topkis (1998) that Q∗(θi) ≥ Q∗(θ′i) for each θi < θ′i. Also, X∗i is

decreasing in θi. These facts imply that ρ∗ satisfies the monotonicity condition.

Proof of Proposition 1. (i) We first show that there exists a quasi-linear scoring rule which

implements the optimal mechanism. From Lemmas 1 and 2, it suffices to show that

there exists an upper semicontinuous function s∗ : Q → R which satisfies Q∗(θ) ∈

arg maxq∈Q[s∗(q) − c(q, θ)] for each θ ∈ [θ, θ̄∗] and s∗(Q∗(θ̄∗)) − c(Q∗(θ̄∗), θ̄∗) = 0.

Lemma 2 implies that Qm∗ is decreasing in θ. Hence, Qm∗ : [θ, θ̄] → R can have no

more than countably many points of discontinuity. Let {θ1, θ2, ..., θl, ...} be the discon-

tinuous points of Q∗ in [θ, θ̄∗]. For each l with θl ∈ (θ, θ̄∗), there exist some m such that

Qm∗(θl+) ≡ limθ→θl+Q
m∗(θ) ≤ Qm∗(θl) ≤ limθ→θl−Q

m∗(θ) ≡ Qm∗(θl−) with either or

both inequalities being strict.

First, we define a function σ : [θ, θ̄∗]→ R: For each θ ∈ [θ, θ̄∗],

σ(θ) = c(Q∗(θ), θ) +

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz.

Note that if Q∗(θ) = Q∗(θ′), and thus Q∗(θ) = Q∗(θ′′) for each θ′′ ∈ [θ, θ′], then σ(θ) =

σ(θ′). Using the function σ, we construct s∗ in the following way. (a) If q 6≥ Q∗(θ̄∗),

then let s∗(q) = 0. (b) If there exists θ′ ∈ (θ, θ̄∗) \ {θ1, θ2, ..., θl, ...} or θ′ ∈ {θ, θ̄∗} such

that q ≥ Q∗(θ′) and there exists no θ < θ′ which satisfies q ≥ Q∗(θ) > Q∗(θ′), then let

s∗(q) = σ(θ′).5 (c) If there exists l such that θl ∈ (θ, θ̄∗), q ≥ Q∗(θl+) and q 6≥ Q∗(θl),

then let s∗(q) = σ(θl+). (d) If there exists l such that θl ∈ (θ, θ̄∗), q ≥ Q∗(θl) and

5For some q, there may exist another θ( 6= θ′) which satisfies the condition. However, because it then
follows that Q∗(θ) = Q∗(θ′), the equality s∗(q) = σ(θ) = σ(θ′) holds.
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q 6≥ Q∗(θl−), then let s∗(q) = σ(θl). (e) If there exists l such that θl ∈ (θ, θ̄∗) and there

exists no θ < θl which satisfies q ≥ Q∗(θ) > Q∗(θl−), then let s∗(q) = σ(θl−).

Second, we show that s∗(Q∗(θ̄∗))−c(Q∗(θ̄∗), θ̄∗) = 0 and s∗ is upper semicontinuous on

Q. The former is trivial because s∗(Q∗(θ̄∗)) = σ(θ̄∗) = c(Q∗(θ̄∗), θ̄∗). By construction,

the function σ is continuous in [θ, θ̄∗] \ {θ1, θ2, ..., θl, ...}. Also, σ(θ) = σ(θ′) for each

θ, θ′ ∈ [θ, θ̄∗] with θ < θ′ if Q∗(θ) = Q∗(θ′) and thus Q∗(θ) = Q∗(θ′′) = Q∗(θ′) for each

θ′′ ∈ [θ, θ′]. Hence, for each q ∈ Q and ε > 0, there exists a neighborhood of q in which

s∗(q′) ≤ s∗(q) + ε. This means that the function s∗ is upper semicontinuous on Q.

Finally, we show that Q∗(θ) ∈ arg maxq∈Q[s∗(q) − c(q, θ)]. By construction of s∗,

q 6∈ {Q∗(θ) | θ ∈ [θ, θ̄∗]} ∪ {Q∗(θl+) | l = 1, 2, ...} ∪ {Q∗(θl−) | l = 1, 2, ...} cannot

maximize s∗(q)− c(q, θ) for each θ ∈ [θ, θ̄∗] because s∗(Q∗(θ))− c(Q∗(θ), θ) ≥ 0 whereas

s∗(q)−c(q, θ) < 0 for each q 6≥ Q∗(θ̄∗), and c is strictly increasing in q. Hence, it suffices

to show that for each θ, θ̂ ∈ [θ, θ̄∗], σ(θ)−c(Q∗(θ), θ) ≥ σ(θ̂)−c(Q∗(θ̂), θ), and for each l,

σ(θ)−c(Q∗(θ), θ) ≥ σ(θl+)−c(Q∗(θl+), θ), σ(θ)−c(Q∗(θ), θ) ≥ σ(θl−)−c(Q∗(θl−), θ).

First, for each θ ∈ [θ, θ̄∗], θ̂ = θ maximizes σ(θ̂)− c(Q∗(θ̂), θ) because for each θ̂ 6= θ,

[σ(θ)− c(Q∗(θ), θ)]− [σ(θ̂)− c(Q∗(θ̂), θ)]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
c(Q∗(θ̂), θ̂) +

∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz − c(Q∗(θ̂), θ)

]

=

∫ θ̂

θ

[cθ(Q
∗(z), z)− cθ(Q∗(θ̂), z)]dz ≥ 0.

The inequality holds because Lemma 2 implies that Q∗(z) ≥ Q∗(θ̂) for each z < θ̂,

and the assumption that c has (strictly) increasing differences in (q, θ) implies that

cθ(Q
∗(z), z) ≥ cθ(Q

∗(θ̂), z). Second, for each θ ∈ [θ, θ̄∗] and l, σ(θ) − c(Q∗(θ), θ) ≥
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σ(θl+)− c(Q∗(θl+), θ) because

[σ(θ)− c(Q∗(θ), θ)]− [σ(θl+)− c(Q∗(θl+), θ)]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
lim
θ̂→θl+

c(Q∗(θ̂), θ̂) + lim
θ̂→θl+

∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz − c(Q∗(θl+), θ)

]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
c(Q∗(θl+), θl) +

∫ θ̄∗

θl
cθ(Q

∗(z), z)dz − c(Q∗(θl+), θ)

]

=

∫ θl

θ

[cθ(Q
∗(z), z)− cθ(Q∗(θl+), z)]dz ≥ 0.

The first equality follows from the construction of σ, the second equality follows from the

continuity of c in (q, θ), and the inequality holds because Lemma 2 and Assumption 3

imply that cθ(Q
∗(z), z) ≥ cθ(Q

∗(θl+), z) for each z ≤ θl. Similarly, we can show that

σ(θ)− c(Q∗(θ), θ) ≥ σ(θl−)− c(Q∗(θl−), θ).

(ii) We now show that the function s∗ is supermodular in quality. First, we show that

s∗ is increasing in q. Note that σ is decreasing in θ because for each θ, θ′ with θ < θ′,

σ(θ)− σ(θ′) = c(Q∗(θ), θ) +

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz − c(Q∗(θ′), θ′)−

∫ θ̄∗

θ′
cθ(Q

∗(z), z)dz

≥ c(Q∗(θ′), θ)− c(Q∗(θ′), θ′) +

∫ θ′

θ

cθ(Q
∗(z), z)dz

=

∫ θ′

θ

[cθ(Q
∗(z), z)− cθ(Q∗(θ′), z)]dz ≥ 0.

Consider any q, q′ ∈ Q with q′ > q. If q 6≥ Q∗(θ̄∗), then s∗(q′) ≥ s∗(q) = 0. If

q ≥ Q∗(θ̄∗) and q′ 6≥ Q∗(θ), then s∗(q′) ≥ s∗(q) because there exist θ and θ′ with θ ≥ θ′

such that s∗(q) is equal to σ(θ−), σ(θ) or σ(θ+) and s∗(q′) is equal to σ(θ′−), σ(θ′) or

σ(θ′+); note that s∗(q) = σ(θ′−) implies that s∗(q′) ≥ σ(θ′−), and s∗(q) = σ(θ′) implies

that s∗(q′) ≥ σ(θ′). If q′ ≥ Q∗(θ), then s∗(q′) = σ(θ) ≥ s∗(q).

Second, we show that the function s∗ is supermodular in q. Fix any unordered

pair q and q̂ in Q, so that qm > q̂m and qm̂ < q̂m̂ for some m, m̂. Because s∗ is

increasing in q, s∗(q ∨ q̂) ≥ s∗(q̂) and s∗(q) ≥ s∗(q ∧ q̂). Thus, if s∗(q) = s∗(q ∧ q̂),
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then s∗(q ∨ q̂)− s∗(q̂) ≥ 0 = s∗(q)− s∗(q ∧ q̂). We claim that if s∗(q) > s∗(q ∧ q̂), then

s∗(q̂) = s∗(q∧ q̂). Suppose, on the contrary, that s∗(q) > s∗(q∧ q̂) and s∗(q̂) > s∗(q∧ q̂).

Then, by construction of s∗, there exist m, m̂, θ, θ̂ such that qm ≥ Qm∗(θ) > min{qm, q̂m}

with qm̂ ≥ Qm̂∗(θ), and q̂m̂ ≥ Qm̂∗(θ̂) > min{qm̂, q̂m̂} with q̂m ≥ Qm∗(θ̂). This contradicts

the result that Q∗ is increasing in θ because Qm∗(θ) > Qm∗(θ̂) and Qm̂∗(θ) < Qm̂∗(θ̂), so

that Q∗(θ) and Q∗(θ̂) are unordered. Thus, if s∗(q) > s∗(q∧ q̂), then s∗(q∨ q̂)−s∗(q̂) =

s∗(q ∨ q̂)− s∗(q ∧ q̂) ≥ s∗(q)− s∗(q ∧ q̂). This completes the proof.

Proof of Proposition 2. (i) Suppose that Qm∗(θ−) > Qm∗(θ+) and Qm′∗(θ−) > Qm′∗(θ+)

with (m,m′) ∈M1×M2 and θ ∈ (θ, θ̄∗). Then, (Qm∗(θ−))m∈M1 > (Qm∗(θ+))m∈M1 and

(Qm∗(θ−))m∈M2 > (Qm∗(θ+))m∈M2 . Because c has increasing differences in (q1, q2) and

strictly increasing differences in (qm, qm
′
), we obtain c(Q∨Q̂, θ)−c(Q̂, θ) > c(Q, θ)−c(Q∧

Q̂, θ), whereQ = ((Qm∗(θ+))m∈M1 , (Qm∗(θ−))m∈M2) and Q̂ = ((Qm∗(θ−))m∈M1 , (Qm∗(θ+))m∈M2),

so that Q ∨ Q̂ = Q∗(θ−) and Q ∧ Q̂ = Q∗(θ+). Let ε be a positive real number

such that 2ε < [c(Q ∨ Q̂, θ) − c(Q̂, θ)] − [c(Q, θ) − c(Q ∧ Q̂, θ)]. Fix any θ′, θ′′ with

θ′′ < θ < θ′ such that [c(Q ∧ Q̂, θ) − c(q ∧ q̂, θ′)] − [c(Q, θ) − c(q, θ′)] < ε and [c(Q ∨

Q̂, θ)−c(q∨ q̂, θ′′)]− [c(Q̂, θ)−c(q̂, θ′′)] < ε, where q = ((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2)

and q̂ = ((Qm∗(θ′′))m∈M1 , (Qm∗(θ′))m∈M2), so that q ∨ q̂ = Q∗(θ′′) and q ∧ q̂ = Q∗(θ′).

The existence of such θ′ and θ′′ is guaranteed by the continuity of c in (q, θ).

Suppose that a scoring rule s implements the optimal mechanism. Then, it follows

from Lemma 1 that the inequality s(q) − c(q, θ′) ≤ s(q ∧ q̂) − c(q ∧ q̂, θ′) must hold
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because q ∧ q̂ = Q∗(θ′) whereas q 6= Q∗(θ′). Hence, we obtain

s(q)− s(q ∧ q̂) ≤ c(q, θ′)− c(q ∧ q̂, θ′)

< c(Q, θ)− c(Q ∧ Q̂, θ) + ε

< c(Q ∨ Q̂, θ)− c(Q̂, θ)− ε

< c(q ∨ q̂, θ′′)− c(q̂, θ′′).

Now, if the scoring rule s is additively separable, then s(q)−s(q∧ q̂) = s2(q2)−s2(q̂2) =

s(q∨q̂)−s(q̂) because q1 = q1∧q̂1 = (Qm∗(θ′))m∈M1 and q̂1 = q1∨q̂1 = (Qm∗(θ′′))m∈M1 .

Then, s(q∨ q̂)−s(q̂) < c(q∨ q̂, θ′′)−c(q̂, θ′′), and thus a supplier of type θ′′ never chooses

q ∨ q̂ = Q∗(θ′′) from Lemma 1. Therefore, there is no additively separable scoring rule

which implements the optimal mechanism.

(ii) It follows from Lemma 1 that Qm∗ is decreasing in θ. Because Qm is finite,

Qm∗ : [θ, θ̄] → R can have no more than finitely many points of discontinuity. Suppose,

without loss of generality, that the discontinuous points of Q∗ in [θ, θ̄∗] are indexed in

decreasing order, i.e. θ1 > θ2 > ... > θL. Note that Q∗(θl+1+) = Q∗(θ) = Q∗(θl−) for

each θ ∈ (θl+1, θl), and Qm∗(θl−) ≥ Qm∗(θl+). Assume for simplicity that θ̄ > θ1 and

θL > θ; without this assumption, the proof proceeds with some notational complexity.

First, we define functions σ1 : [θ, θ̄∗] → R and σ2 : [θ, θ̄∗] → R: For each θ ∈ [θ, θ̄∗]

such that θ ∈ (θl+1, θl] for some l or θ ∈ [θ, θl] for l = L,

σ1(θ) =
1

2
c(Q∗(θ̄∗), θ̄∗) +

l−1∑
r=1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)− c(Q∗(θr+), θr)]

+ [c((Qm∗(θ))m∈M1 , (Qm∗(θl+))m∈M2 , θl)− c((Qm∗(θl+))m∈M1 , (Qm∗(θl+))m∈M2 , θl)],

σ2(θ) =
1

2
c(Q∗(θ̄∗), θ̄∗) +

l−1∑
r=1

[c(Q∗(θr−), θr)− c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

+ [c((Qm∗(θl−))m∈M1 , (Qm∗(θ))m∈M2 , θl)− c((Qm∗(θl−))m∈M1 , (Qm∗(θl+))m∈M2 , θl)],
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and for each θ ∈ (θ1, θ̄∗], σ1(θ) = σ2(θ) = 1
2
c(Q∗(θ̄∗), θ̄∗). Using these functions, we

construct a function sa : ×m∈MaQm → R for each a = 1, 2 in the following way. (a)

If qa 6≥ (Qm∗(θ̄∗))m∈Ma , then let sa(qa) = −maxq∈Q c(q, θ̄). (b) If there exists θ′ ∈

[θ, θ̄∗] such that qa ≥ (Qm∗(θ′))m∈Ma and there exists no θ < θ′ which satisfies qa ≥

(Qm∗(θ))m∈Ma > (Qm∗(θ′))m∈Ma , then let sa(qa) = σa(θ′). It is easy to show that

s1((Qm∗(θ̄∗))m∈M1) + s2((Qm∗(θ̄∗))m∈M2) − c(Q∗(θ̄∗), θ̄∗) = 0. Moreover, the function

s+ s̄ is trivially upper semicontinuous on Q because Q is finite.

Next, we show that Q∗(θ) ∈ arg maxq∈Q[s1(q1) + s2(q2) − c(q, θ)]. By construction

of s1 and s2, q 6∈ {(Qm∗(θ))m∈M1 | θ ∈ [θ, θ̄∗]} × {(Qm∗(θ))m∈M2 | θ ∈ [θ, θ̄∗]} cannot be

the maximizer. Hence, it suffices to show that for each θ, θ′, θ′′ ∈ [θ, θ̄∗], σ1(θ) + σ2(θ)−

c(Q∗(θ), θ) ≥ σ1(θ′) + σ2(θ′′) − c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ). Suppose first that

θ ∈ (θl+1, θl) and θ′ ∈ (θl
′+1, θl

′
) with l ≥ l′. Then, we obtain

σ1(θ)− σ1(θ′)

=
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)− c(Q∗(θr+), θr)]

≥
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θ))m∈M2 , θr)− c((Qm∗(θr+))m∈M1 , (Qm∗(θ))m∈M2 , θr)]

≥
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θ))m∈M2 , θ)− c((Qm∗(θr+))m∈M1 , (Qm∗(θ))m∈M2 , θ)]

= c(Q∗(θ), θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ))m∈M2 , θ),

where the first equality follows from the observation that Qm∗(θl−) = Qm∗(θ) and

Qm∗(θl
′−) = Qm∗(θ′), the first inequality follows from the hypothesis that c has decreas-

ing differences in (q1, q2) with the observation that Qm∗(θr+) ≤ Qm∗(θ) for each r ∈ {l′+

1, ..., l}, the second inequality follows from the assumption that c has (strictly) increasing

differences in (q, θ), the last equality follows from the observation that Qm∗(θr−) =
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Qm∗(θr+1+), Qm∗(θl−) = Qm∗(θ) and Qm∗(θl
′+1+) = Qm∗(θ′). Suppose next that

θ′′ ∈ (θl
′′+1, θl

′′
) with l ≤ l′′. Then, the same argument as above yields

σ2(θ)− σ2(θ′′)

= −
l′′∑

r=l+1

[c(Q∗(θr−), θr)− c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

≥ −
l′′∑

r=l+1

[c((Qm∗(θ))m∈M1 , (Qm∗(θr−))m∈M2 , θr)− c((Qm∗(θ))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

≥ −
l′′∑

r=l+1

[c((Qm∗(θ))m∈M1 , (Qm∗(θr−))m∈M2 , θ)− c((Qm∗(θ))m∈M1 , (Qm∗(θr+))m∈M2 , θ)]

= −[c((Qm∗(θ))m∈M1 , (Qm∗(θ′′))m∈M2 , θ)− c(Q∗(θ), θ)]

≥ −[c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ))m∈M2 , θ)],

where the last inequality follows from the hypothesis that c has decreasing differences in

(q1, q2) with the observation that Qm∗(θ′) ≤ Qm∗(θ). Therefore, we obtain

[σ1(θ)− σ1(θ′)] + [σ2(θ)− σ2(θ′′)] ≥ c(Q∗(θ), θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ),

for each θ, θ′, θ′′ ∈ [θ, θ̄∗] such that θ ∈ (θl+1, θl), θ′ ∈ (θl
′+1, θl

′
) and θ′′ ∈ (θl

′′+1, θl
′′
) with

l′′ ≥ l ≥ l′. A similar argument applies to the other combinations of θ, θ′ and θ′′.
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