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Abstract

This paper proposes a new method to compute the news impact curve for stochastic
volatility (SV) models. The new method incorporates the joint movement of return and
volatility, which has been ignored by the extant literature, by simply adding a couple of
steps to the Bayesian MCMC estimation procedures for SV models. This simple procedure
is versatile and applicable to various SV type models. Contrary to the monotonic news
impact functions in the extant literature, the new method gives a U-shaped news impact
curve comparable to GARCH models. It also captures the volatility asymmetry for the

asymmetric SV models.

1 Introduction

Modeling and forecasting financial asset volatility has attracted many researchers and practi-
tioners since the seminal work of Engle (1982) that proposed the autoregressive conditional het-
eroskedasticity (ARCH) model. Bollerslev (1986) proposed the generalized ARCH (GARCH)
model and a number of extensions including asymmetric GARCH models such as the exponen-
tial GARCH (EGARCH) model of Nelson (1991) and the GJR model of Glosten, Jagannathan
and Runkle (1993) have followed. These models have various specifications on volatility dy-
namics which imply different impact of past return shocks, or information, on the return
volatility.

Engle and Ng (1993) define the news impact curve which measures how the new information
affects the return volatility in the context of GARCH models. In GARCH models, today’s
volatility is a function of observations up to yesterday and therefore today’s news shock is
a change of today’s return not explained by the estimated today’s volatility. With today’s

volatility fixed, typically at unconditional volatility, a plot of tomorrow’s volatility against
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today’s news shock shows well known U-shaped news impact curve. The news impact curve
also reflects the volatility asymmetry or leverage effect (negative shock yields higher volatility
than positive shock) for asymmetric GARCH models such as the EGARCH and GJR models.

The news impact curve for stochastic volatility (SV) models has been defined similarly
in the extant literature. The news impact function is typically defined as the expectation of
tomorrow’s volatility conditional on today’s return with today’s volatility fixed at unconditional
volatility. Contrary to the U-shaped news impact curve for GARCH models, this news impact
function is a flat line for symmetric SV models and downward-sloping curve for asymmetric
SV models.

The monotonic news impact curve, instead of the U-shaped curve, for SV models is due to
the different specification of volatility process. Contrary to GARCH models, SV models treat
today’s volatility as a latent variable and thus a change of today’s return can be due to either
a change of volatility or news shock, or both. Therefore, it is problematic to define the news
impact function with today’s volatility fixed as in GARCH models.

Considering the joint move of today’s volatility and news shock, this paper proposes a
new method to compute the news impact curve for SV models. The new method simply
adds a couple of steps to the Markov chain Monte Carlo (MCMC) estimation procedures for
SV models. This simple procedure is versatile and applicable to the various SV extensions
such as realized SV models recently proposed by Takahashi, Omori and Watanabe (2009) and
Koopman and Scharth (2012). An empirical example with Spyder, the S&P 500 exchange-
traded fund, shows that the new method gives a U-shaped news impact curve comparable to
GARCH models and also captures the asymmetry for the asymmetric SV (ASV) models.

The rest of this paper is organized as follows. Next section illustrates the problem in the
traditional method to compute the news impact curve for SV models. Section 3 proposes the
new method. Then, we demonstrate the news impact curve with actual daily returns of Spyder

in Section 4. The final section concludes.

2 News Impact Curve

To illustrate a news impact curve, consider an asset return,
Ty = Ot€, €~ N(Oa 1)7 (1)

where 7, is the asset return and we call o7 volatility in this paper.
Engle and Ng (1993) define the news impact function as a relation between r; and o7, ,
implied by a volatility specification, with all lagged conditional variances evaluated at the level

of the unconditional variance of the asset return, 0. GARCH models specify o2 1 as a function



of the information up to ¢. Since o7 is known at ¢ — 1, a change of r; is solely due to a change of
€. This feature of GARCH models justifies the news impact function with lagged conditional
variances fixed at o2. For example, the GARCH(1,1) model specifies the volatility as follows.

O'?+1 =w+ Baf + ar?, (2)

where it is assumed that w > 0, 8 > 0 and a > 0 to assure that the volatility o7 is always
positive and that |+ ] < 1 to guarantee that the volatility is stationary. The news impact

function is then
o7 = w+ B0’ + ary. (3)

This implies the well known U-shaped news impact curve.
Under SV models, however, o7 is a latent variable and hence it is unknown at ¢ — 1. For

example, consider the following standard SV model.

hivt =+ ¢lhy — )+, Mo~ N(0,07),  covler, ] = por, (4)

where h; = logo?, |¢| < 1 for a stationary process, and p captures the volatility asymmetry.
If p = 0, this model becomes the symmetric SV model. If p < 0, it is consistent with the
volatility asymmetry or leverage effect of stock returns observed in stock markets.

Following Yu (2005), we define the news impact function for SV models as a relation
between r; and h4q in this section while we also consider the relation between r; and 0’? 1 In
the next section. Contrary to GARCH models, a change of 7, is due to a change of either €, or
hy or both. This implies a stochastic relation between r; and hyy; instead of the deterministic

relation in GARCH models. This relation can be expressed as a conditional expectation of

Py,

Elhiia|r] = p+ ¢(Elhe|re] — p) + Elne|r:]
=+ S(Elhi|re] — p) + poyriElexp(—hi/2)[r]. (5)

Replacing the conditional expectations with the unconditional expectations yields the following

news impact function,’

% &
Elhit1|re] = p + poy exp {—5 + m} Tt (6)

If p = 0, this is a flat line. If p < 0, this is a downward sloping line.

!See, e.g., Yu (2005) and Asai and McAleer (2009) for other approximation methods.



Such a monotonic news impact line is due to ignoring the dependence between r; and hy
and replacing the conditional expectations with the unconditional ones. If E[h;|r] is increasing
in the absolute return |r;|, the conditional expectation in (5) implies a non-monotonic news
impact curve. Thus, incorporating the joint distribution of r; and h; may give the U-shaped
news impact curve.

In the next section, we propose a new method which incorporates the joint movement to
compute the news impact curve. Instead of directly computing the conditional expectations,
E[h¢|r¢] and Elexp(—h¢/2)|r:], we take a simulation based approach via the MCMC estimation
scheme. The new method does not require possibly complicated conditional distributions but

only a stationary distribution of h and hence it is versatile to various SV specifications.

3 New Method

We illustrate our new method to compute a news impact curve for the standard SV model
given by equations (1) and (4). We assume that |¢| < 1 for a stationary log-volatility process,
ho = i, and

2
o~ N[0, 1. (7)
1—¢?

We incorporate the joint movement of h; and r; (or €), by adding a couple of steps to
the MCMC estimation scheme for SV models. For each parameter sample generated in the

MCMC estimation, we implement the following steps.

1. Generate h from its stationary distribution,

%
h~N M’l——dﬂ ) (8)

and e from the standard normal distribution, e ~ N (0, 1).

2. Compute daily return,
r = eexp(h/2), (9)
and one day ahead log-volatility forecast,

h=p+ ¢(h = p) + poye. (10)

With the generated samples of the daily return (r) and log-volatility forecast (h), we can



estimate the news impact curve defined as a relation between r; and h;11 by, for example, the
local linear Gaussian kernel regression. We can also estimate the news impact curve defined as a
relation between r; and o? 1 simply by transforming the generated samples of the log-volatility

~ ~

forecast (h) to those of the volatility forecast (exp(h)).

4 Empirical Illustration

This section gives an empirical example of the news impact curve proposed in the previous
section. We use 1758 samples of daily returns for Spyder, the S&P 500 exchange-traded fund,
from February 1, 2001 to January 31, 2007. Table 1 shows descriptive statistics of the daily
return, its square, and the logarithm of the squared return.

We estimate the symmetric and asymmetric SV models using the Bayesian MCMC esti-

mation method with the following prior distributions,

¢+1 p+1

p~ N(=0.1,1), ~ Beta(20,1.5), 0'71_2 ~ Gamma(2.5,0.025), — Beta(1,1).

To sample h efficiently, we employ the estimation procedure with the block sampler of Watan-
abe and Omori (2004) for the SV model and Omori and Watanabe (2008) for the ASV model.
Table 2 shows the MCMC estimation results, which are consistent with the extant literature.
For example, the posterior mean of ¢ is close to one, which implies the high persistence of
volatility. Additionally, the posterior mean of p is negative and its 95% interval does not
contain zero, which indicates the well known volatility asymmetry.

With the MCMC estimation procedures, we compute the news impact curves. Figure 1
shows the news impact curves defined as a relation between r; and hy41 by the conventional and
new methods. Figure 2 shows the news impact curves defined as a relation between r; and o7, ;.
In the both figures, the new method gives the familiar U-shaped news impact curves, compa-
rable to GARCH models, while the conventional method gives the flat or downward-sloping
lines. The both figures also show that the new method captures the volatility asymmetry for

the asymmetric SV models.

5 Conclusion

This paper proposes a new method to compute the news impact curve for SV models. The
new method incorporates the joint movement of return and volatility, which has been ignored
by the extant literature, by simply adding a couple of steps to the Bayesian MCMC estimation
procedures for SV models. Empirical results with Spyder, the S&P 500 exchange-traded fund,

show that the new method gives the familiar U-shaped news impact curves and captures the



volatility asymmetry.

Although we illustrate the new method with a simple SV model, the method is versatile
and easily applicable to various SV models. For example, it is straightforward to compute a
news impact curve for the SV model of Nakajima and Omori (2012) where a more general
distribution is assumed for ¢; and the realized SV model of Takahashi, Omori and Watanabe
(2009) which specifies daily returns and realized volatility measures jointly. The simple com-
putational method also enables us to utilize the news impact curve for volatility predictions as
in Chen and Ghysels (2011).
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Variable  Mean SE SD Skew Kurt Min Max JB  LB(10)

T 0.0094 0.0255 1.0693 0.0309  5.5577  -5.0995  5.6772 0.00 0.85
r? 1.1435 0.0582 2.4413 5.4005 45.0918 0.0000 32.2310 0.00 0.00
log 72 -1.5945 0.0594 2.4926 -1.3549  6.8798 -17.9407  3.4729 0.00 0.00

Table 1: Descriptive statistics of daily return (r), its square (r2), and loarithm of the squared
return (logr?). There are 1758 samples during the period from February 1, 2001 to January
31, 2007. The standard errors of skewness and kurtosis are 0.0584 and 0.1167, respectively. JB
is the p-value of the Jaque-Bera statistics to test the null hypothesis of nomality. LB(10) is the
p-value of the Ljung-Box statistics adjusted for heteroskedasticity following Diebold (1988) to
test the null hypothesis of no autocorrelation up to 10 lags.

Model RM  Mean Stdev. 95%L Median 95%U CD

SV 1) 0.9727 0.0107 0.9444 0.9744 0.9878 0.399
0.2239 0.0531 0.1701 0.2087 0.3992 0.348
-0.1453 0.2247 -0.5780 -0.1501 0.3154 0.528
0.9705 0.0064 0.9570 0.9708 0.9821 0.787
0.2085 0.0175 0.1783 0.2070  0.2455 0.586
-0.5517 0.0580 -0.6545 -0.5552 -0.4295 0.047
-0.1697 0.1553 -0.4618 -0.1751 0.1510 0.290

ASV

T QST Q

Table 2: MCMC estimation results of symmetric and asymmetric SV (SV and ASV) models.
95%L and 95%U are the lower and upper quantiles of 95% credible interval, respectively. The
last column is the p-value of the convergence diagnostic test proposed by Geweke (1992).
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Figure 1: News impact curves for symmetric (top) and asymmetric SV (bottom) models by the
conventional method (dashed line) using equation (6) and the new method (solid line). Hori-
zontal and vertical axes represents today’s daily return (rr) and tomorrow’s log-volatility (h),
respectively. Using parameter samples generated in the MCMC estimation for each model, we
implement the new method with the local linear Gaussian kernel regression with the bandwidth

of 1 and the number of grid points of 100.
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Figure 2: News impact curves for symmetric (top) and asymmetric SV (bottom) models by
the conventional method (dashed line) using equation (3.4) in Asai and McAleer (2009) and
the new method (solid line). Horizontal and vertical axes represents today’s daily return (r)
and tomorrow’s volatility (62 = exp(fz)), respectively. Using parameter samples generated in
the MCMC estimation for each model, we implement the new method with the local linear
Gaussian kernel regression with the bandwidth of 1 and the number of grid points of 100.
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