

Andras Fulop^a, Junye Li^b, and Jun Yu^c

^a ESSEC Business School and CREST
 ^b ESSEC Business School
 ^c Singapore Management University

November 2012

(四) (三)

Motivation		
Outline		
Outime		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Motivation		
Jump episod	les	

Table: S&P 500 Index Returns in Four Turbulent Periods

Period	l 1	Perio	d 2	Perio	d 3	Perio	d 4
Date	Ret	Date	Ret	Date	Ret	Date	Ret
10/16/87	-5.30	7/18/02	-2.74	9/15/08	-4.83	8/04/11	-4.90
10/19/87	-22.9	7/19/02	-3.91	9/16/08	1.74	8/05/11	-0.06
10/20/87	5.20	7/22/02	-3.35	9/17/08	-4.83	8/08/11	-6.90
10/21/87	8.71	7/23/02	-2.74	9/18/08	4.24	8/09/11	4.63
10/22/87	4.00	7/24/02	5.57	9/19/08	3.95	8/10/11	-4.52
10/23/87	-0.01	7/25/02	-0.56	9/22/08	-3.90	8/11/11	-4.53
10/26/87	-8.64	7/26/02	1.67	9/23/08	-1.58	8/12/11	0.52

Motivation		

- Jump clustering: Stylized fact during the financial crisis
- Existing Literature:
 - Price and diffusion volatility jump at the same time; Eraker, Johannes, and Polson (2003), Eraker (2004)
 - Jumps are self-exciting; Yu (2004), McCurdy and Maheu (2004), Aït-Sahalia, Cacho-Diaz, and Laeven (2010) and Carr and Wu (2010)
- Jump clustering is trigged by negative jumps.

- Set up a class of jump-diffusion models where negative jumps in asset prices can feedback both to diffusion volatility (Channel 1) and to jump intensity (Channel 2)
 - Channel 1: A negative jump in price happens at the same time as a jump in diffusion volatility. Since diffusion volatility is persistent, another large volatility value is expected in the next period. Consequently, another extreme movement in asset price is highly likely to be followed, even if there is no jump arrival.
 - Channel 2: A negative jump in price increases the likelihood of extreme events in future price movements.

Motivation		
This Paper		

- Develop an econometric toolbox to perform sequential Bayesian inference over the hidden states and fixed parameters
- Estimate a set of models on S&P 500 stock returns between 1980-2011
 - Find strong evidence of Channel 1 (jump to diffusion volatility) throughout the sample
 - Find weak evidence of Channel 2 after 2008 financial crisis
 - Strong implications for VaR, option pricing and volatility forecasting

	Model	
Outline		

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

	Model	
N <i>F</i> 1 1		
Model		

• Equity Price follow a jump-diffusion with variance-gamma jumps

$$\ln S_t/S_0 = \int_0^t \mu_s ds + \left(W_{T_{1,t}} - k_W(1)T_{1,t} \right) + \left(J_{T_{2,t}} - k_J(1)T_{2,t} \right),$$

• Diffusion variance, $V_{1,t}$, and jump intensity, $V_{2,t}$ follow

$$dV_{1,t} = \kappa_1(\theta_1 - V_{1,t})dt + \sigma_{11}\sqrt{V_{1,t}}dZ_t - \sigma_{12}dJ_{T_{2,t}}^-,$$

$$dV_{2,t} = \kappa_2(\theta_2 - V_{2,t})dt - \sigma_2dJ_{T_{2,t}}^-,$$

Model	

Model Specifications we investigate

- *SE-M1*: Full model, jump clustering generated by jump to diffusion volatility and time varying jump intensity
- SE-M2: $\sigma_{12} = 0$, jump clustering only through jump intensity
- SE-M3: $\sigma_2 = 0$, jump clustering only through jump to diffusion volatility
- SE-M4: $\sigma_{12} = \sigma_2 = 0$, no jump clustering

Outline	

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

		Econometric Approach	
		1 , , ,	1.1
By an Euler	approximation,	we have a state space r	nodel

• Measurement Equation

$$\ln S_t = \ln S_{t-\tau} + \left(\mu - \frac{1}{2}V_{1,t-\tau} - k(1)V_{2,t-\tau}\right)\tau + \sqrt{\tau V_{1,t-\tau}}w_t + J_{u,t} + J_{d,t},$$

• Transition Equations

$$V_{1,t} = \kappa_1 \theta_1 \tau + (1 - \kappa_1 \tau) V_{1,t-\tau} + \sigma_{11} \sqrt{\tau V_{1,t-\tau}} z_t - \sigma_{12} J_{d,t},$$

$$V_{2,t} = \kappa_2 \theta_2 \tau + (1 - \kappa_2 \tau) V_{2,t-\tau} - \sigma_2 J_{d,t},$$

$$J_{u,t} = \Gamma(\tau V_{2,t-\tau}; \mu_u, v_u),$$
 (1)

$$J_{d,t} = -\Gamma(\tau V_{2,t-\tau}; \mu_d, v_d).$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

	Econometric Approach	

Filtering the hidden states: Particle Filters

• Use a sequential Monte Carlo routine with *M* interacting particles to recursively approximate the filtering distributions of the hidden states

$$\hat{p}(x_{1:t}|y_{1:t},\Theta) = \sum_{i=1}^{M} \tilde{w}_{t}^{(i)} 1_{\{x_{1:t}=x_{1:t}^{(i)}\}},$$

- We need to design an efficient proposal to take care of the jumps. Use a mixture proposal that performs well both for large and small returns.
- The algorithm also provide an estimate of the individual marginal likelihoods

$$\hat{p}(y_l|y_{1:l-1},\Theta) = \frac{1}{M} \sum_{i=1}^M w_l^{(i)}.$$

		Econometric Approach	
Mixturo Po	rticlo Filtor I		

Mixture Particle Filter I

If
$$R_t = \ln S_t - \ln S_{t-\tau} > 0$$
,

- draw $J_{d,t}^{(i)}$ from its transition law (2);
- draw $J_{u,t}^{(i)}$ both from its transition law (1) and its conditional posterior distribution $J_{u,t} =$ $\ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2}V_{1,t-\tau} - k(1)V_{2,t-\tau})\tau - J_{d,t} - \sqrt{\tau V_{1,t-\tau}}w_t$, which is normally distributed. Equal weights are attached to particles obtained from the transition law and the conditional posterior;

		Econometric Approach	
	· • 1 T)·1/ TT		
– Muxture Pai	ticle Filter II		

• compute the particle weight by

$$w_t^{(i)} = \frac{p(\ln S_t | J_{u,t}^{(i)}, J_{d,t}^{(i)}, V_{1,t-\tau}^{(i)}, V_{2,t-\tau}^{(i)}) p(J_{u,t}^{(i)} | V_{2,t-\tau}^{(i)})}{0.5p(J_{u,t}^{(i)} | V_{2,t-\tau}^{(i)}) + 0.5\phi(\bar{\mu},\bar{\sigma})},$$

where $\phi(\cdot, \cdot)$ represents the normal density with mean $\bar{\mu} = \ln S_t - \ln S_{t-\tau} - (\mu - \frac{1}{2}V_{1,t-\tau}^{(i)} - k(1)V_{2,t-\tau}^{(i)})\tau - J_{d,t}^{(i)}$ and standard deviation $\bar{\sigma} = \sqrt{\tau V_{1,t-\tau}^{(i)}}$; If $R_t = \ln S_t - \ln S_{t-\tau} < 0$ switch and use the mixture sampler $\tau^{(i)}$

on $J_{d,t}^{(i)}$

		Econometric Approach			
GPU Imple	mentation				

- Later in the parameter learning algorithm we need to evaluate the PF for thousands of sets of fixed parameters simultaneously
- To make the task manageable we implemented a parallel PF in CUDA where each thread in essence runs a separate filter for a set of fixed parameters

		Econometric Approach			
GPU Imple	mentation				

- In implementation, when drawing Gamma random numbers, we sample from an approximate Gamma distribution using proposals from the rejection sampling algorithm in Ahrens and Dieter (1974) and Marsaglia and Tsang (2000). However, to keep the algorithm parallel, instead of rejection sampling, we attach importance weights to account for the difference between the proposal and the target gamma.
- Tested both on an NVIDIA GTX 590 and a NVIDIA FERMI 2050 card, got roughly the same speed.

Motivation		Econometric Approach	Empirical Results
Parameter	Learning: Margi	inalized Resample-Mov	e/SMC^2

• Consider the following decomposition of the target

$$p(\Theta, x_{1:t} \mid y_{1:t}) = p(x_{1:t} \mid y_{1:t}, \Theta) p(\Theta \mid y_{1:t})$$

Notice that we can approximate the RHS by the particle filter!

• Run a resample-move algorithm (SMC+MCMC) with N particles over the fixed parameters over the sequence of estimated densities

$$\hat{p}(\Theta|y_{1:t}) \propto \prod_{l=1}^{t} \hat{p}(y_l|y_{1:l-1}, \Theta) p(\Theta)$$

• For further details see Fulop and Li (2011), Chopin et al. (2011)

Motivation	Model	Econometric Approach	Empirical Results
The second se	() () () ()		
Properties o	t Marginalized	Resample-Move	

- The algorithm delivers exact draws from $p(\Theta, x_{1:t} | y_{1:t})$ for any given M as $N \to \infty$.
- Provides estimates of the individual marginal likelihoods

$$f(y_t|y_{1:t-1}) \equiv \int p(y_t|y_{1:t-1},\Theta)p(\Theta|y_{1:t-1})d\Theta$$

These can be used to obtain sequential Bayes factors across different models

$$\mathcal{BF}_t \equiv \frac{p(y_{1:t}|M_1)}{p(y_{1:t}|M_2)} = \frac{p(y_t|y_{1:t-1}, M_1)}{p(y_t|y_{1:t-1}, M_2)} \mathcal{BF}_{t-1}.$$

- Still M needs to be increased linearly with sample size T to stabilize acceptance rates in parameter move steps.
- Computationally intensive, $M \times N$ particles overall. But massively parallel, so we can use a graphical processing units (GPU) to speed up.

	Econometric Approach	Empirical Results
Outline		
Outilit		

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Data and Parameter settings

- Daily S& P returns between 1980-2010
- Set particle sizes to N = 2000, M = 8000
- Use independent M-H proposals in parameter move sets with multivariate normal proposals calibrated to previous posteriors

	Econometric Approach	Empirical Results

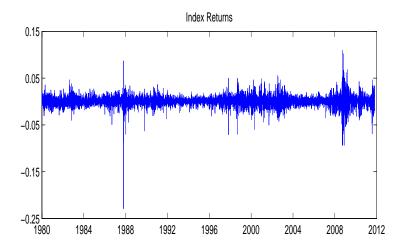
Data and Parameter settings

Summary Statistics of S&P500 Returns between 2/1/80-31/10/11

Returns	Mean	Std	Skew	Kur	Min	Max
	.078	.184	-1.193	29.73	229	.110
ACF	ρ_1	ρ_2	$ ho_3$	$ ho_4$	ρ_5	$ ho_6$
	028	044	004	015	016	.008

	Econometric Approach	Empirical Results

Data and Parameter settings



	Econometric Approach	Empirical Results
Results		

Log Bayes	Factors at	T:	Column	model	against	row	model
-----------	------------	----	-------------------------	-------	---------	-----	------------------------

	SE-M1	SE-M2	SE-M3	SE-M4
SE-M1	0.000		—	
SE-M2	12.58	0.000		
SE-M3	0.842	-11.74	0.000	
SE-M4	13.33	0.758	12.49	0.000

		Econometric Approach	Empirical Results
Results			
15	M1 vs. M2/M4	M3 vs. M	12/M4
	M1 vs. M2 M1 vs. M4	10 M3 vs. M2 M3 vs. M4	min
	her in		rim - 1

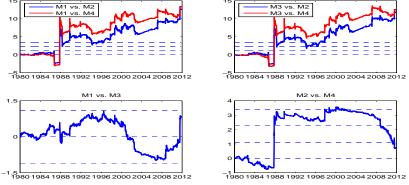


Figure: Sequential Model Comparison

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Motivation	Model	Econometric Approach	Empirical Results
Results			

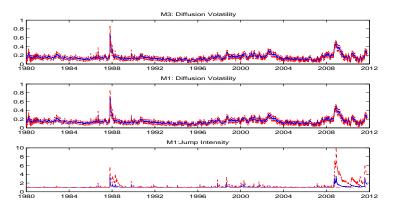


Figure: Filtered Diffusion Volatility and the Jump Intensity

	Econometric Approach	Empirical Results

Results

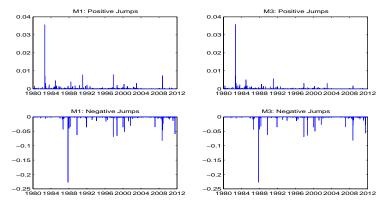


Figure: Filtered Jumps

		Econometric Approach		Empiri	cal Results	
Results						
	Value-at	-Risk Im	plied by t	he Model	s	
			One	Day		
		SE-M1	SE-M2	SE-M3	SE-M4	
	A. 1% VaR					
	Average, FS	-0.024	-0.024	-0.024	-0.024	
	Minimum, FS	-0.110	-0.076	-0.110	-0.076	
	Average, AL	-0.034	-0.033	-0.033	-0.033	
	Minimum, AL	-0.079	-0.076	-0.073	-0.076	
	B. 0.1% VaR					
	Average, FS	-0.072	-0.070	-0.067	-0.067	
	Minimum, FS	-0.295	-0.302	-0.160	-0.148	
	Average, AL	-0.079	-0.069	-0.068	-0.060	
	Minimum, AL	-0.149	-0.149	-0.105	-0.106	≣ ୬۹୯

		Econometric Approach		Empirio	al Results	
Results						
	Value-at	-Risk Im	plied by t		S	
			One	Week		
		SE-M1	SE-M2	SE-M3	SE-M4	
	A. 1% VaR					
	Average, FS	-0.077	-0.076	-0.076	-0.075	
	Minimum, FS	-0.315	-0.223	-0.290	-0.202	
	Average, AL	-0.101	-0.098	-0.097	-0.096	
	Minimum, AL	-0.214	-0.207	-0.198	-0.202	
	B. 0.1% VaR					
	Average, FS	-0.255	-0.255	-0.254	-0.257	
	Minimum, FS	-0.834	-0.789	-0.569	-0.572	
	Average, AL	-0.197	-0.202	-0.185	-0.173	
	Minimum, AL	-0.342	-0.311	-0.283	-0.282	き わくで

	Econometric Approach	Empirical Results
Results		

Impacts of Learning on Option Pricing							
		SE-M1				SE-M3	
K/S	7 Days	30 Days	90 Days		7 Days	30 Days	90 Days
0.85	1.113	1.093	1.042		0.999	1.118	1.058
0.90	1.077	1.043	1.020		0.978	1.060	1.031
0.95	1.023	1.004	1.010		0.957	1.012	1.016
1.00	0.997	1.008	1.015		0.999	1.010	1.018
1.05	0.998	1.049	1.035		1.007	1.046	1.036
1.10	1.059	1.091	1.068		1.088	1.084	1.065
1.15	1.168	1.143	1.104		1.478	1.137	1.097

	Econometric Approach	Empirical Results
Results		

T.	Volatility	Forecastir	ıg	
	SE-M1	SE-M2	SE-M3	SE-M4
2001.01-2011.10	6.549	6.846	6.565	6.773
2001.01-2007.12	5.129	5.380	5.159	5.366
2008.01-2011.10	8.825	9.202	8.826	9.049

	Econometric Approach	Empirical Results

Results

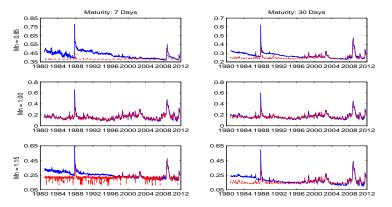


Figure: Implied Volatility for Call Options with Maturity 7 and 30 Days. Blue: learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Econometric Approach	Empirical Results
Conclusions		

- Evidence of jumps feeding back to diffusion volatility is strong throughout the sample
- We find evidence for jumps feeding back to jump intensity, concentrated to the financial crisis period
- Important Risk Management Implications on VaR numbers deep in the tail
- Important implication for option pricing
- Improvement in volatility forecasting