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Introduction

Joint modelling of daily returns and RV

» Realized SV
» Takahashi, Omori and Watanabe (2009)
» Dobrev and Szerszen (2010)
» Koopman and Scharth (2012)

» Realized GARCH
» Hansen, Huang and Shek (2012)

» Why is joint modelling needed?
» Adjusting the bias of RV caused by microstructure noise

and non-trading hours.

» Estimating the parameters in return equation jointly with
the parameters in volatility equation.



Introduction

Purpose of this paper

» We examine whether the realized SV model will improve
the performance of volatility and quantile forecasts.

Return distribution

» For quantile forecast, not only volatility but also return
distribution are important.

» We use the GH skew Student’s t distribution.



Realized SV Model

Notation
» = dalily financial return
» h=log of true volatility
» x;= log of RV

Realized SV model

r = exp(h:/2)e,
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Realized SV Model

Xt =&+ yhy + Uy

v

If ¢ =0andy =1, x; is the unbiased estimator of h;.

v

These parameters play a role to adjust the bias of RV

caused by microstructure noise and non-trading hours.

v

Takahashi, Omori and Watanabe (2009) set ¢ = 1.
In what follows, we also set ¢ = 1 because the
performance of quantile forecast is not improved by
estimating .

v



Return Distribution

GH skew Student’s t distribution
» Suppose
» ¢ ~ N(0,1)
» 2~ IG(v/2,v/2)
» ¢ and z; are independent.
» uy =E[z] =v/(v-2)
» Then, the distribution of {8(z; — u;) + V/zi€&} is called the
GH skew Student’s t distribution.
» It includes the Student’s t distribution as a special case
of B =0.
» It collapses to the standard normal distribution when
B=0,v - (e, z =1forall t).

» rp=exp(h/2){B(z: — pz) + Vzier)



Return Distribution

GH distribution

» There is a more general distribution called the GH
distribution, which includes the GH skew Student’s t
distribution.

» It is difficult to estimate the parameters in the GH
distribution (Prause, 1999; Aas and Haff, 2006;
Nakajima and Omori, 2012)

» We use the GH skew Student’s t distribution in this
paper.



Return Distribution

Examples of GH skew Student’s t distribution
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Return Distribution

Realized SV model with the GH skew Student’s f return
distribution

ri = exp(h/2) {B(zi — p2) + Vzier)
e = p+ ¢(he — ) + 1,

Xt =&+ he+ uy,

z ~ 1G(v/2,v/2),

€t 1 po, O
n |~N(OX), X=|pos, o> O
Ut 0 0 0'5
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and z = {z}]_,.



Return Distribution

» This model enables us to estimate the parameters (B, v)
for the GH skew Student’s t distribution jointly with the
other parameters.

» Giot and Laurent (2004) applies the ARFIMA model for
RV to VaR, where they first estimate the parameters in
the ARFIMA model and then estimate the parameters in
the return distribution.



Bayesian Estimation Using MCMC

» We sample (6, h, z) from their posterior distribution
using the Gibbs sampler:

0.

—_
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Initialize (0, h, z).

Sample from @loy, p,p, B, v, &, 0y, h, 2, .
Sample from (o, p)lb, 1, 8, v, €, 00, h, 2, y.
Sample from ulgp, oy, 0,8, v, €, 04, h, 2, .
Sample from Bl¢, oy, p, u, v, €, 04, h, 2, .
Sample from v|¢, oy, p, 1, 8,é, 04, D, 2, y.
Sample from &|¢, oy, p, 11,8, v, 04, h, 2, .
Sample from oy, oy, p, 1. B, v, €, h, 2, y.
Sample from z|0, h, y.

Sample from h|0, z, y.

Goto 1.



Bayesian Estimation Using MCMC

» We can sample from the full conditional distributions in
Steps 1-9 by extending the method proposed by
Takahashi, Omori and Watanabe (2009).

» We use the method proposed by Nakajima and Omori
(2012) in Steps 4, 5 and 8, where the parameters (5, v)
and latent variable z; for the GH skew Student’s t
distribution are sampled.

» We sample the latent variable h; efficiently by applying
the block sampler for the asymmetric stochastic volatility
model proposed by Omori and Watanabe (2008).



Quantile Forecasts

Sampling one-day-ahead return
» We add the following sampling scheme after Step 9 of
the Gibbs sampler to sample one-day-ahead return for
quantile forecast.
i. Generate hn 1|0, h, z,y ~ N(uny1, a-ﬁ+1 ), where
Mnt1 =p + ¢(hp — )
+ 2,2 exp(=hn/2)pory (1n — BZn exp(hn/2)},
0'%+1 =(1 _Pz)o'rzy-
ii. Generate z,11 ~ IG(v/2,v/2).
iii. Generate r,116, A1, Zni1 ~ N(,a,,+1,6-f7+1), where
fny1 = B(Znt1 — 1z) exp(hpi1/2),
6511 = Zny1 €xp(hng).

iv. Generate Xp4110, hpy1 ~ N(& + Yhy i1, 02).



Quantile Forecasts

VaR

» VaR,.1(«) denotes the one-day-ahead forecast for the
VaR of the daily return r, 4 with probability «.

» We concentrate on the long position.

» Then, Pr[r,11 < VaR, 1(a)lZ,] = e.



Quantile Forecasts

ES

» Although the VaR has been widely used to evaluate the
quantile forecast of financial returns, it only measures a
quantile of the distribution and ignores the important
information of the tail beyond the quantile.

» To evaluate the quantile forecast with tail information, we
compute the expected shortfall (ES), which is defined as
the conditional expectation of the return given that it
violates the VaR.

» The one-day-ahead forecast of the ES with probability &
is defined as

ESn+1 (a’) - E[I’n+1|fn+1 < VaRn_|_1 (a), In].



Quantile Forecasts

Computation of VaR and ES

» The one-day-ahead forecasts (VaR,1(a), ...,
VaR,,r(@)) and (ES,.1(@), ..., ES . 1(a)) are
computed repeatedly in the following way.

0. Seti=1.

1. Sample the model parameters and one-day-ahead
return r,,; from their posterior distribution conditional on
the data (yi, ..., Ynti-1)-

2. Compute VaR,i(@) as the a-percentile of the sample of
I’n+,

3. Compute ES, /(@) as a sample average of r,; which
satisfies rp4; < VaRpyi(a).

4, Seti=i+1andreturnto1ifi< T.



Empirical Application

Data

S

Spyder, the S&P 500 exchange-traded fund, obtained
from NYSE TAQ database.

Sample period: February 1, 2001-August 29, 2008.
Sample size: 1,886.

We compute daily returns as the log difference in the
closing prices.

We compute daily RV using 1-minute returns.

We also compute daily RK (Barndorff-Nielsen et al.,
2008) using 1-minute returns.

We neglect overnight in computing RV and RK.



Empirical Application

Descriptive statistics for the full sample.

Variable  Mean SD Skew Kurt JB LB(10)
r -0.0033 1.0897 0.0448 5.3255 0.00 0.72
RV 0.9548 1.1375 4.3027 34.3299 0.00 0.00
RK 0.8493 1.0077 4.0660 28.4696 0.00 0.00
logRV  -0.4705 0.8862 0.3627 2.6823 0.00 0.00
logRK -0.5773 0.8701 0.3849 2.8369 0.00 0.00




Empirical Application

Estimation results of realized SV model with the GH skew
Student’s t distribution and RV during the period of February
1, 2001 to February 10, 2005 (1,000 observations).

Mean Stdev. 95%L 95%U CD Inef.
) 0.9759 0.0065 0.9629 0.9884 0.238 2.16
o, 0.1643 0.0075 0.1504 0.1796 0.812 9.55
o -0.3850 0.0529 -0.4864 -0.2802 0.041 12.26
u -0.1652 0.2191 -0.5991 0.2741 0.694 3.19
B 0.5647 0.6460 -0.7901 1.8300 0.375 104.53
v 24.1302 5.2360 15.4345 35.4438 0.248 125.85
& 0.0127 0.0509 -0.0800 0.1184 0.834 59.00
o, 0.2661 0.0084 0.2505 0.2834 0.765 4.08




Empirical Application

Estimation results of realized SV model with the GH skew
Student’s t distribution and RK during the period of February
1, 2001 to February 10, 2005 (1,000 observations).

Mean Stdev. 95%L 95%U CD Inef.
) 0.9716 0.0069 0.9574 0.9848 0.550 2.29
o, 0.1761 0.0085 0.1601 0.1939 0.072 8.56
o -0.4350 0.0542 -0.5362 -0.3230 0.551 11.63
u 0.0056 0.1903 -0.3712 0.3811 0.356 3.45
B 0.1308 0.3126 -0.4947 0.7448 0.730 22.97
% 27.1193 4.9390 18.2402 37.9927 0.074 51.66
& -0.3134 0.0470 -0.4098 -0.2239 0.378 28.32
o, 03101 0.0094 0.2929 0.3295 0.434 2.26
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Empirical Application

Forecasting periods

» Low volatility period: February 11, 2005-December 29,
2006.

» High volatility period: January 3, 2007—August 29, 2008.

21/42



Empirical Application

Failure rates of the VaR forecasts for the low volatility period.

Model RM 0.5% 1% 5% 10%

SVn 0.0021 0.0021 0.0297 0.0488
SVt 0.0021 0.0042 0.0255 0.0552
SVskt 0.0000 0.0021 0.0276 0.0637
RSvn RV 0.0064 0.0127 0.0467 0.0913
RSVt RV 0.0042 0.0064 0.0467 0.0892
RSVskt RV 0.0085 0.0085 0.0425 0.0807
RSvn RK 0.0042 0.0085 0.0403 0.0786
RSVt RK 0.0042 0.0064 0.0403 0.0786
RSVskt RK 0.0042 0.0064 0.0403 0.0722
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Empirical Application

Failure rates of the VaR forecasts for the high volatility period.

Model RM 1% 5% 10%

SVn 0.0337 0.0771 0.1325
SVt 0.0289 0.0795 0.1446
SVskt 0.0217 0.0771 0.1398

RSVn RV 0.0241 0.0651 0.1012
RSVt RV 0.0120 0.0602 0.1012
RSVskt RV 0.0120 0.0578 0.1012
RSVn RK 0.0217 0.0699 0.1060
RSVt RK 0.0169 0.0675 0.1036
RSVskt RK 0.0145 0.0675 0.1036




Empirical Application

Likelihood ratio tests for VaR

» Kupiec (1995)- - - violations are independent.

» Christoffersen (1998)- - - violations follow a Markov
process.

» Chritoffersen and Pelletier (2004)- - - duration follows the
Weibull distribution or the exponential autoregressive
conditional duration (EACD) model of Engle and Russell
(1998).



Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the low volatility period (& = 1%).

Model RM Markov Weibull EACD

SVn 0.0910 .NaN .NaN
SVt 0.2355 .NaN .NaN
SVskt 0.0819 .NaN .NaN

RSVn RV 0.6222 0.3211 0.7571
RSVt RV 0.4966 0.2243 0.6414
RSVskt RV  0.7881 0.2340 0.8037
RSVn RK 0.7620 0.2387 0.8093
RSVt RK 0.3925 0.2211 0.6459
RSVskt RK 0.4234 0.2239 0.6357




Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the low volatility period (& = 5%).

Model RM Markov Weibull EACD

SVn 0.0993 0.2111 0.2538
SVt 0.0409 0.4401 0.5239
SVskt 0.0683 0.1385 0.3544

RSVvn RV 0.2693 0.9577 0.1757
RSVt RV 0.2678 0.9606 0.1727
RSVskt RV  0.5482 0.8936 0.1441
RSVn  RK 0.3748 0.5349 0.1367
RSVt RK 0.3700 0.5341 0.1379
RSVskt RK 0.1093 0.8654 0.1456




Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the low volatility period (@ = 10%).

Model RM Markov Weibull EACD

SVn 0.0005 0.4849 0.2412
SVt 0.0039 0.6030 0.0392
SVskt 0.0349 0.6025 0.2024

RSvn RV 0.5323 0.8663 0.0051
RSVt RV 0.4302 0.9630 0.0039
RSVskt RV  0.1643 0.9871 0.0615
RSVn RK 0.1134 0.9732 0.0078
RSVt RK 0.1116 0.9712 0.0103
RSVskt RK 0.0261 0.9705 0.0196




Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the high volatility period (& = 1%).

Model RM Markov Weibull EACD

SVn 0.0149 0.2177 0.0159
SVt 0.0182 0.3909 0.6009
SVskt 0.0642 0.5396 0.0709

RSVn RV 0.0378 0.0535 0.9548
RSVt RV 0.6678 0.8824 0.9791
RSVskt RV 0.7169 0.9872 0.7384
RSVn RK 0.0621 0.7332 0.4002
RSVt RK 0.2095 0.4914 0.3957
RSVskt RK 0.4370 0.9241 0.8101




Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the high volatility period (& = 5%).

Model RM Markov Weibull EACD

SVn 0.0058 0.0032 0.2854
SVt 0.0036 0.0025 0.2644
SVskt 0.0061 0.0032 0.2891

RSvn RV 0.0957 0.2898 0.2596
RSVt RV  0.1679 0.1221 0.4072
RSVskt RV 0.2175 0.1014 0.4697
RSvVn  RK 0.0498 0.0383 0.1040
RSVt RK 0.0683 0.0392 0.1320
RSVskt RK 0.0687 0.0369 0.1253




Empirical Application

P-values of the Markov, Weibull and EACD tests for VaR
forecasts for the high volatility period (& = 10%).

Model RM Markov Weibull EACD

SVn 0.0080 0.0064 0.2502
SVt 0.0003 0.0006 0.2685
SVskt 0.0016 0.0038 0.3428

RSVn RV 0.2085 0.0213 0.2427
RSVt RV 02139 0.0174 0.2434
RSVskt RV 0.2125 0.0166 0.2526
RSVn RK 0.1435 0.0158 0.1324
RSVt RK 0.1812 0.0098 0.1780
RSVskt RK 0.1826 0.0126 0.1963




Empirical Application

Backtesting measure of Embrechts, Kaufman and Patie
(2005) for the ES forecasts.

S

To backtest the ES forecasts with probability a, we use
the measure proposed by Embrechts, Kaufmann and
Patie (2005).

Si(a) = n — ESi(e).

k() = set of time points for which a violation of the VaR
occurs.

T; = number of time points in ().

Vi(@) =  Zreaa) 6t(@).

This is a standard backtesting measure for the ES
estimates but depends strongly on the VaR estimates
without adequately reflecting the correctness of these
values.
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Empirical Application

v

To correct for this, it is combined with the following
measure, where the empirical a-quantile of §;(«) is used
in place of the VAR estimates.

q(e) = empirical a-quantile of §;().

7(a) = set of time points for which §;(a) < q(«) occurs.
T, = number of time points in 7(a).

Va(a) = %2 ZFET(ar) 6r(@).

The Embrechts, Kaufmann and Patie (2005) measure is

given by
V() = Al 1Vle)

A good estimation of ES will lead to a low value of V(a).
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Empirical Application

Backtesting measure of Embrechts, Kaufman and Patie
(2005) for the ES forecasts for the low volatility period.

Model RM 1% 5% 10%

SVn 0.409 0.437 0.256
SVt 0.320 0.412 0.271
SVskt 0.577 0.353 0.298

RSvVvn RV 0.058 0.040 0.024
RSVt RV 0.077 0.043 0.022
RSVskt RV 0.036 0.027 0.034
RSVn  RK 0.054 0.035 0.037
RSVt RK 0.072 0.058 0.043
RSVskt RK 0.084 0.068 0.049




Empirical Application

Backtesting measure of Embrechts, Kaufman and Patie
(2005) for the ES forecasts for the high volatility period.

Model RM 1% 5%  10%

SVn 0.320 0.439 0.329
SVt 0.254 0.376 0.280
SVskt 0.155 0.295 0.230

RSVn RV 0.275 0.189 0.187
RSVt RV 0346 0.142 0.139
RSVskt RV 0.291 0.132 0.122
RSVn RK 0.314 0.187 0.185
RSVt RK 0.214 0.118 0.146
RSVskt RK 0.217 0.099 0.133




Conclusions

1. The realized SV model performs better than the SV
model at least for the low volatility periods.

2. The GH skew Student’s t distribution performs better
than the t and normal distributions for the both periods.

3. The realized SV model with RK does not perform better
than that with RV, indicating that the realized SV model

can adjust the bias caused by microstructure noise well.
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Extensions

1. Realized range-based volatility
» Christensen and Podolskij (2007)
» Martens and van Dijk (2007)
» Divide a day into nintervals.
» m prices are observed in each interval.
- pﬁ: highest price in the ith interval on day t.
- p,.ft: lowest price in the ith interval on day t.
» Realized range-based volatility:

n

RRV; = al " {log(p™)ic - log(ph,)}”

M =1

» Am — 4In(2) as m — 0.
» A, cannot be obtained analytically if m is finite
(Christensen. Podolskij and Vetter, 2009).
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Extensions

2. Jump

3. Long memory

4. Multiperiod forecasts

5. Comparison with the other models

» ARFIMA and HAR models for RV
» Realized GARCH (Watanabe, 2012)

3714
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