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1 Introduction

The financial meltdown of 2008 and the recent European debt crisis in 2011 raise ques-

tions about how likely extreme events are and how extreme events can be modeled

as they have already impacted financial markets worldwide and have had far-reaching

consequences for the world economy. Understanding dynamics of extreme events thus

becomes crucial to many financial decision makings, including investment decision,

hedging, policy reaction and rating. An important class of models is the continuous-

time diffusions. Studies have successfully identified some important stylized facts such

as stochastic volatility and volatility clustering (Hull and White, 1986; Heston, 1993).

Furthermore, empirical explorations find that a jump component is necessary to capture

extreme movements in asset prices1.

However, more recently, it is found that only stochastic volatility and jumps in asset

returns may not capture the real dynamics of asset prices and therefore cannot generate

enough probability of extreme events. It has been recognized that a big jump, in par-

ticular a big negative jump in asset prices, tends to be associated with an abrupt move

in asset volatility, i.e., co-jumps of prices and volatility. A further intriguing empirical

observation is that market turmoils seem to tell that an extreme movement in markets

tends to be followed by another extreme movement, resulting in jump clustering. To

document these facts, Table 1 reports the S&P 500 index returns and the corresponding

standard deviations computed using the previous 22-day returns during the four tur-

bulent periods, covering the Black Monday in 1987, the crash of the Internet Bubble in

2002, the bankruptcy of Lehman Brothers during the global financial crisis in 2008, and

the European debt crisis in 2011. In all turbulent periods, extreme price movements

are accompanied by high volatility and extreme events seem to be clustered.

— Table 1 around here —

Obviously, diffusion-based multi-factor volatility models are not good enough for

1Parametric studies include Bates (1996, 2000), Bakshi, Cao, and Chen (1997), Andersen, Ben-
zoni, and Lund (2002), Chernov et al. (2003), among others, whereas nonparametric works include
Barndorff-Nielsen and Shephard (2007), Aı̈t-Sahalia and Jacod (2009, 2011), and Lee and Hannig
(2010)
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capturing co-jumps of prices and volatility and jump clustering as there is no mech-

anism to trigger extreme movements in asset returns and volatility during a turmoil.

Not surprisingly, Bates (2000) and Chernov et al. (2003) have found that the two-factor

volatility model does not offer substantial improvements over the single-factor volatility

model. In the literature, two strands, which have pursued to accommodate co-jumps

of prices and volatility and jump clustering, co-exist. One strand uses synchronized

Poisson process to model asset returns and diffusion volatility (Duffie, Pan, and Sin-

gleton, 2000; Eraker, Johannes, and Polson, 2003; Eraker, 2004). In this framework,

when a Poisson jump arrives, it not only moves asset price but also pushes up diffusion

volatility. Since the process for diffusion volatility is persistent, another large volatility

value is expected in the next period. Consequently, another extreme movement in asset

price is highly likely to be followed, even if there is no jump arrival. Another strand

proposes a mechanism whereby jumps in asset returns feedback to the jump intensity,

leading to self-excitation (Aı̈t-Sahalia, Cacho-Diaz, and Laeven, 2011; Carr and Wu,

2010). Here, large jumps in asset returns increase the likelihood of extreme events in

future asset returns and generate aggregate volatility jumps through the jump intensity.

While both approaches can generate co-jumps of prices and volatility and a cor-

relation structure in extreme price movements, the implications of them are different.

First, the propagating mechanism of extreme events is different. In particular, the cor-

relation in extreme events is driven by the correlation in the high volatility regime in

the former approach but by the correlation in the intensity in the latter. Second, the

amount of conditional kurtosis generated by the two approaches is different. As the

sampling interval gets smaller, it is expected that the impact of diffusion volatility on

the kurtosis is smaller than that of jumps. Thus, the amount of short-term tail risk

after a market crash is likely to differ in the two cases. These differences inevitably

have implications for short-term option pricing and risk management. Therefore, it

is important to empirically examine the relative importance of these two alternative

mechanisms.

In the present paper, we propose a new class of continuous-time asset pricing mod-
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els where both channels of co-jumps of prices and volatility and jump clustering are

allowed. In our specification, negative jumps play crucial roles. Whenever there is

a negative jump in asset returns, it is simultaneously passed on to diffusion variance

and the jump intensity. Therefore, the likelihood of the future extreme events can be

enhanced through jumps in diffusion volatility or jumps in the jump intensity or both.

The importance of negative jumps can be motivated from empirical observations in

Table 1 where in all cases turmoils start with negative jumps. It is also consistent

with our understanding of financial markets where investors are more sensitive to ex-

treme downside risk. Our model has closed-form conditional expectation of volatility

components, making it easy to use in volatility forecasting and risk management.

The new model contains multiple dynamic unobserved factors including diffusion

volatility, the jump intensity, and (negative and positive) jumps. Since a richer model

framework is adopted here, we are naturally concerned about parameter uncertainty

and in-sample over-fitting inherent in batch estimation2. To deal with these issues, we

introduce a Bayesian learning approach for the proposed model. In practice, sequential

estimation of both parameters and latent factors is much more relevant than batch

estimation as we cannot obtain future information and need to update our belief on

parameters and models in real time whenever new observations arrive. First, to filter the

unobserved states and obtain the likelihood estimate for a given set of model parameters,

we develop an efficient hybrid particle filter. It efficiently disentangles the diffusion

component and the positive and negative jumps. The algorithm performs much better

than the conventional bootstrap sampler for outliers that are an integral part of the

financial data and of our model. Second, we turn to a sequential Bayesian procedure to

conduct joint inference over the dynamic states and fixed parameters. In particular, we

employ the marginalized resample-move algorithm developed in Fulop and Li (2011),

2Batch estimation of multifactor jump-diffusion stochastic volatility models includes Bayesian esti-
mation with MCMC methods (Eraker, Johannes, and Polson, 2003; Li, Wells, and Yu, 2008; Li, 2011a),
maximum likelihood method (Bates, 2006, 2012), efficient method of moments (Andersen et al., 2002;
Chernov et al., 2003), and non/semi-parametric methods (Todorov, 2009, 2011), among others. State
filtering and sequential model comparison have been done by Johannes, Polson, and Stroud (2009) for
Poisson-Jump stochastic volatility models and by Li (2011b) for the time-changed Lévy models.
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which is robust and efficient and needs little design effort from users3. The algorithm

provides marginal likelihoods of individual observations that are crucial for sequential

model analysis with respect to information accumulation in real time. It is important

to point out that the simulated samples obtained at any time only depend on past data

so the approach is free from hindsight bias.

We use S&P 500 index returns ranging from January 2, 1980 to October 30, 2011

(in total, 8,033 observations) to empirically investigate our self-exciting models. This

dataset is long enough and contains typical market behaviors: the 87’s market crash,

the 98’s Asian financial crisis, the 02’s dot-com bubble burst, the 08’s global financial

crisis, the 11’s European debt crisis, and calm periods in between. We find that the

evidence of co-jumps in volatility and returns through diffusion volatility is robust

ever since the 1987 market crash. The parameter driving the feedback from negative

return jumps to diffusion volatility is well identified and less than one. In contrast,

the self-exciting jump intensity is less important and we find weak evidence of jump

clustering. The parameters driving the jump intensity dynamics are hard to identify.

The substantial uncertainty about the jump dynamics is mirrored in large uncertainty

about the magnitude of jump intensities during the recent financial crisis.

As diffusion volatility jump is a necessary component in modeling the stock market

index and volatility co-jumps at the same time as negative jumps in asset returns,

traditional hedging strategies such as only using the underlying assets and/or using

both underlying and derivatives are no longer workable. We show that different models

have different risk management implications. Models with diffusion volatility jumps are

capable of generating high enough values of (conditional) Value-at-Risk (VaR/CVaR)

when extreme events happen and are flexible to produce strong enough implied volatility

smiles and skews.

Furthermore, parameter uncertainty and learning may lead to important risk man-

3Joint sequential state and parameter estimation is still an open issue. There has already been
progress towards tackling parameter learning in general state-space models. See Liu and West (2001),
Gilks and Berzouini (2001), Storvik (2002), Flury and Shephard (2009), and Carvalho et al. (2010).
For discussion of these methods, see Fulop and Li (2012). For a similar and concurrent contribution,
see Chopin et al. (2012).
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agement and option pricing implications in the form of substantially high tail risk

measures. We show that when ignoring learning, the resulted VaR/CVaR numbers are

substantially decreased, especially for the 0.1% values. We also find that impacts of

learning display a U-shaped pattern with respect to moneyness, that is, learning has

much stronger influence on out-of-the-money and in-the-money options than on at-the-

money options. Furthermore, for out-of-the-money and in-the-money options, the effect

of learning is in general decreasing with respect to maturity, while it is increasing with

respect to maturity for at-the-money options. Updating of beliefs on jump parameters

may cause long-lasting shifts in patterns of implied volatility.

The paper makes several contributions to the literature. On the theoretical aspect,

first, we propose a new class of continuous-time asset pricing models, which provides a

nice framework to investigate where volatility jump is from and how it interacts with

jumps in asset returns. Second, a generic econometric learning approach is developed

that can disentangle positive and negative jumps and allows us to perform joint se-

quential inference over states and parameters with respect to information accumulation

in real time. On the empirical aspect, first, we compare alternative self-exciting jump

models using S&P 500 daily data. We find strong evidence of jumps in diffusive volatil-

ity but weak evidence of jump clustering. In addition, we provide new insights to

extreme price movements and important implications of learning in risk management,

option pricing and volatility forecasting.

Our work is related to previous studies. Jacod and Todorov (2010) and Bandi and

Reno (2011) find that asset returns and their volatility jump together. Their results are

based on high frequency data that become available only after 1990s. The use of daily

data allows us to go much further back into the history. One advantage of using a longer

time span is that we can have more jumps and hence potentially more episodes of jump

clustering. Focusing completely on the volatility dynamics, Wu (2011) and Todorov and

Tauchen (2011) show that volatility does jump. Our results are in accord with them

but we go further and allow two different channels through diffusion volatility and the

jump intensity. This also differentiates us from existing papers where either only the
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diffusion channel is present (Eraker, Johannes, and Polson, 2003; Eraker, 2004) or only

the jump intensity is affected by return jumps (Aı̈t-Sahalia, Cacho-Diaz, and Laeven,

2011; Carr and Wu, 2010). We find that the diffusion channel is more important and

remains significant even when the jump channel is allowed. As of the jump channel,

our results are weaker than in Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2011) and Carr

and Wu (2010). This may be either due to the differences in the samples, or to the fact

that our specification is more general.

The rest of the paper is organized as follows. Section 2 builds the self-exciting Lévy

asset pricing models. Section 3 develops an efficient hybrid particle filter and introduces

our Bayesian learning algorithm. Section 4 presents the data used for model estimation.

Section 5 presents the estimation results. Section 6 discusses empirical and economic

implications of self-exciting jumps and learning. Finally, Section 7 concludes the paper.

2 Self-Exciting Asset Pricing Models

Under a probability space (Ω,F, P ) and the complete filtration {Ft}t≥0, the asset price

St has the following dynamics

lnSt/S0 =

∫ t

0

µsds+
(
WT1,t − kW (1)T1,t

)
+
(
JT2,t − kJ(1)T2,t

)
, (1)

where µt is the instantaneous mean, W is a Brownian motion, J is a jump component,

and kW (1) and kJ(1) are convexity adjustments for the Brownian motion and the jump

process and can be computed from their cumulant exponents: k(u) ≡ 1
t
ln
(
E[euLt ]

)
,

where Lt is either Wt or Jt.

The dynamics (1) indicates two distinct types of shocks to asset returns: small

continuous shocks, captured by a Brownian motion, and large discontinuous shocks,

modeled in this paper by the Variance Gamma process of Madan, Carr, and Chang

(1998), a stochastic process in the class of infinite activity Lévy processes. The jump

component is important for generating the return non-normality and capturing extreme

events. The empirical study by Li, Wells, and Yu (2008) shows that the infinite activity
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Lévy models outperform the affine Poisson jump models. Furthermore, the recent

nonparametric works by Aı̈t-Sahalia and Jacod (2009, 2011) and Lee and Hannig (2010)

provide strong evidence on infinite activity jumps in asset returns.

The Variance Gamma process can be constructed through subordinating a Brownian

motion with drift using an independent subordinator

Jt = ωSt + ηW̃ (St), (2)

where W̃t is a standard Brownian motion, and St is a Gamma subordinator St =

Γ(t; 1, v) with unit mean rate and variance rate of v. Alternatively, it can be de-

composed into the upside component, J+
t , and the downside component, J−

t , such that

Jt = J+
t + J−

t ,

= Γu(t;µu, vu)− Γd(t;µd, vd), (3)

where Γu is a Gamma process with mean rate µu and variance rate vu, Γd is a Gamma

process with mean rate µd and variance rate vd, and

µu =
1

2

(√
ω2 + 2η2/v + ω

)
, vu = µ2

uv, (4)

µd =
1

2

(√
ω2 + 2η2/v − ω

)
, vd = µ2

dv. (5)

Ti,t defines a stochastic business time (Clark, 1973; Carr et al., 2003; Carr and Wu,

2004), which captures the randomness of the diffusion variance (i = 1) or of the jump

intensity (i = 2) over a time interval [0, t]

Ti,t =

∫ t

0

Vi,s−ds,

which is finite almost surely. Vi,t, which should be nonnegative, is the instantaneous

variance rate (i = 1) or the jump arrival rate (i = 2), both of them reflecting the

intensity of economic activity and information flow. Stochastic volatility or stochastic

8



jump intensity is generated by replacing calendar time t with business time Ti,t. The

time-changed jump component has the decomposition of JT2,t = J+
T2,t

+ J−
T2,t

and its

convexity adjustment term is kJ(1)T2,t =
(
k+J (1) + k−J (1)

)
T2,t.

The instantaneous variance rate and the jump arrival rate are modeled with the

following stochastic differential equations

dV1,t = κ1(θ1 − V1,t)dt+ σ11
√
V1,tdZt − σ12dJ

−
T2,t
, (6)

dV2,t = κ2(θ2 − V2,t)dt− σ2dJ
−
T2,t
. (7)

Equation (6) captures stochastic variance of the continuous shocks, where Z is a stan-

dard Brownian motion and is allowed to be correlated toW with a correlation parameter

ρ in order to accommodate the diffusion leverage effect. Diffusion variance also depends

on the negative jumps J−, indicating that there will be an abrupt increase in V1,t once

there is a negative jump in asset price. If κ1 is positive and small, Equation (6) sug-

gests a persistent autoregressive structure in V1,t. An abrupt increase in V1,t would then

imply that the future diffusion variance tends to be high and decays exponentially at

the speed κ1. Equation (7) models the stochastic intensity of jumps. When κ2 > 0, it is

a mean-reverting pure jump process. The specification implies that the jump intensity

relies only on the negative jumps in asset returns.

The conditional expectation of the jump intensity (7) can be found as follows4

E[V2,t|V2,0] =
κ2θ2

κ2 − σ2µd

(
1− e−(κ2−σ2µd)t

)
+ e−(κ2−σ2µd)tV2,0, (8)

from which its long-run mean can be obtained by letting t→ +∞,

V̄2 =
κ2θ2

κ2 − σ2µd

. (9)

4Define f(t) = eκ2tE[V2,t|V2,0]. f(t) can be analytically found by solving the ODE

f ′(t) = σ2µdf(t) + κ2θ2e
κ2t,

from which we obtain the conditional expectation (8).
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Solutions (8) and (9) indicate that the conditional expectation of the jump intensity is

a weighted average between the current intensity, V2,0, and its long-run mean, V̄2. Using

(8) and (9), the conditional expectation of diffusion variance (6) can also be found

E[V1,t|V1,0] = e−κ1tV1,0 + θ1

(
1− e−κ1t

)
+ σ12µd

[1− e−κ1t

κ1
V̄2

+
e−(κ2−σ2µd)t − e−κ1t

κ2 − σ2µd − κ1

(
V̄2 − V2,0

)]
, (10)

and its long-run mean is given by

V̄1 = θ1 +
σ12
κ1
µdV̄2. (11)

The conditional expectation of diffusion variance composes of two parts, one arising

from the square-root diffusion part (the first two terms on the right-hand side in (10))

and the other from negative return jumps (the last term on the right-hand side in

(10)). If the jump intensity is constant, the contribution of jumps to the conditional

diffusion variance becomes constant over time. In what follows, we normalize θ2 to be

one in order to alleviate the identification problem because the jump component, J ,

has non-unit variance.

Dependence of diffusion variance and the jump intensity only on negative jumps in

asset returns is consistent with the observation in Table 1 where turmoils always start

with negative jumps. It is also consistent with the well documented empirical regularity

in financial markets that react more strongly to bad macroeconomic surprises than to

good surprises (Andersen et al., 2007). This is because the stability and sustainability of

future payoffs of an investment are largely determined by extreme changes in economic

conditions, and investors are more sensitive to the downside movements in the economy.

The above model (hereafter SE-M1 ) indicates that time-varying aggregate volatility

is contributed by two sources: one arises from time-varying diffusion volatility and

the other from the time-varying jump intensity. Whenever there is a negative jump

in asset return, diffusion volatility and the jump intensity move up significantly and

10



simultaneously. Consequently, aggregate volatility jumps. The self-exciting behavior is

captured through two channels: (i) a negative jump in asset return pushes up the jump

intensity, which in turn triggers more jumps in future asset returns; (ii) a negative jump

in asset return makes diffusion volatility jump, and this high diffusion volatility tends to

entertain big movements in future asset returns. In contrast, existing literature allows

only one of these channels at a time. In particular, Eraker, Johannes, and Polson (2003)

and Eraker (2004) allow co-movement of return jumps and diffusion volatility through

a synchronized Poisson process, while Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2011) and

Carr and Wu (2010) link only the jump intensity to jumps in asset returns.

The central questions we are concerned about in the present paper are the dynamic

structure of extreme movements and how asset return jumps affect total volatility. In

order to explore these issues, we also investigate the following nested models: (i) SE-

M2 : the self-exciting model where diffusion volatility does not jump, and the total

volatility jump and the jump clustering are from the time-varying jump intensity; (ii)

SE-M3 : the model where the jump intensity is constant, and the total volatility jump

and the self-exciting effect are only from the diffusion volatility process; and (iii) SE-

M4 : no volatility jumps and no self-exciting effects. Obviously, the SE-M4 model is

nested by the SE-M2 model and the SE-M3 model. However, the SE-M2 model and

the SE-M3 model do not nest each other.

3 Econometric Methodology

In this section, we present our Bayesian learning method. Section 3.1 develops an

efficient hybrid particle filter, which provides us more accurate likelihood estimate and

separates the diffusion component, positive jumps and negative jumps. Section 3.2

briefly presents the parameter learning algorithm for model estimation.
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3.1 An Efficient Particle filter

Our model can be cast into a state-space model framework. After discretizing the return

process for a time interval τ using the Euler method, we have the following observation

equation

lnSt = lnSt−τ +
(
µ− 1

2
V1,t−τ − k(1)V2,t−τ

)
τ +

√
τV1,t−τwt + Ju,t + Jd,t, (12)

where wt is a standard normal noise, and Ju,t and Jd,t are the upside and downside

jumps.

We take the diffusion variance V1,t, the jump intensity V2,t, and the upside/downside

jumps Ju,t/Jd,t as the hidden states. Diffusion variance and the jump intensity follow

(6) and (7), and the upside/downside jumps are gammas. After discretizing, we have

the state equations as follows

V1,t = κ1θ1τ + (1− κ1τ)V1,t−τ + σ11
√
τV1,t−τzt − σ12Jd,t, (13)

V2,t = κ2θ2τ + (1− κ2τ)V2,t−τ − σ2Jd,t, (14)

Ju,t = Γ(τV2,t−τ ;µu, vu), (15)

Jd,t = −Γ(τV2,t−τ ;µd, vd), (16)

where zt is a standard normal noise, which is correlated to wt in (12) with the correlation

parameter ρ.

For a given set of model parameters, filtering is a process of finding the posterior dis-

tribution of the hidden states based on the past and current observations, p(xt|y1:t,Θ),

where xt = {V1,t, V2,t, Ju,t, Jd,t}, and y1:t = {lnSs}ts=1. Because this posterior distribu-

tion in our model does not have analytical form, we turn to particle filters to approx-

imate it. Particle filters are simulation-based recursive algorithms where the posterior

distribution is represented by a number of particles drawn from a proposal density

p̂(xt|y1:t,Θ) =
M∑
i=1

w̃
(i)
t δ

(
xt − x

(i)
t

)
, (17)

12



where w̃
(i)
t = ω

(i)
t /

∑M
j=1 ω

(j)
t with ωt and w̃t being the importance weight and the

normalized importance weight, respectively, x
(i)
t is the state particle, and δ(·) denotes

the Dirac delta function.

Particle filters provide an estimate of the likelihood of the observations

p̂(y1:t|Θ) =
t∏

l=1

p̂(yl|y1:l−1,Θ), (18)

where

p̂(yl|y1:l−1,Θ) =
1

M

M∑
i=1

w
(i)
l . (19)

Importantly, the estimate (18) is unbiased: E[p̂(y1:t|Θ)] = p(y1:t|Θ), where expectation

is taken with respect to all random quantities used in particle filters (Del Moral, 2004).

The most commonly used particle filter is the bootstrap filter of Gordon, Salmond,

and Smith (1993), which simply takes the state transition density as the proposal

density. However, the bootstrap filter is known to perform poorly when the observation

is informative on hidden states. Our model has this feature because when we observe a

large move in asset price, the jump can be largely pinned down by this observation. On

the other hand, when the return is small, it is almost due to the diffusion component

and contains little information on the jump. Hence, to provide an efficient sampler, we

use an equally weighted two-component mixture as the proposal on the jump: the first

component is a normal draw, equivalent to sampling from the transition density of the

diffusion component, and the second component involves drawing from the transition

law of the jump. We need this second component to stabilize the importance weights

for small returns. Otherwise, we would compute the ratio of a normal and a gamma

density in the importance weights which is unstable around zero. When the return is

positive, we use this mixture as the proposal for the positive jump and the transition

density for the negative jump, and vice-versa. See Appendix A for the algorithm.
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3.2 A Parameter Learning Algorithm

While particle filters make state filtering relatively straightforward, parameter learning,

i.e., drawing from p(Θ|y1:t) sequentially, remains a difficult task. Simply including the

static parameters in the state space and applying a particle filter over p(Θ, xt|y1:t) does

not result in a successful solution due to the time-invariance and stochastic singularity

of the static parameters that quickly leads to particle depletion. In what follows, we use

a generic solution to the parameter learning problem proposed by Fulop and Li (2010).

The key to this algorithm is that particle filters provide an unbiased estimate of the true

likelihood, so that we can run a recursive algorithm over the fixed parameters using the

sequence of estimated densities, p̂(Θ|y1:t) ∝
∏t

l=1 p̂(yl|y1:l−1,Θ)p(Θ), for t = 1, 2, . . . , T .

Define an auxiliary state space by including all the random quantities produced by

the particle filtering algorithm. In particular, denote the random quantities produced

by the particle filter in step l by ul = {x(i)l , ξ
(i)
l ; i = 1, . . . ,M}. Then at time t, the filter

will only depend on the population of the state particles in step t− 1, so we can write

ψ(u1:t|y1:t,Θ) =
t∏

l=1

ψ(ul|ul−1, yl,Θ), (20)

where ψ(u1:t|y1:t,Θ) is the density of all the random variables produced by the particle

filter up to t. Furthermore, the predictive likelihood of the new observations can be

written as

p̂(yt|y1:t−1,Θ) ≡ p̂(yt|ut, ut−1,Θ). (21)

We then construct an auxiliary density, which has the form

p̃(Θ, u1:t|y1:t) ∝ p(Θ)
t∏

l=1

p̂(yl|ul, ul−1,Θ)ψ(ul|ul−1, yl,Θ). (22)

The unbiasedness property in likelihood approximation means that the original target,

p(Θ|y1:t), is the marginal distribution of the auxiliary density. If we can sequentially

draw from the auxiliary density, we automatically obtain samples from the original

target.
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Assume that we have a set of weighted samples that represent the target distribution,

p̃(Θ, u1:t−1|y1:t−1), at time t−1:
{(

Θ(n), u
(n)
t−1, p̂(y1:t−1|Θ)(n)

)
, s

(n)
t−1;n = 1, . . . , N

}
, where

st−1 denotes the sample weight. Notice that for each n, the relevant part of u
(n)
t−1

are M particles after resampling representing the hidden states {x(i,n)t ; i = 1, . . . ,M}.

Therefore, in total we have to maintain M × N particles of the hidden states. The

following recursive relationship holds between the target distributions at t− 1 and t,

p̃(Θ, u1:t|y1:t) ∝ p̂(yt|ut, ut−1,Θ)ψ(ut|ut−1, yt,Θ)p̃(Θ, u1:t−1|y1:t−1), (23)

from which we can arrive to a set of samples representing the target distribution,

p̃(Θ, u1:t|y1:t), at time t through the marginalized resample-move approach developed

by Fulop and Li (2012).

The marginalized resample-move approach has a natural byproduct of the marginal

likelihood of the new observation

p(yt|y1:t−1) ≡
∫
p(yt|y1:t−1,Θ)p(Θ|y1:t−1)dΘ

=

∫
p̂(yt|ut, ut−1,Θ)ψ(ut|ut−1, yt,Θ)p̃(Θ, ut−1|y1:t−1)d(Θ, ut, ut−1)

≈
N∑
k=1

π
(k)
t−1p̂(yt|u

(k)
t , u

(k)
t−1,Θ

(k)), (24)

where the new weight can be updated by s
(n)
t = s

(n)
t−1 × p̂(yt|u(n)t , u

(n)
t−1,Θ

(n)) and the

normalized weight is given by π
(n)
t = s

(n)
t /

∑N
k=1 s

(k)
t . From (24), a sequential Bayes

factor can be constructed for sequential model comparison. For any models M1 and

M2, the Bayes factor at time t has the following recursive formula

BFt ≡
p(y1:t|M1)

p(y1:t|M2)
=
p(yt|y1:t−1,M1)

p(yt|y1:t−1,M2)
BFt−1. (25)

Our particle learning algorithm naturally has the marginal likelihood estimate (24),

which can be used in (25) for model assessment and monitoring over time. For more

details, we refer readers to Fulop and Li (2012) and Chopin et al. (2012).
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4 The Data

The data used to estimate the models are the S&P 500 stock index ranging from January

2, 1980 to October 30, 2011 in daily frequency, in total 8,033 observations. This dataset

contains typical financial market behaviors: the recent European debt crisis, the global

financial crisis in the late 2008, the market crash on October 19, 1987 (-22.9%), the

volatile market and relatively tranquil periods. Table 2 presents descriptive statistics

of index returns. The annualized mean of index returns in this period is around 7.8%

and the annualized historical volatility is about 18.4%. A striking feature of the data

is high non-normality of the return distribution with the skewness of -1.19 and the

kurtosis of 29.7. The Jarque-Bera test easily rejects the null hypothesis of normality

of returns with a very small p-value (less than 0.001). The index returns display very

weak autocorrelation. The first autocorelation is about -0.03, while the sixth one is as

small as 0.008.

— Table 2 around here —

Figure 1 plots S&P 500 index returns and standard deviations computed from the

previous 22-day returns at each time. The companion of abrupt moves in volatility

to extreme events in returns is very clear, and turbulent periods tend to be realized

through many consecutive large up and down return moves. What is hard to gauge is

the extent to which these are due to high diffusion volatility or persistent fat tails. The

model estimates that follow will shed more lights on this issue.

— Figure 1 around here —

5 Model Estimation and Learning

In this section, we present estimation and learning results. Models are estimated using

the Bayesian learning approach discussed in Section 3. In implementation, we set the

number of state particles to be 10,000 and the number of parameter particles to be 2,000.

The thresholds N1 and N2 are equal to 1,000. These tuning-parameters are chosen such
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that the acceptance rate at the move step is relatively high and the computational cost

is reasonable. Subsection 5.1 discusses sequential model comparison and monitoring;

subsection 5.2 investigates the information flow and parameter learning; and subsection

5.3 presents the volatility and jump filtering results.

5.1 Sequential Model Comparison and Monitoring

In a Bayesian context, model comparison can be made by Bayes factors, defined as

the ratio of marginal likelihoods of models5. Table 3 presents the overall Bayes factors

(in log) for all models investigated using all available data. We find that the SE-M1

model and the SE-M3 model, both of which allow negative return jumps to affect

diffusion volatility, outperforms the SE-M2 model and the SE-M4 model that exclude

this channel. For example, the log Bayes factors between the SE-M1 model and the

SE-M2/SE-M4 models are about 12.5 and 13.3, respectively, and the log Bayes factors

between the SE-M3 model and the SE-M2/SE-M4 models are about 11.7 and 12.5,

respectively. Thus, there is decisive evidence in the data for negative return jumps

affecting diffusion volatility and co-jumps of returns and volatility. Furthermore, there

seems to be evidence for return jumps affecting the jump intensity. Comparing the

SE-M1 model where both self-exciting channels are allowed to the SE-M3 model where

only diffusion volatility is influenced by return jumps, the former is weakly preferred

with a log Bayes factor of 0.84.

— Table 3 around here —

The above batch comparison does not tell us how market information accumulates

and how different models perform over time. Does one model outperform the other one

at a certain state of economy, but underperform it at another state of economy? Our

Bayesian learning approach has a recursive nature and produces the individual marginal

5In Bayesian statistics, Jeffreys (1961) gave a scale for interpretation of Bayes factors. For two
models M1 and M2, if the value of the log Bayes factor of M1 to M2 is between 0 and 1.1, M1 is barely
worth mentioning; if it is between 1.1 and 2.3, M1 is substantially better than M2; if it is between 2.3
and 3.4, M1 is strongly better than M2; if it is between 3.4 and 4.6, M1 is very strongly better than
M2; and if it is larger than 4.6, M1 is decisively better than M2.

17



likelihood of each observation over time. One can then construct the sequential Bayes

factors and use them for real-time model monitoring and analysis.

Figure 2 presents the sequential Bayes factors (in log) that gives us a richer picture

on model performance over time. We notice from the upper panels that in the beginning

when market information is little, both the SE-M1 model and the SE-M3 model, which

are the two best models according to the Bayes factor in Table 3, perform nearly the

same as the SE-M2 model and the SE-M4 model. As market information accumulates

over time, in particular after the 87’s market crash, the SE-M1 model and the SE-M3

model begin to outperform the other two models. The lower left panel of Figure 2

shows that the SE-M1 model with the time-varying jump intensity hardly differentiates

from the constant jump-intensity model, the SE-M3 model as the log Bayes factors are

within [-1.1, 1.1]. Interestingly, as for the SE-M2 model and the SE-M4 model, both

of which shut down the diffusion volatility jump component, in the beginning the two

models perform nearly the same as log sequential Bayes factors vary around zero. At

the 87’s market crash the log Bayes factor of the SE-M2 model to the SE-M4 model

moves abruptly to a level above 2 and almost stays there till 2002 dot-com bubble

burst. Afterwards, the Bayes factor decreases gradually to a value around 1. This

result indicates that the diffusion volatility jump is a necessary component in modeling

S&P 500 index and models shutting down this component are clearly misspecified.

— Figure 2 around here —

5.2 Information Flow and Parameter Learning

Table 4 presents the parameter estimates (5%, 50%, and 95% quantiles) of all models

using all available data6. Focusing on parameter estimates in the SE-M1 model and the

SE-M3 model that are two best models according to the sequential Bayes factors, we find

that the jump-size related parameters and the diffusion volatility-related parameters

6The priors for the SE-M1 model are given by Θ0 ∼ N(Θ∗
0,Σ

2
0), where Θ

∗
0 = (0.10,−0.05, 0.10, 1.00,

3.00, 0.03, 0.30,−0.50, 0.50, 20, 5.0) and Σ0 = diag(0.20, 0.08, 0.15, 3.00, 5.00, 0.05, 0.30, 0.50, 1.00, 20, 10).
Any non-positive values of η, v, κ1, θ1, σ11, σ12, κ2 and σ2, and any ρ /∈ (−1, 1) are automatically
discarded. The priors for other models are also similar.
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have narrow 90% credible intervals and small standard deviations, indicating that it

is easy to identify these parameters using all available data. In particular, the self-

exciting effect parameter σ12 has the posterior mean of about 0.52, the 90% credible

interval of 0.35-0.66 and the posterior standard deviation of 0.09 in the SE-M1 model,

and it has the posterior mean of about 0.47, the 90% credible interval of 0.33-0.60 and

the posterior standard deviation of 0.09 in the SE-M3 model. These narrow credible

intervals and small standard deviations imply that diffusion volatility does jump at

the same time as negative jumps in returns. However, the parameter estimates of the

jump intensity-related parameters in the SE-M1 model have large credible intervals,

especially the mean-reverting parameter κ2, indicating that it is hard to identify these

parameters only using the time-series of underlying index data.

— Table 4 around here —

In the SE-M1 and SE-M3 models, we find that the posterior mean of ω is negative

(about -0.07) and its 90% credible interval is narrow and in negative side, indicating

that index returns jump downward more frequently than jump upward. The jump

structure parameter v has a posterior mean of about 0.95 and a 90% credible interval

of [0.40, 1.83] in the SE-M1 model, and it has a posterior mean of about 1.07 and a 90%

credible interval of [0.45, 2.11] in the SE-M3 model, implying that in general, small/tiny

jumps happen with a very high frequency and large/huge jumps occur only occasionally.

The mean-reverting parameter estimate κ1 of the diffusion volatility process is a little

bit larger in the SE-M1 model than in the SE-M3 model (4.23 vs. 3.89), but both

estimates of θ1 and σ11 are very similar in both models. The negative estimate of ρ,

which is about -0.6 in both models, reveals existence of the diffusion leverage effect.

The long-run means of diffusion volatility and the jump intensity are given by (11) and

(9), respectively, in the SE-M1 model. Using the estimates in Table 4, they are 0.028

and 1.127, respectively. In the SE-M3 model, the long-run mean of diffusion volatility

is given by V̄1 = θ1+σ12µd/κ1, which is about 0.029 using the corresponding parameter

estimates in Table 4. Thus, the model-implied unconditional return volatility in both
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the SE-M1 and SE-M3 models is 18.4%, which is nearly the same as the historical

return volatility (18.4%).

Our Bayesian learning approach provides us more than parameter estimates them-

selves. It gives us the whole picture of how parameters evolve over time with respect to

accumulation of information. Figure 3 presents the sequential learning of the jump and

diffusion volatility-related parameters in the SE-M1 model. Clearly, all parameters have

big variations at the beginning when market information is very little. With respect

to accumulation of information, the credible intervals become narrower and narrower.

We find that the jump-related parameters, the mean-reverting parameter, and the self-

exciting effect parameter usually take long time to reach reliable regions, indicating

information on these parameters accumulates very slowly, and in practice we need long

dataset to obtain accurate estimates. Very similar results can also be obtained from

the parameter learning in the SE-M3 model as shown in Figure 5. Figure 4 presents

the jump intensity-related parameter learning (κ2 and σ2) in the SE-M1 model. We

find from the upper panels that credible intervals of these two parameters are barely

narrowing down over time. Only from the recent European debt crisis on, we observe

a little narrowing-down of their credible intervals. The lower panels plot the prior and

posterior distributions (solid and dashed lines, respectively) of these two parameters.

The dispersions of both priors and posteriors are very big. This result indicates that

the information we have is not enough to well identify these two parameters.

— Figure 3 around here —

— Figure 4 around here —

— Figure 5 around here —

5.3 Volatility and Jump Filtering

Embedded in our learning algorithm is an efficient hybrid particle filter. One merit

of this particle filter is that it can separate positive jumps and negative jumps. This

separation is important from both the statistical and the practical perspectives. Sta-

tistically, it makes our self-exciting models feasible to estimate since both diffusion
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volatility and the jump intensity depend only on the negative jump. Practically, in-

vestors are mostly concerned about negative jumps. The ability to disentangle negative

jumps provides us an important tool for risk management.

Figure 6 presents the filtered diffusion volatility and the filtered jump intensity. We

can see that whenever there is a big negative jump, diffusion volatility in the SE-M1 and

SE-M3 models and the jump intensity in the SE-M1 model abruptly move up to a high

level. However, there are some important differences between the two state variables.

Diffusion volatility in both the SE-M1 and SE-M3 models is well identified with a tight

90% credible interval. In contrast, our ability to pin down the jump intensity in the

SE-M1 model is much more limited as we can see that its credible intervals are wide

during crisis periods. Further, there seems to be an abrupt change in the behavior of

this latent factor since the 2008 crisis. Prior to this episode, after widening the credible

intervals of jump intensities during crisis periods, they quickly revert to their long-run

mean, whereas they have remained consistently high and wide since the 08’s financial

crisis. It suggests that as far as the tails are concerned, the recent crisis is special, with

a sustained probability of large extreme events going forward.

— Figure 6 around here —

Figure 7 presents the filtered positive and negative jumps in the SE-M1 and SE-M3

models. In both models, the filtered negative jumps can effectively capture all market

turmoils such as the 87’s market crash, the 98’s Asian financial crisis, the 08’s financial

crisis and the 11’s European debt crisis. However, as shown in the upper panels, the

filtered positive jumps are quite small, especially after the 87’s market crash. This

is a new and potentially important empirical result, suggesting that whenever jumps

in volatility are taken into account, the positive jump component in index returns is

not so important and the positive movements in index returns can be captured by the

diffusion component. This finding reinforces our choice of giving negative jumps more

prominence.

— Figure 7 around here —
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6 Empirical and Economic Implications

6.1 Volatility Estimation and Variance Decomposition

We have seen that the parameters driving the jump intensity have large 90% credible

intervals. It is interesting to examine the extent to which these results are due to

learning. For this purpose, Figure 8 depicts the filtered dynamic states when the full-

sample posterior means of the fixed parameters are plugged into the particle filter.

In the case of diffusion volatility, the picture does not change much, consistent with

the relatively tight posteriors on most diffusion-related parameters. The only notable

difference is a smaller peak around the 1987 crash. This can be explained by the

large uncertainty at this point on the parameter driving the volatility feedback, σ12.

The real-time posterior contains larger values that give rise to a more pronounced

volatility feedback phenomenon. However, when looking at the lower panel, we observe

much larger difference. First, fixing the parameters considerably shrinks the credible

intervals, suggesting that a large part of the uncertainty in jump intensities observed

before in Figure 6 is the result of parameter uncertainty from learning. Second, the

peak in jump intensities in 1987 is bigger than before, a mirror image of what we have

observed for diffusion volatility. Finally, when parameters are fixed, even after 2008,

the jump intensities revert back to their long run mean fairly quickly and the credible

interval does not stay wide. Thus, the large uncertainty about the tails in the future

seems mainly related to the lack of precise knowledge about the parameters driving the

dynamics of the jump intensity.

— Figure 8 around here —

Learning and parameter uncertainty also have large impact on variance contribu-

tions of different shocks to total return variance. The conditional instantaneous return

variance, Vt, has two sources in our models contributed by the diffusion shock and the

jump shock, respectively,

Vt = V1,t + V ar(J1)V2,t, (26)
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where V ar(J1) = ω2v + η2 is variance of the jump component at time t = 1. For the

SE-M3 and SE-M4 models, the jump intensity is constant with V2,t = 1. With learned

parameters on ω, η, and v, and filtered diffusion variance and jump intensity over time,

we can investigate the percentage of total return variance contributed by the jump

component. The upper panels of Figure 9 show the jump contribution to total return

variance in the SE-M1 and SE-M3 models, which is computed by V ar(J1)V2,t/Vt over

time. In both models, we find that in the beginning, the jump contribution to total

return variance is pretty high, around 50%. However, whenever we ignore learning

and parameter uncertainty and simply insert parameter and state estimates using all

available data, the contribution of the jump component to return variance is in general

reduced. The middle panels of Figure 9 plot the instantaneous variance contribution

of the jump component when leaning and parameter uncertainty are ignored. With

comparison to the upper panels, we noticed that for the initial period before the 87’s

market crash, the jump contribution is reduced dramatically. This is largely because

we have little information in the beginning, and parameter uncertainty plays dominant

role. The lower panels plot the difference of the jump contribution to return variance

with and without parameter uncertainty. Clearly, in the beginning, the difference is

very big. However, with respect to information accumulation over time, this difference

becomes smaller and smaller. Overall, the jump contributions to total return variance

are 34.3% and 34.6% when taking into account learning, whereas they are 24.6% and

23.4% when ignoring learning in the SE-M1 and SE-M3 models, respectively. These

values are larger than those obtained by Huang and Tauchen (7%, 2005) and Andersen,

Bollerslev and Diebold (15%, 2007).

— Figure 9 around here —

6.2 VaR Computing and Risk Management Implications

The results we have found have important implications for risk management. As dif-

fusion volatility jump is a necessary component in modeling the stock market index

and volatility co-jumps at the same time as negative jumps in asset returns, traditional
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hedging strategies such as only using the underlying assets and/or using both under-

lying and derivatives are no longer workable. Furthermore, the big uncertainty in the

jump intensity may lead to important risk management implications in the form of

substantially high tail risk measures.

Here we investigate different Value-at-Risk (VaR) and conditional Value-at-Risk

(CVaR) measures implied by our models and learning algorithm. The combination

of VaR and CVaR can provide us rich information for understanding normal risk and

tail risk. Table 5 reports summary statistics of one-day and one-week VaR/CVaR

numbers both for the full sample and the recent financial crisis period, i.e., the sample

after Lehmans’ bankruptcy on September 15, 2008. We have the following interesting

findings. First, look at the 1% VaR, a frequently used day-to-day measure of “normal”

risk. We find that the difference across the different models in the average VaR numbers

is moderate. They are about -0.024 for the one-day measure and are about -0.076 for the

one-week measure. However, we do observe that the minimum VaR’s in the full sample

are much more extreme for the models with the jump feedback to diffusion volatility

(SE-M1/SE-M3). For example, the minimum one-day VaR’s implied by the SE-M1 and

SE-M3 models are about -0.110, while those impled by the SE-M2 and SE-M4 models

are about -0.076. Similar results can also been noticed in one-week minimum VaR’s.

These mainly reflect the fact that the SE-M2 and SE-M4 models miss the peak in

volatility after the 1987 crash. Next, let us check what the 0.1% VaR numbers convey.

These can be interpreted as a measure of tail risk. Here for the full sample minimum

VaR’s we find again large differences across the models but the division lies between the

models with and without self-exciting jumps, i.e., SE-M1/SE-M2 vs. SE-M3/SE-M4,

with the former exhibiting much larger tail risk. For example, the full sample one-day

minimum VaR’s implied by the SE-M1/SE-M2 models are about -0.30, much larger

than those implied by SE-M3/SE-M4 models. Last, CVaR numbers reveal very similar

implications to those implied by 0.1% VaR no matter 1% or 0.1% CVaR is considered.

This is because CVaR calculates the average loss larger than the corresponding VaR,

and put greater emphasis on the presence of extreme downside events and tail risk.
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Overall these results suggest that both feedback channels are important but their risk

management implications are somewhat different, with self-exciting jumps exerting their

influence deeper in the left tail.

— Table 5 around here —

However, when the learning effect is ignored, the resulted Var/CVaR numbers are

very different. Here we focus on CVaR and recalculate the one-day/one-week 0.1%/1%

CVaR numbers using the posterior means of parameters from all available data. Figure

10 reports ratios of CVaR numbers with and without learning in the SE-M3 model.

One prominent finding is that most of CVaR ratios are larger than one, indicating the

CVaR numbers with learning are in general bigger than those without learning. The

ratios are larger for the 0.1% case than for the 1% case, indicating that learning does

really have strong impacts on probability that extreme downside events happen. This

impact is even stronger for the one-week measures. However, we also notice that with

respect to information accumulation, the learning effect is less and less remarkable.

— Figure 10 around here —

6.3 Option Pricing Implications

What roles do self-exciting jumps play in option pricing? Figure 11 plots the BS

implied volatility smiles and skews under the four models considered for different ma-

turities and strikes. We consider the near-the-maturity options with maturity 7 days,

the short-maturity options with maturity 30 days, the medium-maturity options with

maturity 90 days, and the long-maturity options with maturity 250 days. Options are

priced using the Monte-Carlo simulation method. We fix the risk-free rate at 5% and

choose the parameter set for the SE-M1 model as (ω, η, v, κ1, θ1, σ11, ρ, σ12, κ2, σ2) =

(−0.06, 0.05, 1.00, 3.50, 0.02, 0.30, −0.60, 0.60, 10.0, 15.0). For other nested models,

the relevant parameters have the same values as the above.

The figure shows that when considering the near-the-maturity options (7 days),

we find that the SE-M1 and SE-M2 models, which allows for the time-varying self-
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exciting jump intensity, can generate stronger smile effect than the SE-M3 and SE-M4

models, which assume the constant jump intensity. However, when we move to longer

maturity options (30, 90, and 250 days), we clearly see a separation between the SE-M1

and SE-M3 models, which allows for the self-exciting diffusion variance jump, and the

SE-M2 and SE-M4 models, which shut down the diffusion volatility jump component.

The SE-M1 and SE-M3 models can not only generate stronger skew effect, but also

highly price these options than the SE-M2 and SE-M4 models. We then conclude that

the self-exciting jump intensity plays a role in option pricing only for the very short

maturity options; however, for other options, the diffusion volatility jumps play much

more important role.

— Figure 11 around here —

Now we begin to investigate how learning affects the implied volatility surface. As

here we only use the underlying data to estimate the models, we ignore the risk premia

and assume that the jump and volatility parameters remain the same under the change

of measure. At each time starting from January 1981 in learning, whenever we obtain

the parameter and volatility particles, we use the Monte-Carlo method to price call

options with maturity 7, 30, 90, and 250 days and with moneyness (define as K/S)

0.85, 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. We price the same cross-section of options

again only using the posterior means of the parameters from all available data and

filtered distribution of volatility obtained from these estimates. Thus, in the latter, the

learning effect is ignored.

Table 6 presents the time-series mean of the implied volatility ratios with and with-

out learning for each option in the SE-M1 and SE-M3 models. For the SE-M1 model,

almost all ratios are larger than one, and for the SE-M3 model, except some cases in

the 7-day maturity options, the rest is larger than one, indicating that learning does

(positively) affect the option pricing. In particular, we find that (1) no matter which

maturity is concerned, the ratios display a U-shaped pattern, that is, the ratios for in-

the-money and out-of-the-money options are larger than those for at-the-money options.
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The effect is stronger on deep out-of-the-money options than on deep in-the-money op-

tions; (2) For deep out-of-the-money and in-the-money options, the learning effect is in

general decreasing with respect to maturity; on the contrary, for at-the-money options,

the learning has stronger effect on long-maturity options; and (3) it seems that the

main difference between the SE-M1 and SE-M3 models is at pricing the 7-day maturity

options.

— Table 6 around here —

To further investigate the learning effect, Figure 12 plots the time-series of implied

volatility computed from the SE-M1 model. The solid and dashed (red) lines plot im-

plied volatility when learning is taken into account and when it is ignored, respectively.

Given that jumps are known to primarily affect options with short maturities, here

we focus on contracts with 7 and 30-day maturities. In middle panels, we observe

that implied volatility of at-the-money options closely follow the path of the diffusion

variance, depicted in Figure 6. Further, learning does not seem to have a first-order

effect on option prices except during the market crash in October 1987. The pictures

are starkly different in upper and lower panels, reporting implied volatility of deep

in-the-money and deep out-of-the-money calls. These figures track the path of jump

intensities, reinforcing our intuition that jumps define the deep tails of the predictive

distribution at short maturities. Further, learning here does have a first-order effect,

especially at the first half of the distribution. Naturally, as the sample size grows, the

effect of learning diminishes, but it begins to matter again during the recent crisis,

especially for the 7-day maturity deep in-the-money options. Moreover, for the deep

in-the-money options, when learning is ignored, implied volatility is almost constant

with abrupt move-up and drop-back during the crisis periods, whereas when learning is

taken into account, implied volatility moves up to high levels during the crisis periods

and stay there for a very long time. The deep in-the-money options are sensitive to

extreme downside movements and the above observation seems to indicate that learning

lead to long-lasting shifts on beliefs of the left tail of predictive distribution. Benzoni,
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Collin-Dufresne, and Goldstein (2011) argue that updating of beliefs about jump pa-

rameters may cause permanent shifts in option prices. Our investigation reinforces this

intuition. Overall, the above results suggest that parameter uncertainty and learning

are likely to have important implications for pricing options that depend on tails of the

predictive distribution.

— Figure 12 around here —

We now further compare the SE-M1 and SE-M3 models from time-series perspective,

and see what roles the self-exciting jump intensity plays. Figure 13 presents the time-

series ratios of implied volatility of call options with maturity 7 and 30 days between the

SE-M1 and SE-M3 models. For 7-day maturity options, we find from the left-middle

panel that the SE-M1 model prices the at-the-money options quite similarly to the

SE-M3 model no matter learning is taken into account or not. However, they perform

differently when pricing deep in-the-money and deep out-of-the-money options. When

pricing deep in-the-money options, the left-upper panel shows that implied volatility

from the SE-M1 model is very close to that from the SE-M3 model when learning

is ignored, whereas when learning is taken into account, these two models produce

very different implied volatility. On the contrary, when we move to price the deep

out-of-the-money options, the SE-M1 and SE-M3 have similar implied volatility when

learning is considered, but they have different implied volatility when learning is ignored.

However, for options with maturity 30 days, the right panels indicate that both models

perform quite similarly no matter which moneyness is concerned. For other options

with maturity larger than 30 days, we again find similarity between the SE-M1 and

SE-M3 models (not reported). The findings here are consistent with what we have

found in Table 6 and Figure 11 and imply that the two models perform differently only

when pricing the near-the-maturity options.

— Figure 13 around here —
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6.4 Volatility Forecasting Implications

It is known that superior in-sample performance does not necessarily lead to better

out-of-sample properties. In this section, we evaluate the relative performance of the

four jump models for predicting daily volatility. As the jump intensity dynamics is

not well identified, we focus on the diffusion volatility instead, that is, the integrated

daily volatility next period,
∫ t+1

t
V1,t+sds, using S1, · · · , St. Following Barndorff-Nielsen

and Shephard (2004), we approximate the integrated daily diffusion volatility by the

standardized realized bipower variation based on 5-minute returns,

BVt+1 =
π

2

n∑
j=2

|rt+jh,h||rt+(j−1)h,h|, (27)

where h corresponds to a 5-minute interval within a trading day, n the number of 5-

minute returns within a day, and rt,h = log(St/St−h). As shown in Barndorff-Nielsen

and Shephard (2004), as h→ 0, BVt+1 →
∫ t+1

t
V1,t+sds.

Our inferential framework allows us to obtain daily volatility forecast as a by-

product. This is achieved by using the formula (10) and the parameter and state

particles at each time t. The posterior mean of V1,t+1 is then obtained. This is treated

as the one-day-ahead volatility forecast of
∫ t+1

t
V1,t+sds and matched against BVt+1.

This volatility forecast obviously takes into account of parameter uncertainty. Table 7

reports the root mean square errors (RMSE) for the annualized square-root estimates

from the four candidate models over the three periods.

As expected, it is more difficult to predict volatility when the market is more volatile

(between January 2008 and October 2011). It is clear that in all three forecasting

periods, the SE-M1 model always performs the best and marginally beats the SE-M3

model. Interestingly, the SE-M2 model performs worst in all cases, consistent with

what have found in subsection 5.1. Perhaps the most important result is that both

the SE-M1 and SE-M3 model perform much better than the SE-M2 and SE-M4 model.

For example, the improvement of the SE-M1 model over the SE-M2 model is 4.4%,

4.6% and 4.1% over the three periods, respectively. These results once again reinforce
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importance of allowing negative jumps in returns to lead to jumps in diffusive volatility.

— Table 7 around here —

7 Concluding Remarks

We introduce a new class of self-exciting asset pricing models where negative jumps

play important roles. Whenever there is a negative jump in asset return, this negative

jump is simultaneously passed on to diffusion variance and the jump intensity, generat-

ing co-jump of prices and volatility and jump clustering. We investigate the models by

employing a Bayesian learning approach. Using S&P 500 index returns ranging from

January 2, 1980 to October 31, 2011, we find that negative jumps in asset returns lead

to jumps in total volatility mainly through diffusion variance. We find weak evidence

of jump clustering. Parameter uncertainty and learning have been shown to have im-

portant implications for risk management, option pricing and volatility forecasting in

practice.

There are several interesting research directions that our results open up. First,

it would be interesting to examine what we can find if option prices are included in

the dataset. This should have the potential to better identify the jump intensity pro-

cess. Second, the sequential nature of our joint parameter and state estimation routine

promises several practical applications such as derivative pricing or portfolio allocation.

Appendix: A Hybrid Particle Filter

The algorithm of the proposed hybrid particle filter consists of the following steps:

Step 1: Initialize at t = 0: set initial particles to be
{
V

(i)
1,0 = θ1;V

(i)
2,0 = 1; J

(i)
u,0 =

0; J
(i)
d,0 = 0

}M

i=1
and give each set of particles a weight 1/M ;

Step 2: For t = 1, 2, . . .

• If Rt = lnSt − lnSt−τ > 0,

– draw J
(i)
d,t from its transition law (16);
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– draw J
(i)
u,t both from its transition law (15) and its conditional posterior dis-

tribution Ju,t = lnSt−lnSt−τ−(µ− 1
2
V1,t−τ−k(1)V2,t−τ )τ−Jd,t−

√
τV1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ )p(J

(i)
u,t|V

(i)
2,t−τ )

0.5p(J
(i)
u,t|V

(i)
2,t−τ ) + 0.5ϕ(µ̄, σ̄)

,

where ϕ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
d,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;

• Otherwise, if Rt = lnSt − lnSt−τ < 0,

– draw J
(i)
u,t from its transition law (15);

– draw J
(i)
d,t both from its transition law (16) and its conditional posterior dis-

tribution Jd,t = lnSt− lnSt−τ −(µ− 1
2
V1,t−τ −k(1)V2,t−τ )τ−Ju,t−

√
V1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ )p(J

(i)
d,t |V

(i)
2,t−τ )

0.5p(J
(i)
d,t |V

(i)
2,t−τ ) + 0.5ϕ(µ̄, σ̄)

,

where ϕ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
u,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;

• Normalize the weight: w̃
(i)
t = w

(i)
t /

∑M
j w

(j)
t ;

Step 3: Resample (Stratified Resampling)

• Draw the new particle indexes by inverting the CDF of the multinomial charac-

terized by w̃
(i)
t at the stratified uniforms i+U(i)

M
where U (i) are iid uniforms;

• reset the weight to 1/M ;
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Step 4: Update the diffusion variance and the jump intensity particles using (13) and

(14), where zt = ρwt +
√

1− ρ2z̃t with z̃ being an independent standard normal noise.
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Table 2: Summary Statistics of S&P Index Returns

Returns Mean Std. Skewness Kurtosis Min Max

0.078 0.184 -1.193 29.73 -0.229 0.110

ACF ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

-0.028 -0.044 -0.004 -0.015 -0.016 0.008

Note: The table presents descriptive statistics of data for model estimation and empirical analysis.
Data are from January 2, 1980 to October 31, 2011 in daily frequency. In total, there are 8,033
observations. Mean and standard deviation are annualized. ρ’s stand for autocorrelations.
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Table 3: Log Bayes Factors at Final Time T

SE-M1 SE-M2 SE-M3 SE-M4

SE-M1 0.000 — — —

SE-M2 12.58 0.000 — —

SE-M3 0.842 -11.74 0.000 —

SE-M4 13.33 0.758 12.49 0.000

Note: The table presents the log Bayes factor of the column model to the row model using all available
S&P 500 index return data from January 2, 1980 to October 31, 2011. The interpretation of values in
the table is given in Footnote 5.

38



T
ab

le
4:

P
a
ra

m
e
te
r
E
st
im

a
te
s
a
t
F
in
a
l
T
im

e
T

µ
ω

η
v

κ
1

θ 1
σ
1
1

ρ
σ
1
2

κ
2

σ
2

A
.
S
E
-M

1

M
ea
n

0.
05
0

-0
.0
72

0.
02
4

0
.9
5
2

4
.2
3
2

0
.0
1
9

0
.2
8
9

-0
.5
9
6

0
.5
1
5

1
7
.4
6

2
0
.6
7

0.
05

Q
tl

0.
01
0

-0
.1
02

0.
00
7

0
.4
0
0

3
.3
5
7

0
.0
1
6

0
.2
6
3

-0
.6
7
1

0
.3
5
2

1
.8
7
1

8
.2
5
3

0.
95

Q
tl

0.
10
7

-0
.0
38

0.
04
4

1
.8
3
4

5
.1
2
2

0
.0
2
3

0
.3
2
0

-0
.5
3
1

0
.6
5
8

4
3
.3
6

3
2
.4
3

S
td

0.
02
7

0.
01
9

0.
01
1

0
.4
2
4

0
.5
0
5

0
.0
0
2

0
.0
1
7

0
.0
3
8

0
.0
8
8

1
3
.4
8

7
.3
0
5

B
.
S
E
-M

2

M
ea
n

0.
05
6

-0
.0
40

0.
03
8

1
.4
1
5

3
.4
6
1

0
.0
2
9

0
.3
2
1

-0
.5
9
6

—
1
5
.4
0

1
2
.4
3

0.
05

Q
tl

0.
01
9

-0
.0
63

0.
01
8

0
.4
7
1

2
.7
0
1

0
.0
2
6

0
.2
9
0

-0
.6
5
6

—
2
.4
2
7

2
.7
0
7

0.
95

Q
tl

0.
08
9

-0
.0
19

0.
06
1

2
.4
8
6

4
.2
1
6

0
.0
3
3

0
.3
4
9

-0
.5
4
3

—
3
3
.4
2

2
4
.0
1

S
td

0.
02
2

0.
01
3

0.
01
4

0
.6
5
0

0
.4
6
9

0
.0
0
2

0
.0
1
8

0
.0
3
4

—
9
.9
2
9

6
.4
7
3

C
.
S
E
-M

3

M
ea
n

0.
05
4

-0
.0
68

0.
02
4

1
.0
7
0

3
.8
9
0

0
.0
2
1

0
.3
0
0

-0
.5
9
2

0
.4
6
6

—
—

0.
05

Q
tl

0.
01
7

-0
.0
97

0.
00
3

0
.4
5
3

3
.0
0
4

0
.0
1
8

0
.2
6
7

-0
.6
6
1

0
.3
3
3

—
—

0.
95

Q
tl

0.
09
0

-0
.0
43

0.
04
6

2
.1
1
3

4
.7
7
0

0
.0
2
4

0
.3
2
8

-0
.5
3
2

0
.5
9
7

—
—

S
td

0.
02
3

0.
01
6

0.
01
3

0
.5
4
0

0
.5
5
4

0
.0
0
2

0
.0
1
9

-0
.0
3
8

0
.0
8
7

—
—

D
.
S
E
-M

4

M
ea
n

0.
06
4

-0
.0
45

0.
02
7

1
.2
1
9

3
.7
4
3

0
.0
2
8

0
.3
4
0

-0
.6
1
5

—
—

—
0.
05

Q
tl

0.
02
4

-0
.0
68

0.
00
5

0
.4
5
3

2
.9
3
6

0
.0
2
5

0
.3
0
8

-0
.6
6
6

—
—

—
0.
95

Q
tl

0.
10
7

-0
.0
25

0.
05
2

2
.2
8
0

4
.4
6
0

0
.0
3
2

0
.3
6
8

-0
.5
6
3

—
—

—
S
td

0.
02
4

0.
01
5

0.
01
4

0
.5
9
1

0
.4
7
2

0
.0
2
0

0
.0
1
9

0
.0
3
1

—
—

—

N
o
te
:
T
h
e
ta
b
le

p
re
se
n
ts

th
e
p
ar
am

et
er

es
ti
m
at
es

of
th
e
fo
u
r
m
o
d
el
s
co
n
si
d
er
ed

u
si
n
g
al
l
av
ai
la
b
le

S
&
P
50

0
in
d
ex

re
tu
rn

d
at
a
fr
om

J
an

u
ar
y
2,

19
80

to
O
ct
o
b
er

31
,
20

11
.
M
o
d
el
s
ar
e
es
ti
m
at
ed

u
si
n
g
th
e
B
ay
es
ia
n
le
ar
n
in
g
m
et
h
o
d
d
is
cu

ss
ed

in
S
ec
ti
on

3.
5%

q
u
an

ti
le
,
m
ea
n
,
95

%
q
u
an

ti
le
,
an

d
st
an

d
ar
d
d
ev
ia
ti
o
n
o
f
ea
ch

p
ar
am

et
er

es
ti
m
at
e
ar
e
re
p
or
te
d
.

39



T
ab

le
5:

V
a
R

a
n
d

C
V
a
R

M
e
a
su

re
s
Im

p
li
e
d

b
y
th

e
M

o
d
e
ls

O
n
e
D
ay

O
n
e
W
ee
k

S
E
-M

1
S
E
-M

2
S
E
-M

3
S
E
-M

4
S
E
-M

1
S
E
-M

2
S
E
-M

3
S
E
-M

4

A
.
1
%

V
a
R

(C
V
a
R
)

A
v
er
ag
e,

F
u
ll
S
am

p
le

-0
.0
24

-0
.0
24

-0
.0
2
4

-0
.0
2
4

-0
.0
7
7

-0
.0
7
6

-0
.0
7
6

-0
.0
7
5

(-
0.
04
5)

(-
0
.0
4
4
)

(-
0
.0
4
4
)

(-
0
.0
4
3
)

(-
0
.1
4
8
)

(-
0
.1
4
7
)

(-
0
.1
4
6
)

(-
0
.1
4
6
)

M
in
im

u
m
,
F
u
ll
S
am

p
le

-0
.1
10

-0
.0
7
6

-0
.1
1
0

-0
.0
7
6

-0
.3
1
5

-0
.2
2
3

-0
.2
9
0

-0
.2
0
2

(-
0.
18
3)

(-
0
.1
4
8
)

(-
0
.1
4
2
)

(-
0
.0
9
1
)

(-
0
.5
0
9
)

(-
0
.4
5
2
)

(-
0
.3
7
0
)

(-
0
.2
8
5
)

A
v
er
ag

e,
A
ft
er

L
eh
m
an

B
an

k
ru
p
tc
y

-0
.0
34

-0
.0
3
3

-0
.0
3
3

-0
.0
3
3

-0
.1
0
1

-0
.0
9
8

-0
.0
9
7

-0
.0
9
6

(-
0.
05
1)

(-
0
.0
4
9
)

(-
0
.0
4
8
)

(-
0
.0
4
6
)

(-
0
.1
4
0
)

(-
0
.1
4
0
)

(-
0
.1
3
3
)

(-
0
.1
2
8
)

M
in
im

u
m
,
A
ft
er

L
eh
m
an

B
an

k
ru
p
tc
y

-0
.0
79

-0
.0
7
6

-0
.0
7
3

-0
.0
7
6

-0
.2
1
4

-0
.2
0
7

-0
.1
9
8

-0
.2
0
2

(-
0.
10
7)

(-
0
.0
9
7
)

(-
0
.0
8
8
)

(-
0
.0
9
1
)

(-
0
.2
6
5
)

(-
0
.2
5
1
)

(-
0
.2
3
4
)

(-
0
.2
3
9
)

B
.
0
.1
%

V
a
R

(C
V
a
R
)

A
v
er
ag
e,

F
u
ll
S
am

p
le

-0
.0
72

-0
.0
70

-0
.0
6
7

-0
.0
6
7

-0
.2
5
5

-0
.2
5
5

-0
.2
5
4

-0
.2
5
7

(-
0.
16
3)

(-
0
.1
6
4
)

(-
0
.1
6
0
)

(-
0
.1
6
4
)

(-
0
.4
3
2
)

(-
0
.4
3
9
)

(-
0
.4
2
9
)

(-
0
.4
3
7
)

M
in
im

u
m
,
F
u
ll
S
am

p
le

-0
.2
95

-0
.3
0
2

-0
.1
6
0

-0
.1
4
8

-0
.8
3
4

-0
.7
8
9

-0
.5
6
9

-0
.5
7
2

(-
0.
59
1)

(-
0
.5
8
9
)

(-
0
.4
2
9
)

(-
0
.4
0
2
)

(-
1
.3
1
0
)

(-
1
.2
6
2
)

(-
1
.0
7
1
)

(-
0
.9
7
5
)

A
v
er
ag

e,
A
ft
er

L
eh
m
an

B
an

k
ru
p
tc
y

-0
.0
79

-0
.0
6
9

-0
.0
6
8

-0
.0
6
0

-0
.1
9
7

-0
.2
0
2

-0
.1
8
5

-0
.1
7
3

(-
0.
12
9)

(-
0
.1
2
8
)

(-
0
.1
1
5
)

(-
0
.1
0
5
)

(-
0
.2
6
5
)

(-
0
.2
8
8
)

(-
0
.2
5
2
)

(-
0
.2
3
9
)

M
in
im

u
m
,
A
ft
er

L
eh
m
an

B
an

k
ru
p
tc
y

-0
.1
49

-0
.1
4
9

-0
.1
0
5

-0
.1
0
6

-0
.3
4
2

-0
.3
1
1

-0
.2
8
3

-0
.2
8
2

(-
0.
22
0)

(-
0
.2
2
3
)

(-
0
.1
4
9
)

(-
0
.1
4
7
)

(-
0
.4
2
2
)

(-
0
.3
9
8
)

(-
0
.3
3
9
)

(-
0
.3
3
8
)

N
o
te
:
T
h
e
ta
b
le

p
re
se
n
ts

1%
an

d
0.
1%

on
e-
d
ay

an
d
on

e-
w
ee
k
V
al
u
e-
at
-R

is
k
(V

aR
)
an

d
co
n
d
it
io
n
al

V
al
u
e-
at
-R

is
k
(C

V
aR

,
in

b
ra
ck
et
s)

n
u
m
b
er
s
fo
r
th
e
d
iff
er
en
t

m
o
d
el
s.

S
ta
ti
st
ic
s
on

b
ot
h
th
e
fu
ll
sa
m
p
le

an
d
th
e
p
os
t-
L
eh

m
an

b
an

k
ru
p
tc
y
p
er
io
d
ar
e
re
p
or
te
d
.

40



Table 6: Impacts of Learning on Option Pricing

SE-M1 SE-M3
K/S 7 Days 30 Days 90 Days 250 Days 7 Days 30 Days 90 Days 250 Days

0.85 1.113 1.093 1.042 1.033 0.999 1.118 1.058 1.040
0.90 1.077 1.043 1.020 1.025 0.978 1.060 1.031 1.031
0.95 1.023 1.004 1.010 1.022 0.957 1.012 1.016 1.026
1.00 0.997 1.008 1.015 1.024 0.999 1.010 1.018 1.026
1.05 0.998 1.049 1.035 1.029 1.007 1.046 1.036 1.031
1.10 1.059 1.091 1.068 1.039 1.088 1.084 1.065 1.039
1.15 1.168 1.143 1.104 1.052 1.478 1.137 1.097 1.051

Note: The table presents the mean ratios of BS implied volatility with and without learning. Option
prices are computed using the Monte-Carl simulation method.
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Table 7: Volatility Forecasting

SE-M1 SE-M2 SE-M3 SE-M4

2001.01-2011.10 6.549 6.846 6.565 6.773

2001.01-2007.12 5.129 5.380 5.159 5.366

2008.01-2011.10 8.825 9.202 8.826 9.049

Note: The table presents RMSEs in percentage of one-day-ahead daily volatility forecasts. True daily
volatility is approximated by the bipower variation based on 5-minute returns within a day. All
volatility estimates are annualized.
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Figure 1: S&P 500 Index Returns and Realized Volatility

Note:The figure plot S&P 500 index returns (upper panel) ranging from January 2, 1980 to October
31, 2011, and realized volatility (lower panel) which is computed using the previous 22-day returns at
each time.
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Figure 2: Sequential Model Comparison

Note: The Figure plots the sequential log Bayes factors for recursive model comparison and monitoring.
The dashed lines in each panel represents 0, 1.1, 2.3, and 3.4, respectively, which determine how strong
one model outperforms the other. The statistical interpretation of these values is given in Footnote 5.
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Figure 3: Parameter Learning in the SE-M1 Model: Jump size and Diffusion Volatility

Note: The figure presents the learning of the jump and diffusion volatility-related parameters in the
SE-M1 model using the S&P 500 index return starting from January 2, 1980. 5% quantile, mean, and
95% quantile are reported.
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Figure 4: Parameter Learning in the SE-M1 Model: Jump Intensity

Note: The upper panels presents the learning of the jump intensity-related parameters in the SE-M1
model using the S&P 500 index return starting from January 2, 1980. 5% quantile, mean, and 95%
quantile are reported. The lower panels plot the kernel densities of the prior (solid line) and posterior
(dashed line) distributions of each parameter.
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Figure 5: Parameter Learning in the SE-M3 Model

Note: The figure presents the learning of the jump and diffusion volatility-related parameters in the
SE-M3 model using the S&P 500 index return starting from January 2, 1980. 5% quantile, mean, and
95% quantile are reported.
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Figure 6: Filtered Diffusion Volatility and Jump Intensity

Note: The figure presents 5% quantile, mean, and 95% quantile of the filtered diffusion volatility
(
√
V1,t) and the filtered jump intensity (V2,t) using the algorithm presented in Section 3.
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Figure 7: Filtered Positive and Negative Jumps

Note: The figure presents the filtered positive jumps (J+
t ), and negative jumps (J−

t )using the algorithm
presented in Section 3.
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Figure 8: Filtered Diffusion Volatility and Jump Intensity without Learning

Note: The figure presents 5% quantile, mean, and 95% quantile of the filtered diffusion volatility
(
√
V1,t) and the filtered jump intensity (V2,t) when the full-sample estimates of the fixed parameters

are plugged into the particle filter.
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Figure 9: Variance Decomposition: Jump Contribution

Note: The figure presents the variance contribution of the jump component to return variance. The
upper panels plot the jump contribution when learning is taken in account, whereas the middle panels
show its contribution when learning is ignored. The lower panels are the difference between upper and
lower panels, revealing the impact of learning on variance decomposition.
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Figure 10: Impacts of Learning on CVaR in the SE-M3 Model

Note: The figure reports the ratios of CVaR numbers with and without learning in the SE-M3 model.
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Figure 11: Implied Volatility Smiles and Skews

Note: The figure presents the BS implied volatility for different maturities and strikes under the four
models considered. We consider call options with maturity 7, 30, 90, and 250 days, and moneyness
(K/S) 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, and 1.20. Option are priced using the Monte-Carlo
simulation method.
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Figure 12: Implied Volatility for Call Options with Maturity 7 and 30 Days

Note: The figure plots the time-series of implied volatility for call options with maturity 7 and 30
days from 1981 to 2011.10 computed from the SE-M1 model. Options are priced using the Monte-
Carlo simulation method. The solid line plots implied volatility when learning is taken into account,
whereas the dashed (red) line plots implied volatility when learning is ignored. We consider options
with moneyness (K/S) equal to 0.85 in upper panels, 1.00 in middle panels, and 1.15 in lower panels.
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Figure 13: Implied Volatility Ratios of the SE-M1 Model and the SE-M3 Model

Note: The figure plots the time-series ratios of implied volatility for call options with maturity 7 and
30 days between the SE-M1 and SE-M3 models from 1981 to 2011.10. Options are priced using the
Monte-Carlo simulation method. The solid line plots implied volatility ratios when learning is taken
into account, whereas the dashed (red) line plots implied volatility ratios when learning is ignored. We
consider options with moneyness (K/S) equal to 0.85 in upper panels, 1.00 in middle panels, and 1.15
in lower panels.
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