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Jump episodes

Table: S&P 500 Index Returns in Four Turbulent Periods

Period 1 Period 2 Period 3 Period 4
Date Ret Date Ret Date Ret Date Ret

10/16/87 -5.30 7/18/02 -2.74 9/15/08 -4.83 8/04/11 -4.90
10/19/87 -22.9 7/19/02 -3.91 9/16/08 1.74 8/05/11 -0.06
10/20/87 5.20 7/22/02 -3.35 9/17/08 -4.83 8/08/11 -6.90
10/21/87 8.71 7/23/02 -2.74 9/18/08 4.24 8/09/11 4.63
10/22/87 4.00 7/24/02 5.57 9/19/08 3.95 8/10/11 -4.52
10/23/87 -0.01 7/25/02 -0.56 9/22/08 -3.90 8/11/11 -4.53
10/26/87 -8.64 7/26/02 1.67 9/23/08 -1.58 8/12/11 0.52
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Jump clustering: Stylized fact during the financial crisis

Existing Literature:

Price and diffusion volatility jump at the same time;
Eraker, Johannes, and Polson (2003), Eraker (2004)
Jumps are self-exciting; Yu (2004), McCurdy and Maheu
(2004), Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2010) and
Carr and Wu (2010)

Jump clustering is trigged by negative jumps.
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This Paper

Set up a class of jump-diffusion models where negative
jumps in asset prices can feedback both to diffusion
volatility (Channel 1) and to jump intensity (Channel 2)

Channel 1: A negative jump in price happens at the same
time as a jump in diffusion volatility. Since diffusion
volatility is persistent, another large volatility value is
expected in the next period. Consequently, another extreme
movement in asset price is highly likely to be followed, even
if there is no jump arrival.
Channel 2: A negative jump in price increases the
likelihood of extreme events in future price movements.
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This Paper

Develop an econometric toolbox to perform sequential
Bayesian inference over the hidden states and fixed
parameters

Estimate a set of models on S&P 500 stock returns
between 1980-2011

Find strong evidence of Channel 1 (jump to diffusion
volatility) throughout the sample
Find weak evidence of Channel 2 after 2008 financial crisis
Strong implications for VaR, option pricing and volatility
forecasting
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Model

Equity Price follow a jump-diffusion with variance-gamma
jumps

lnSt/S0 =

∫ t

0
μsds+

(
WT1,t−kW (1)T1,t

)
+
(
JT2,t−kJ(1)T2,t

)
,

Diffusion variance, V1,t, and jump intensity, V2,t follow

dV1,t = κ1(θ1 − V1,t)dt+ σ11
√

V1,tdZt − σ12dJ
−
T2,t

,

dV2,t = κ2(θ2 − V2,t)dt− σ2dJ
−
T2,t

,
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Model Specifications we investigate

SE-M1: Full model, jump clustering generated by jump to diffusion
volatility and time varying jump intensity

SE-M2: σ12 = 0, jump clustering only through jump intensity

SE-M3: σ2 = 0, jump clustering only through jump to diffusion
volatility

SE-M4: σ12 = σ2 = 0, no jump clustering
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By an Euler approximation, we have a state space model

Measurement Equation

lnSt = lnSt−τ +
(
μ− 1

2
V1,t−τ − k(1)V2,t−τ

)
τ +

√
τV1,t−τwt

+Ju,t + Jd,t,

Transition Equations

V1,t = κ1θ1τ + (1− κ1τ)V1,t−τ + σ11
√

τV1,t−τzt − σ12Jd,t,

V2,t = κ2θ2τ + (1− κ2τ)V2,t−τ − σ2Jd,t,

Ju,t = Γ(τV2,t−τ ;μu, vu), (1)

Jd,t = −Γ(τV2,t−τ ;μd, vd). (2)
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Filtering the hidden states: Particle Filters

Use a sequential Monte Carlo routine with M interacting
particles to recursively approximate the filtering
distributions of the hidden states

p̂(x1:t|y1:t,Θ) =

M∑
i=1

w̃
(i)
t 1{x1:t=x

(i)
1:t}

,

We need to design an efficient proposal to take care of the
jumps. Use a mixture proposal that performs well both for
large and small returns.

The algorithm also provide an estimate of the individual
marginal likelihoods

p̂(yl|y1:l−1,Θ) =
1

M

M∑
i=1

w
(i)
l .
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Mixture Particle Filter I

If Rt = lnSt − lnSt−τ > 0,

draw J
(i)
d,t from its transition law (2);

draw J
(i)
u,t both from its transition law (1) and its

conditional posterior distribution Ju,t =
lnSt−lnSt−τ−(μ− 1

2V1,t−τ−k(1)V2,t−τ )τ−Jd,t−
√

τV1,t−τwt,
which is normally distributed. Equal weights are attached
to particles obtained from the transition law and the
conditional posterior;
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Mixture Particle Filter II

compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ )p(J

(i)
u,t|V (i)

2,t−τ )

0.5p(J
(i)
u,t|V (i)

2,t−τ ) + 0.5φ(μ̄, σ̄)
,

where φ(·, ·) represents the normal density with mean

μ̄ = lnSt − lnSt−τ − (μ− 1
2V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
d,t and

standard deviation σ̄ =
√

τV
(i)
1,t−τ ;

If Rt = lnSt − lnSt−τ < 0 switch and use the mixture sampler

on J
(i)
d,t
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GPU Implementation

Later in the parameter learning algorithm we need to
evaluate the PF for thousands of sets of fixed parameters
simultaneously

To make the task manageable we implemented a parallel
PF in CUDA where each thread in essence runs a separate
filter for a set of fixed parameters
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GPU Implementation

In implementation, when drawing Gamma random
numbers, we sample from an approximate Gamma
distribution using proposals from the rejection sampling
algorithm in Ahrens and Dieter (1974) and Marsaglia and
Tsang (2000). However, to keep the algorithm parallel,
instead of rejection sampling, we attach importance
weights to account for the difference between the proposal
and the target gamma.

Tested both on an NVIDIA GTX 590 and a NVIDIA
FERMI 2050 card, got roughly the same speed.
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Parameter Learning: Marginalized Resample-Move/SMC2

Consider the following decomposition of the target

p(Θ, x1:t | y1:t) = p(x1:t|y1:t,Θ)p(Θ | y1:t)
Notice that we can approximate the RHS by the particle
filter!

Run a resample-move algorithm (SMC+MCMC) with N
particles over the fixed parameters over the sequence of
estimated densities

p̂(Θ|y1:t) ∝
t∏

l=1

p̂(yl|y1:l−1,Θ)p(Θ)

For further details see Fulop and Li (2011), Chopin et al.
(2011)
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Properties of Marginalized Resample-Move

The algorithm delivers exact draws from p(Θ, x1:t | y1:t) for
any given M as N → ∞.
Provides estimates of the individual marginal likelihoods

f(yt|y1:t−1) ≡
∫

p(yt|y1:t−1,Θ)p(Θ|y1:t−1)dΘ

These can be used to obtain sequential Bayes factors across
different models

BF t ≡ p(y1:t|M1)

p(y1:t|M2)
=

p(yt|y1:t−1,M1)

p(yt|y1:t−1,M2)
BF t−1.

Still M needs to be increased linearly with sample size T to
stabilize acceptance rates in parameter move steps.
Computationally intensive, M ×N particles overall. But
massively parallel, so we can use a graphical processing
units (GPU) to speed up.
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Data and Parameter settings

Daily S& P returns between 1980-2010

Set particle sizes to N = 2000,M = 8000

Use independent M-H proposals in parameter move sets
with multivariate normal proposals calibrated to previous
posteriors
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Data and Parameter settings

Summary Statistics of S&P500 Returns between
2/1/80-31/10/11

Returns Mean Std Skew Kur Min Max

.078 .184 -1.193 29.73 -.229 .110

ACF ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

-.028 -.044 -.004 -.015 -.016 .008
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Data and Parameter settings
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Results

Log Bayes Factors at T: Column model against row model

SE-M1 SE-M2 SE-M3 SE-M4
SE-M1 0.000 — — —

SE-M2 12.58 0.000 — —

SE-M3 0.842 -11.74 0.000 —

SE-M4 13.33 0.758 12.49 0.000
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Results
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Figure: Sequential Model Comparison
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Results

Value-at-Risk Implied by the Models
One Day

SE-M1 SE-M2 SE-M3 SE-M4

A. 1% VaR

Average, FS -0.024 -0.024 -0.024 -0.024
Minimum, FS -0.110 -0.076 -0.110 -0.076
Average, AL -0.034 -0.033 -0.033 -0.033
Minimum, AL -0.079 -0.076 -0.073 -0.076

B. 0.1% VaR

Average, FS -0.072 -0.070 -0.067 -0.067
Minimum, FS -0.295 -0.302 -0.160 -0.148
Average, AL -0.079 -0.069 -0.068 -0.060
Minimum, AL -0.149 -0.149 -0.105 -0.106
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Results

Value-at-Risk Implied by the Models
One Week

SE-M1 SE-M2 SE-M3 SE-M4

A. 1% VaR

Average, FS -0.077 -0.076 -0.076 -0.075
Minimum, FS -0.315 -0.223 -0.290 -0.202
Average, AL -0.101 -0.098 -0.097 -0.096
Minimum, AL -0.214 -0.207 -0.198 -0.202

B. 0.1% VaR

Average, FS -0.255 -0.255 -0.254 -0.257
Minimum, FS -0.834 -0.789 -0.569 -0.572
Average, AL -0.197 -0.202 -0.185 -0.173
Minimum, AL -0.342 -0.311 -0.283 -0.282
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Results

Impacts of Learning on Option Pricing
SE-M1 SE-M3

K/S 7 Days 30 Days 90 Days 7 Days 30 Days 90 Days

0.85 1.113 1.093 1.042 0.999 1.118 1.058
0.90 1.077 1.043 1.020 0.978 1.060 1.031
0.95 1.023 1.004 1.010 0.957 1.012 1.016
1.00 0.997 1.008 1.015 0.999 1.010 1.018
1.05 0.998 1.049 1.035 1.007 1.046 1.036
1.10 1.059 1.091 1.068 1.088 1.084 1.065
1.15 1.168 1.143 1.104 1.478 1.137 1.097
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Results

Volatility Forecasting
SE-M1 SE-M2 SE-M3 SE-M4

2001.01-2011.10 6.549 6.846 6.565 6.773

2001.01-2007.12 5.129 5.380 5.159 5.366

2008.01-2011.10 8.825 9.202 8.826 9.049
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Conclusions

Evidence of jumps feeding back to diffusion volatility is
strong throughout the sample

We find evidence for jumps feeding back to jump intensity,
concentrated to the financial crisis period

Important Risk Management Implications on VaR numbers
deep in the tail

Important implication for option pricing

Improvement in volatility forecasting
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