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Abstract

Earlier attempts to �nd evidence of time varying coe¢ cients in the U.S. monetary vec-

tor autoregression have been only partially successful. Structural break tests applied to

typical data sets often fail to reject the null hypothesis of no break. Bayesian inferences

using time varying parameter vector autoregressions provide posterior median values

that capture some important movements over time, but the associated con�dence inter-

vals are often very wide and make the entire results less conclusive. We apply recently

developed multiple structural break tests and �nd statistically signi�cant evidence of

time varying coe¢ cients. We also develop a reduced rank time varying parameter vector

autoregression with multivariate stochastic volatility. Our model has a smaller number

of free parameters thereby yielding tighter con�dence intervals than previously employed

unrestricted time varying parameter models.
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1 Introduction

It has been of great interest to many macroeconomists whether or not the parameters in

the U.S. monetary vector autoregression (VAR) have been changing over time. The goal of

this paper is to provide further evidence of time instability using two di¤erent approaches.

The �rst is to use recently developed multiple structural break tests. There have been

similar attempts in the macroeconomic literature. The results from these studies are some-

what mixed and perhaps slightly favor time stability rather than time instability. For

example, Bernanke and Mihov (1998) test for time invariance of the U.S. monetary VAR

coe¢ cients and do not �nd any strong evidence against time invariance. Sims and Zha

(2006) also �nd little evidence against time invariance using a Bayesian approach, though

they argue that the innovation variances show sizable time variation. Cogley and Sargent

(2005) con�rm similar results, but argue that the non-rejections result from the low power

of structural break tests. Indeed, their simulation results suggest that the structural break

tests they consider have very small power when the true data generating process is the same

as the posterior mean of their Bayesian time varying parameter (TVP) model. We view

these non-rejections of the structural break tests as a consequence of low power, agreeing

with Cogley and Sargent (2005). Naturally, we apply recently developed break tests that are

supposed to be more powerful than the tests used in the earlier studies. We consider both

pure and partial change speci�cations and reject the null hypothesis of no time change for

most cases in all equations of our VAR system. We also test for time stability of innovation

covariance matrix using Aue et al. (2009) and �nd strong evidence of time instability.

The second is to build a reduced rank TVP VAR. Earlier studies typically use unre-

stricted TVP models where all autoregressive (AR) coe¢ cients are permitted to change

freely. However, our initial estimates from a similar unrestricted model suggest that most

important time changes in the AR coe¢ cients are highly synchronized across equations and

autoregressive lags. Also, the dates of signi�cant structural breaks are clustered around

certain periods. These �ndings imply that the variations of the AR coe¢ cients are likely

to be structured in some way and the unrestricted model might be ine¢ cient. This is ex-

actly our motivation to build a reduced rank model. Our reduced rank model also complies

with Cogley and Sargent�s (2005) �nding that a few principal components can explain the

majority of the time variations in the AR coe¢ cients. The direct bene�t of reduced rank is

that our model produces tighter con�dence intervals than the unrestricted model thereby

providing more de�nite statistical evidence. Canova and Ciccarelli (2009) use a similar

reduced rank model in a panel VAR.

Another methodological contribution is that we adopt Uhlig (1997) type multivariate

stochastic volatility process. In other words, the VAR error covariance is an inverse Wishart
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process with multivariate beta shocks. This stochastic volatility model is less restrictive

than the ones used in earlier studies such as Cogley and Sargent (2001, 2005) and Primiceri

(2005).

To sum up our empirical �ndings, the U.S. monetary VAR has statistically signi�cant

time variations not only in the covariance of the errors but also in the AR coe¢ cients. We

estimate time varying natural rate of unemployment and core in�ation. These two variables

show similar time patterns that they rise throughout the 1970s, reach their peak at the end

of 1970s, sharply drop during the Volcker chairmanship, and remain mostly stable during

the Greenspan chairmanship. The historical path of in�ation persistence, measured as the

normalized spectral density at zero frequency, is greatly correlated with the core in�ation.

The persistence builds steadily before the Volcker chairmanship, drops sharply and remains

at a low level afterwards. The monetary policy rule also shows some variations over time.

The policy reaction to in�ation seems the strongest during the Volcker chairmanship, but

there is no period that can be characterized as violating the Taylor principle.

The rest of the paper is organized as the following. Section 2 shows our results with

multiple structural break tests. Section 3 explains the details of the reduced rank TVP

vector autoregression with multiple stochastic volatility. Section 4 presents the estimation

results from the reduced rank model. Section 5 contains concluding remarks.

2 Structural Break Tests and Time Instability

We �rst apply recently developed structural break tests to the U.S. monetary VAR. To be

comparable with earlier studies, we focus on the second order VAR with three variables,

unemployment rate, in�ation rate and interest rate. Hence, the equation to which we apply

structural break tests is given by

yt = vt +A1;tyt�1 +A2;tyt�2 + ut, t = 1; 2; : : : (1)

= Atxt + ut

xt = (1; y0t�1; y
0
t�2)

0

At = (vt; A1;t; A2;t)

where yt is a vector of dependent variables, xt is a vector of regressors, and At is a matrix

of coe¢ cients whose time stability is being tested.

We consider the following tests: 1) the SupLM test and 2) the SupWald test proposed

by Andrews (1993), 3) the Nyblom (1989) test, 4) Elliott and Müller (2006)�s dqLL test, 5)
Bai and Perron (1998)�s UDmax test, 6) the �sup test and 7) the �trace test proposed by
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Eliasz, Stock, and Watson (2004)1.

The null hypothesis in all of these tests speci�es the VAR coe¢ cients to be time invariant,

that is,

At = A for all t.

On the other hand, the alternative hypotheses in these tests specify di¤erent forms of time

changes in At. The SupLM and SupWald tests use an alternative hypothesis of a single

change in At at an unknown date. The UDmax test is an extension of the SupWald test

and its alternative hypothesis assumes an unknown number of multiple breaks at unknown

dates, where the maximum number of breaks considered is usually much smaller than the

sample size. The Nyblom test assumes under the alternative that At is a martingale with its

di¤erence being i.i.d and that the magnitude of changes in At is extinct as the sample size

increases. The alternative hypothesis in the dqLL test is similar to the one in the Nyblom
test but it allows At to be a persistent mixing process. The alternative hypothesis in the

�sup and �trace tests is such that

At = A+BtG;

�Bt = �B(L)�t; �B(1) = 
Ir

where G is an r � (pk + 1) matrix that reduces the rank of the time varying parameters.2

The �sup and �trace tests are of interest because the reduced rank structure speci�ed under

the alternative hypothesis exactly corresponds to the model we estimate in the next section.

All of aforementioned tests have some power even if At changes di¤erently from the

way speci�ed in their alternative hypothesis. The At process speci�ed in the alternative

hypothesis is only intended to be the data generating process against which the power of

each test is optimal or admissible in some asymptotic sense. Hence, there is no one test

that is the most powerful against all forms of changes in At.

In�ation rate is measured by log di¤erence of the Consumer Price Index (CPI) for all

urban consumers. The CPI is point sampled in the last month of every quarter. Unem-

ployment rate is measured by the quarterly average of monthly rates for civilians. Interest

rate is the monthly average of the daily rates of the 3 month Treasury Bill rates in the last

month of every quarter. The data spans from 1948.Q1 to 2010.Q4, but the periods from

1948.Q1 to 1954.Q4 are used as our pre-sample to work out our priors.

All tests are conducted equation-by-equation. White (1980)�s heteroskedasticity robust

variance is used. The results are presented in Table 1, which are obtained using the asymp-

totic critical values. Both pure and partial change cases are considered. The left-hand side

1We are grateful to an anonymous referee who suggests the �sup and �trace tests to us.
2r does not need to be estimated for these tests to be implemented.
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variable is denoted by Y (current value) and the right-hand side variables with possibly un-

stable coe¢ cients are denoted by X (lagged values). The right hand side variables that are

not included in X are assumed to have a time invariant coe¢ cient in the testing procedure.

Table 1. Parameter Instability Tests in the U.S. monetary VAR

Y X SupLM SupWald Nyblom dqLL UDmax �sup �trace

unemp all 12.46 39.37��� 1.43 -38.50� 41.52��� 21.07�� 36.44��

unemp 7.49 9.70 0.41��� -16.73 13.69� - -

in�ation 7.44 20.80��� 1.25�� -14.73 20.80��� - -

interest 8.54 16.45�� 0.60 -21.53�� 16.85�� - -

in�ation all 14.98 93.52��� 1.30 -48.84��� 93.52��� 26.32��� 46.31���

unemp 6.39 6.42 0.54 -19.15� 37.78��� - -

in�ation 14.96�� 51.47��� 0.86� -31.08��� 51.47��� - -

rate 19.71��� 38.38��� 0.44 -18.08� 45.69��� - -

interest all 11.78 24.76�� 1.30 -44.03�� 57.85��� 30.17��� 41.71��

unemp 8.20 8.88 0.82 -11.32 10.39 - -

in�ation 9.07 14.75�� 0.59 -28.28��� 14.75� - -

interest 5.87 6.50 0.78 -14.65 14.91�� - -

1. ***, **, and * are signi�cant at 1%, 5%, and 10% levels respectively.

2. For the dqLL test, c = 10 as recommended in the original paper.
3. For the UDmax test, the maximum number of breaks is 5 and the truncation level is 10% for

the SupLM, SupWald, and UDmax tests.

Our results from single break tests are consistent with earlier studies in the sense that

there is little evidence of instability. In particular, the SupLM test rejects in only two cases

at 5% signi�cance. The SupWald test rejects more often as noted by Boivin (2002) and

Cogley and Sargent (2005). The UDmax test rejects in most cases at 5% signi�cance. This

is mainly due to the fact that the UDmax test has more power than single break tests, if

the true process has multiple breaks. The UDmax test also rejects more often than the

Nyblom and dqLL tests. This may be caused by the well known �non-monotonic power�
problem of structural break tests, which is �rst extensively analyzed in Vogelsang (1999)

and further explored in Kim and Perron (2009) and Perron and Yamamoto (2011). The

non-monotonic power means that the power function decreases and can even reach zero

when the alternative hypothesis moves further away from the null hypothesis for a given

sample size. This phenomenon appears when one uses LM type test (SupLM) or so called

sum type tests (Nyblom and dqLL). The �sup and �trace tests reject in all equations at 5%
signi�cance.
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A natural concern is size distortion. To investigate this issue, we conduct a Monte Carlo

experiment to obtain �nite sample critical values. In doing so, it is important to use a data

generating process that contains important characteristics of the data. As we show later

in this section, there is strong evidence of changing volatility of VAR innovations. Hence,

we �rst estimate the null model (At = A) which incorporates time varying VAR innovation

covariance. Then, we simulate the test statistics under pseudo data generated from the

estimates of A and the estimated time pro�le of innovation covariance matrix3.

In particular, we use Uhlig�s (1997) multivariate stochastic volatility model4 for ut in

(1), which is given by

utjHt � ind N
�
0;H�1

t

�
.

where the inverse covariance matrix Ht evolves over time by

Ht+1 =
1

�
T 0t�tTt with �t � Bk

�
d

2
;
1

2

�
(2)

H1jY0 � Wk

�
d;�1j0

�
.

Here, Yt = (yt; yt�1; : : : ; y�p), Tt is an upper triangular matrix obtained from the Cholesky

decomposition of Ht, 1 > � > 0 and d � k + 3 are scalar parameters, and �1j0 is a

k � k symmetric matrix of parameters. Bk(�; �) and Wk(�; �) stand for multivariate beta
and Wishart distribution respectively. Also, the singular Wishart and singular multivariate

beta distributions are as de�ned by Uhlig (1994). Throughout the paper, we assume that

d, � and �1j0 are known, because they usually do not bear economic meanings and can be

better understood as tuning parameters. We set d = 20 and � = exp (�	(d+ 1) + 	(d))
where 	(�) denotes the Euler Psi function. �1j0 is set at the inverse of the covariance of ut
estimated from the pre-sample data (1948.Q1�1954.Q4) scaled by (d� k + 1)�1.

Instead of the Bayesian estimation method Uhlig (1997) proposes, we obtain the maxi-

mum likelihood estimate of the AR coe¢ cients. Rewrite the null model of (1) as yt = Z 0t�+ut
where Z 0t = Ik 
 x0t and � = vec (A0). Then, the maximum likelihood estimate for � is

3We divide all AR coe¢ cient estimates by two, because, otherwise, they would imply an unstable system.
It is a well known fact that the ordinary least squares estimate is biased toward an unstable system if changes
in the intercepts and AR coe¢ cients are ignored (for example, Perron, 1989), and a similar bias is likely to
exist in our estimate. This adjustment is somewhat arbitrary, but we �nd that the critical values are not
very sensitive to a change in the adjustment.

4Uhlig�s (1997) model has important advantages over other approaches. For example, Harvey, Ruiz and
Shephard (1994), adopted in Cogley and Sargent (2005), do not allow covariances to evolve. Primiceri (2005)
allows covariances to change but assumes the row independence of the covariance matrix and a certain time
ordering among variables within the same time period. Uhlig�s model is subject to none of these restrictions.
Also, Uhlig�s model has the simplest estimation procedure.
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given by

�̂ =

 X
t

1

�2t
Zt


�1
t Z

0
t

!�1 X
t

1

�2t
Zt


�1
t yt

!
(3)

where

�2t = 1 +
1

(d+ 1� k)(yt � Z
0
t�̂)

0
�1t (yt � Z 0t�̂).

and


t =
1

(d+ 1� k)�
�1
tjt�1

��1t = (yt � Z 0t�̂)(yt � Z 0t�̂)0 +��1tjt�1 (4)

�t+1jt =
1

�
�t

Given the maximum likelihood estimate5 of the AR coe¢ cients, the covariance process is

simulated from its posterior distribution. Note that conditional on the parameters (�, d, �,

�1j0),

p(HT ; : : : ;H1jYT ) = p(HT jYT )p(HT�1jYT ;HT ) � � � p(H1jYT ;HT ; : : : ;H2)

and

p(HtjYT ;HT ; : : : ;Ht+1) = p(HtjYt;Ht+1) (5)

Combining these two equations yields that

p(HT ; : : : ;H1jYT ) = p(HT jYT )p(HT�1jYT�1;HT ) � � � p(H1jY1;H2). (6)

which is the same type of decomposition as reported by Carter and Kohn (1994) for the

linear Gaussian state space model. In addition, we can see that conditional on Yt and Ht+1

Ht = �(Ht+1 +Rt) (7)

Rt � Wk

�
1;
1

�
�t

�
.

Therefore, drawing from p(HT ; : : : ;H1jYT ) is equivalent to drawing H(i)
T from p(HT jYT )

and subsequently drawing H(i)
t = �(H

(i)
t+1 +Rt) for t = T � 1; : : : ; 1. For a given history of

covariance process, a sequence of innovations is drawn to create a set of pseudo data.

5The maximum likelihood estimate �̂ can be obtained via an iterative method. That is to obtain the
sequence of �t from (4) for a given value of � and to obtain � from (3) for a given sequence of �t. The
iteration can be initiated from the least squares estimate of �. This estimate belongs to the class of iteratively
reweighted least squares estimates by Rubin (1983).
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All test statistics are computed for each pseudo data set. The number of replications is

1,000. We then evaluate the 99th, 95th and 90th percentiles of the empirical distributions

and use them as critical values.

In Table 2, we report the test results using the �nite sample critical values. It shows

that the SupWald and UDmax tests have less rejections than in Table 1. However, the

overall results are qualitatively similar. We have more rejections with multiple break tests

than single break tests. The �sup and �trace tests still reject in all equations.

Table 2. Parameter Instability Tests in the U.S. monetary VAR:
Empirical Critical Values from Stochastic Volatility Model

Y X SupLM SupWald Nyblom dqLL UDmax �sup �trace

unemp all 12.46 39.37�� 1.43�� -38.50�� 41.52�� 21.07�� 36.44�

unemp 7.49 9.70 0.41 -16.73 13.69 - -

in�ation 7.44 20.80�� 1.25 -14.73 20.80�� - -

interest 8.54 16.45�� 0.60 -21.53�� 16.85� - -

in�ation all 14.98 93.52��� 1.30� -48.84��� 93.52��� 26.32��� 46.31���

unemp 6.39 6.42 0.54� -19.15� 37.78��� - -

in�ation 14.96�� 51.47��� 0.86 -31.08��� 51.47��� - -

rate 19.71��� 38.38��� 0.44 -18.08� 45.69��� - -

interest all 11.78 24.76� 1.30� -44.03�� 57.85��� 30.17��� 41.71���

unemp 8.20 8.88 0.82� -11.32 10.39 - -

in�ation 9.07 14.75� 0.59 -28.28��� 14.75 - -

interest 5.87 6.50 0.78 -14.65 14.91 - -

Notes: See Table 1.

We also investigate the break dates which minimize the sum of squared residuals using

the so-called dynamic programming procedure suggested by Bai and Perron (1998). In

order to appropriately determine the number of breaks in each equation, one needs to use a

sequential test or information criteria. However, we simplify this process by looking at the

number of breaks at which the UDmax test becomes the most signi�cant.

Figure 1 is a histogram of these break dates. We include only the break dates from the

partial change models to avoid double counting. We observe that the dates are clustered in

the mid 1970s and the early 1980s and the pattern is very close to the illustration by Stock

and Watson (1996). This suggests that modeling parameter variations in some systematic

manner should result in e¢ ciency gain compared to a TVP model where all regression

coe¢ cients vary freely.
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Figure 1. Histogram of Estimated Break Dates

Finally, we investigate time instability of the innovation covariance matrix using the tests

recently proposed by Aue et al. (2009). Applying these tests to standard VAR residuals

may result in over-rejection if there are neglected changes in the coe¢ cients, because they

may translate into additional changes in the covariances. Hence we conduct the covariance

stability tests not only with the residuals from the constant coe¢ cient VAR but also from

the VAR with multiple structural breaks in the coe¢ cients6. The results are reported in

Table 3. It is strongly suggested that the VAR system has an unstable covariance structure

in the full sample. Even after taking the coe¢ cient breaks into account, the 
n test and

the �n test are signi�cant at 1% and 10% respectively.

Table 3. Results of the Covariance Stability Tests
sample 
n (CUSUM type) �n (Sup type)

constant coe¢ cients 6.47��� 4.46���

multiple breaks in coe¢ cients 5.05��� 3.14�

1. ***, **, and * are signi�cant at 1%, 5%, and 10% levels respectively.

2. Asymptotic critical values for � = 6 are not reported in the original paper

hence they are simulated via approximating a Brownian bridge by 10,000 steps

with 10,000 replications.

6The break dates are obtained from the pure structural change models. They are 1963:Q1 and 2005:Q2
in the unemployment equation, 1981:Q3 in the in�ation equation, and 1969:Q3, 1975:Q1, 1980:Q3, and
1986:Q3 in the interest equation.
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3 Reduced Rank TVP VAR

The standard TVP VAR where all regression coe¢ cients are freely changing has great

�exibility in �tting data. However, previous studies applying this method to the U.S.

monetary VAR, for example Cogley and Sargent (2005), �nd that most important time

variations in the AR coe¢ cients can be captured by only a few components. This is exactly

the motivation for us to build a reduced rank TVP VAR. We decompose the AR coe¢ cients

into time invariant and varying portions and impose the reduced rank condition on the time

varying portion. Using unnecessarily many free parameters often results in extremely wide

con�dence intervals, which makes the inference much less conclusive. One bene�t of our

approach is having a reduced number of time varying parameters, thereby rendering tighter

con�dence intervals. For comparison, we also consider unrestricted model. In the following,

we lay out the details of our models and estimation procedures.

Unrestricted TVP VAR We start with a simple unrestricted model which will serve as

benchmark for the reduced rank model. Our unrestricted TVP VAR is given by (1) where

the autoregressive coe¢ cients follow a multivariate random walk

vec(A0t) = vec(A0t�1) + et (8)

et � N(0; Q)

and

utjHt � ind N
�
0;H�1

t

�
.

with the inverse covariance matrix Ht as given in (2). Our unrestricted model is a variant

of Triantafyllopoulos (2011).

For the estimation of the unrestricted model, we use the Gibbs sampler combing the

following two conditional models:

Step 1: Conditional on (Q;Ht; t = 1; : : : ; T ), the equations in (1) and (8) constitute a

linear Gaussian state space model:

yt = Atxt + ut = (Ik 
 x0t)vec(A0t) + ut

This can be routinely estimated by the Kalman �lter. De�neW 0
t = Ik
x0t and bt = vec(A0t).
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The Kalman �lter updating equations are:

btjt�1 = bt�1jt�1 (9)

Vtjt�1 = Vt�1jt�1 +Q

Kt = Vtjt�1Wt(W
0
tVtjt�1Wt +H

�1
t )�1

btjt = btjt�1 +Kt(yt �W 0
tbtjt�1)

Vtjt = Vtjt�1 �KtW 0
tVtjt�1

Once bT jT and VT jT are obtained, bT is drawn from its posterior distribution N(bT jT ; VT jT ).

Then, bt for t = T � 1; : : : ; 1 are subsequently drawn from their posterior distribution

N(btjt+1; Vtjt+1) where the mean and variance are obtained from the backward recursion

formula:

btjt+1 = btjt + VtjtV
�1
t+1jt(bt+1 � btjt) (10)

Vtjt+1 = Vtjt � VtjtV �1t+1jtVtjt

To initiate the Kalman �lter, we obtained b0j0 and V0j0 from the pre-sample data. b0j0 is

the least squares estimate of the AR coe¢ cients and V0j0 is a diagonal matrix taking the

diagonal entries of the covariance matrix of the least squares estimate.

We specify that Q has an inverse Wishart prior.

Q � IW ( �Q�1; df)

where

df = k(2k + 1) + 1 = 22

�Q = I3 
 diag
n
sI4;

s

2
I3

o
with s = 3�1 � 10�5.

Given the sequence of bt, we can recover the sequence of et. Then, the posterior of Q is

given by

Q � IW
�
[ �Q+

X
ete

0
t]
�1; df + T

�
Step 2: Conditional on (At; t = 1; : : : ; T ), the model becomes the multivariate stochastic
volatility model given in (2). For t = 1; 2; : : : ;

p(HtjYt) � Wk(d+ 1;�t) (11)

p(Ht+1jYt) � Wk(d;�t+1jt) (12)
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where �t and �t+1jt are obtained through a �lter so that

��1t = utu
0
t +�

�1
tjt�1 and �t+1jt =

1

�
�t

Upon obtaining �ts, drawing from p(H1; : : : ;HT jYT ) is the same as explained in (7).

Reduced Rank TVP-VAR Now, we impose reduced rank structure on the time varying

portion of the autoregressive coe¢ cients. That is to specify At = A+BtG so that

yt = Axt +BtGxt + ut (13)

where Bt and G are k � r and r � (kp + 1) respectively. For the model to be properly
identi�ed, we assume that

B1 = 0 and G =
�
Ir G1

�
.

The time varying parameters follow a multivariate random walk

vec(B0t) = vec(B0t�1) + et (14)

et � N(0; Q)

We use the Gibbs sampler combing the following four conditional models:

Step 1: Conditional on (A;Q;G;Ht; t = 1; : : : ; T ), the equations in (13) and (14) constitute
a linear Gaussian state space model:

yt �Axt = BtGxt + ut

= vec
�
x0tG

0B0t
�
+ ut = (Ik 
 x0tG0)vec(B0t) + ut

This is again estimated by the Kalman �lter. De�ne W 0
t = Ik
x0tG0 and bt = vec(B0t). The

Kalman �lter updating equations given in (9) and (10) are directly applied. One di¤erence

is that since we assume B1 = 0, the recursion starts from b1j1 = 0 and V1j1 = 0. We set

r = 3 and then our assumption that G = [Ir; G1] implies BtG = [Bt; BtG1]. This means

that Bt should have similar time variations to the elements in the �rst r columns of At
matrix of the unrestricted model. Hence, the prior for Q is the same as in the unrestricted
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model. That is,

Q � IW ( �Q�1; df)

df = 22

�Q = sI9 with s = 3�1 � 10�5.

The Q matrix is updated in the same way as before given the sequence of bts.

Step 2: Conditional on (Bt; G;Ht; t = 1; : : : ; T ), the model in (13) yields a multivariate

linear regression with heteroskedastic Gaussian errors.

y�t = Tt(yt �BtGxt)

= TtAxt + Ttut = (Tt 
 x0t)vec(A0) + Ttut = Z 0t�A + Ttut

where

y�t = Tt(yt �BtGxt), Z 0t = Tt 
 x0t, and �A = vec(A0).

We specify the prior for �A as N(��A;
A). Then, the posterior is given by

N

0@�̂A;
"

�1A +

TX
t=1

ZtZ
0
t

#�11A
with

�̂A =

"

�1A +

TX
t=1

ZtZ
0
t

#�1 "

�1A ��A +

TX
t=1

Zty
�
t

#
.

Since A stands for the value of AR coe¢ cients at time 1, ��A is set at the average of the

posterior median values of At in the �rst 10 quarters obtained from the unrestricted model.


A is set at the covariance matrix of the least squares estimate of the AR coe¢ cients from

the entire sample scaled by 10�1.

Step 3: Conditional on (A;Bt;Ht; t = 1; : : : ; T ), the model in (13) yields another multi-

variate linear regression with heteroskedastic Gaussian errors. Let xt = (x01t; x
0
2t)

0 where x1t
collects the �rst r elements of xt and x2t the rest.

y��t = Tt(yt �Axt �Btx1t)

= TtBtG1x2t + Ttut

= (TtBt 
 x02t)vec(G01) + Ttut = S0t
1 + Ttut

12



where

y��t = Tt(yt �Axt �Btx1t), S0t = (TtBt 
 x02t), and 
1 = vec(G01).

We specify the prior for 
1 as N (�
1;

). Then, the posterior is given by

N

0@
̂1;
"

�1
 +

TX
t=1

StS
0
t

#�11A
with


̂1 =

"

�1
 +

TX
t=1

StS
0
t

#�1 "

�1
 �
1 +

TX
t=1

Sty
��
t

#
.

Because BtG = [Bt; BtG1], the elements in the �rst column of Bt correspond to changes in

the intercepts, those in the second column to changes in the unemployment coe¢ cients in

the �rst lag and those in the third column to changes in the in�ation coe¢ cients in the �rst

lag. Changes in the rest coe¢ cients are some linear combinations of the elements in Bt and

G1 speci�es the weights. We specify

�
1 = E(vec(G01)) = vec

2664
0B@ 0 0 0 0

0:5 0:1 0 0:5

�0:5 0 0:1 �0:5

1CA
03775



 = diag

8>><>>:vec
2664
0B@10

�6 10�6 10�6 10�6

1 4�1 10�6 10�2

1 10�6 4�1 10�2

1CA
03775
9>>=>>; .

The zero mean in the �rst row of G1 implies that the intercept changes are not coupled

with changes in the other coe¢ cients. This prior is imposed somewhat strongly as we put

small variances for these elements. The weight (0:5;�0:5) is for the interest coe¢ cients
changes, meaning that the unemployment and in�ation coe¢ cients changes have the same

importance but with opposite signs. This prior is put only very loosely especially for the

�rst lag term. The weight (0:1; 0) is for the unemployment coe¢ cient change in the second

lag. We put a relatively large variance for the positive weight and a small variance for the

zero weight. This means that the unemployment coe¢ cient change in the �rst lag would

mostly a¤ect the unemployment coe¢ cient change in the second lag with some positive

bias while the in�ation coe¢ cient change in the �rst lag would not a¤ect much. A similar

interpretation goes for the weight (0; 0:1).

Step 4: Conditional on (A;G;Bt; t = 1; : : : ; T ), the model becomes a multivariate stochas-
tic volatility model which is the same as Step 2 of the unrestricted model.

13



For both the unrestricted and reduced rank models, we executed 40,000 replications and

the �rst 30,000 replications are discarded to ensure convergence of the chain. We checked

convergence by looking at various moments of the estimates both within each chain and

across multiple parallel chains.

4 Estimation Results

We report the time evolutions of the VAR error covariance matrix, core in�ation, natural

rate of unemployment and interest rate�s longrun response to in�ation. In all graphs, the

thick line corresponds to the posterior median and the thin lines to 5th and 95th percentiles

of the posterior.

VAR error covariance matrix We construct historical paths of the Cholesky decompo-

sition of H�1
t from the posterior draws. Assuming that the structural errors are identi�ed

by the usual triangular system, we �rst report the standard errors of the structural shocks

in Figure 2. We report only the results from the reduced rank model, since the two models

produce very similar results.
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Figure 2. Standard Errors of Structural Shocks

Our estimates share many important features with previous �ndings in the literature,

for example, those in McConnell and Perez Quiros (2000), Primiceri (2005) and Cogley

and Sargent (2005) among many others. First, the unemployment shock shows the �Great

14



Moderation�throughout the 1980s. The drop during the Volcker chairmanship is roughly

40%. However, the unemployment volatility has been on the rise especially during the

Bernanke chairmanship. The in�ation shock shows a similar pattern, though the moderation

captured in the 1980s seems milder. The interest shock shows a huge hike during the Volcker

chairmanship, re�ecting the non-borrowed reserve targeting.

Figure 3 is obtained from the o¤ diagonal elements of the Cholesky decomposition of

H�1
t . Under the triangular identi�cation, these estimates can be interpreted as contem-

poraneous responses to one standard deviation change in structural shocks. The in�ation

response to unemployment shock seems negative mostly, but the con�dence interval does

not rule out zero response. The interest rate responses are more de�nite statistically. A pos-

itive unemployment shock decreases interest rate. The response is the strongest during the

Volcker chairmanship, but there is no evidence to di¤erentiate pre and post Volcker periods.

A positive in�ation shock increases interest rate. Again, the response is the strongest during

the Volcker chairmanship, but the Bernanke chairmanship seems almost equally strong.
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Figure 3. Contemporaneous Responses to Structural Shocks

Natural rate of unemployment and core in�ation Figures 4 and 5 show the natural

rate of unemployment and core in�ation. We obtain them from local linear approximations

to mean in�ation and unemployment respectively evaluated at the posterior distribution,

following Cogley and Sargent (2005). Let the companion form of (1) be zt = �t+ �Atzt�1+ut.

Then, the natural rate of unemployment and core in�ation are given by s(I� �At)�1�t, where

15



s is an appropriate selection matrix. We present the results from the unrestricted model

and reduced rank model side by side.
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Figure 4. Natural Rate of Unemployment
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Figure 5. Core In�ation

Overall, the reduced rank model produces much tighter con�dence intervals than the

unrestricted model, while the two models produce similar trends in the median. In terms
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of the median values, both the natural rate of unemployment and core in�ation rise to the

peak of 6%-8% in the late 1970s and fall afterwards throughout the Greenspan chairmanship.

These estimates are in accordance with the previous results reported in Cogley and Sargent

(2005). However, the results from the unrestricted model are less conclusive about the

recent movements of these two variables due to the wider con�dence intervals. In Figure 4,

for example, the estimates from the unrestricted model somewhat suggest that the natural

rate of unemployment declines during the Volcker chairmanship but the following time path

during the Greenspan and Bernanke chairmanship is unclear because of the wide con�dence

intervals. On the other hand, the reduced rank model yields con�dence intervals that are

tight enough to suggest declining natural rate of unemployment up to the mid 1990s. In

Figure 5, the 95th percentile for the core in�ation during the Bernanke chairmanship is

much higher in the unrestricted model than in the reduced rank model. As a result, if we

make a hypothesis that the core in�ation during the Bernanke chairmanship is as high as

the median estimates for the late 1970s, then the unrestricted model does not reject it while

the reduced rank model does and thus provides more evidence of time changes.
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Figure 6. In�ation Persistence

In�ation persistence Figure 6 displays measured in�ation persistence. It is measured

as the normalized spectral density at zero frequency, where the normalization is taken with

respect to the innovation variance. In terms of the posterior median values, the two models

produce similar time patterns. The median of the persistence gradually rises throughout the
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late 1960s and the 1970s, sharply falls in the early 1980s, and shows much less �uctuation

afterwards. Our median estimates are comparable to those in Cogley and Sargent (2005),

and they bear great resemblance to the historical path of the core in�ation. When the

con�dence intervals are considered, however, the results from the unrestricted model is not

informative at all. For example, the 5th percentile from the unrestricted model is almost

�at over time and the 95th percentile is much higher than the median. Thus if we make

a hypothesis that the in�ation persistence around 1979 is as low as the median estimates

for other time periods, then such a hypothesis cannot be rejected. On the other hand,

the 5th percentile around 1979 obtained from the reduced rank model is higher than the

median estimates in other time periods, and provides some evidence of time varying in�ation

persistence.

Monetary policy rule Figure 7 shows monetary policy rule, which is obtained as interest

rate�s longrun response to a unit in�ation shock. As explained in Primiceri (2005), the Tay-

lor principle requires that the longrun response be greater than one. Our median estimates

from the reduced rank model suggest that this requirement is met most periods except for

the late 1950s and the early 2000s, which is in general agreement with the claim in Prim-

iceri (2005). In Figure 3, the immediate response of interest to in�ation in the Bernanke

chairmanship is almost as strong as in the Volcker chairmanship. However, the longrun

response seems weaker in the Bernanke chairmanship than in the Volcker chairmanship.
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Figure 7. Monetary Policy Rule, Longrun Response of Interest Rate to In�ation Shock

18



5 Conclusion

We apply more powerful structural break tests and �nd statistically signi�cant evidence that

the coe¢ cients in the U.S. monetary VAR are time varying. We also apply a reduced rank

TVP VAR and show that there are important changes in natural rate of unemployment,

core in�ation, in�ation persistence, and monetary policy rule. Our results di¤er from the

previous studies in the literature in that our reduced rank restrictions reduce the number

of parameters and yield tighter con�dence intervals.
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