
CSSHMM L Introduction	CSSHMM Lintroduction
Introduction	Our goal
	We propose the method that can estimate ARFIMA model with change points using the Markov chain Monte Carlo (MCMC) method.
	 The proposed method also uses an approximated AR model and a hidden Markov model.
 These methods in previous studies need the decision of the order of the approximated MA or AR model before estimation. 	 Conditional-sum-of-squares estimation (CSS) method with the approximated AR model is introduced by Robinson (2006).
 Ray and Tsay (2002)'s method needs much time until finishing the calculation. 	 CSS method uses all observed residuals, so we need not decide the order of the approximated AR model.
	• The hidden Markov model is used to detect multiple change points.
	 The proposed method needs less calculation time than the method by Ray and Tsay (2002).
	 We apply the proposed method to the simulation data, to the yearly minima of Nile river, and to the log realized volatility of Nikkei 225.
7/69	8/69
CSSHMM LARFIMA model and Change point LARFIMA model	CSSHMM
	Conditional-sum-of-squares estimation method Representation of likelihood function
Introduce an ARFIMA(p, d, q) model estimates data with a long memory process.	To use the MCMC method, we need a likelihood function.
Let $\{y_t\}$ is a long memory process.	Beran (1994), Robinson (2003), and Palma (2007) give the survey of the estimation methods.
• ARFIMA(<i>p</i> , <i>d</i> , <i>q</i>) model	Beran (1995), Chan and Palma (1998), and Robinson (2006) propose the
$\phi(L)(1-L)^{d}(y_{t}-\mu) = \theta(L)\varepsilon_{t}, t = 1, 2, \dots, T. $ (2)	following estimation methods.
 {ε_l}^{ii.d}, WN(0, σ²_e), we use a Gaussian white noise. d is a fractional difference and 0 < d < ¹/₂. 	Various approximated likelihood functions
• μ is mean. • μ is the lag operator, $Ly_t = y_{t-1}$.	Beran (1995) proposes the AR approximation method.
• If the roots of $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p = 0$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_n L^q = 0$ lie outside of the unit circle, the	 Chan and Palma (1998) proposes the MA approximation method. Robinson (2006) proposes the conditional-sum-of-squares
process has stationary and invertible. • And the roots have no common root.	estimation (CSS) method.
9/69	10/69
CSSHMM	CSSHMM
	Conditional-sum-of-squares estimation method
Beran's AR approximation method	Conditional-sum-of-squares estimation method
The difference between Beran's method and CSS method is whether uses M or not in the residuals.	 The conditional-sum-of-squares estimation method The likelihood function is represented as an AR approximation.
The Beran's AR approximation method is	 The CSS method needs less calculation time than the MA approximation method.
The likelihood function is	 The CSS method needs not to decide the order of an approximated AR model.
$(1)^{\frac{T}{2}}$ $(1 \frac{T}{2})$	 The Beran's method can be seen as a special case of the CSS method.
$L(Y_T d,\mu,\sigma_{\varepsilon}^2,\Phi,\Theta) \propto \left(\frac{1}{\sigma_{\varepsilon}^2}\right)^{\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma_{\varepsilon}^2}\sum_{t=1}^T e_t^2\right\},$ (3)	The likelihood function is
$e_t = \sum_{j=0}^{\min(t-1,M)} \pi_j(d,\Phi,\Theta)(y_{t-j}-\mu).$ (4)	$L(Y_T d,\mu,\sigma_{\varepsilon}^2,\Phi,\Theta) \propto \left(\frac{1}{\sigma_{\varepsilon}^2}\right)^{\frac{T}{2}} \exp\left\{-\frac{1}{2\sigma_{\varepsilon}^2}\sum_{t=1}^T e_t^2\right\},$ (5)
 <i>M</i> is the order of the approximated AR model. <i>Y</i>_T = (<i>y</i>₁, <i>y</i>₂,, <i>y</i>_T)'. 	$e_{t} = \sum_{i=0}^{t-1} \pi_{j}(d, \Phi, \Theta)(y_{t-j} - \mu). $ (6)
• <i>IT</i> = (y ₁ , y ₂ ,, y _T) .	<i>j</i> =0

17/69

where $f(y_t|Y_{t-1}, \theta_l)$ is the conditional distribution.

18/69

ARFIMA model and Change point # AREIMA model The conditional posterior distribution (RPS)

 $\{d_k\}$ is estimated by an acceptance-reject (AR) MH algorithm.

The another parameters are estimated by the Gibbs sampler.

First, we show about the another parameters.

• The conditional posterior distributions

$$\sigma_{\varepsilon}^{2}|d_{0},\ldots,d_{m},\mu,P,S_{T},Y_{T} \sim I\mathcal{G}\left(\frac{v_{0}+T}{2},\frac{\lambda_{0}}{2}+\frac{1}{2}\sum_{t=1}^{T}e_{t}^{2}\right), (30)$$

$$p_{ii}|d_{0},\ldots,d_{m},\mu,\sigma_{\varepsilon}^{2},S_{T},Y_{T} \sim Beta(a+n_{ii},b+1), (31)$$

25/69

27/69

ARFIMA model and Change poin

Sampling $\{d_k\}$

- Sampling $\{d_k\}$, we use an acceptance-rejection (AR) MH algorithm. • The log proposal distribution $\ln q(d_k)$ following by Chib and
 - Greenberg (1995) and Watanabe (2001).

The log proposal distribution is the second-order Taylor expansion of the likelihood function around d_k^* .

$$\ln L(d_k^*|\boldsymbol{\theta}) \approx \ln L(d_k^*|\boldsymbol{\theta}) + \frac{\partial \ln L(d_k^*|\boldsymbol{\theta})}{\partial d_k}(d_k - d_k^*) + \frac{1}{2}\frac{\partial^2 \ln L(d_k^*|\boldsymbol{\theta})}{\partial d_k^2}(d_k - d_k^*)^2$$

$$= \ln q(d_k). \tag{37}$$

- d^{*}_i is the posterior mode • $\ln L(d_k^*|\theta)$ is the log likelihood function.
- θ exclude the parameter d_k from the parameters.
- Mean: $d_k^* = \left(\frac{\partial \ln L(d_k^*|\theta)}{\partial d_k}\right) / \left(\frac{\partial^2 \ln L(d_k^*|\theta)}{\partial^2 d_k}\right)$

• Variance:
$$-\left(\frac{\partial^2 \ln L(d_k^*|\theta)}{\partial d_k^2}\right)^{-1}$$

/A model and Change point Indom persistence-shift ARFIMA model

Sampling step (RPS)

ampling step (RPS) Step 0 Set the hyperparameters of the prior distributions and the initial values of the parameters. Step 1 For i = 1, 2, ..., we iterate the next step. a Sampling $\{d_k\}^{(i)}, \mu^{(i)}, \sigma_{\varepsilon}^{2(i)}, \{p_{ii}^{(i)}\}$. **b** Sampling $S_T^{(i)}$ Step 2 For a sufficient large number N, we save $\{d_k^{(i)}\}, \mu^{(i)}, \sigma_{\varepsilon}^{2(i)}, \{p_{ii}^{(i)}\}, S_T^{(i)}, i = N, N+1, \dots$

ARFIMA model and Change point

Conditional posterior distribution (RPS)

• The conditional posterior distributions

$$\mu|d_0,\ldots,d_m,\sigma_{\varepsilon}^2,P,S_T,Y_T \sim \mathcal{N}(\mu^*,\sigma^{*2}),$$
(32)

$$\mu^{*} = \frac{\sigma_{0}^{2} \sum_{l=1}^{I} c_{l} a_{l} + \sigma_{\varepsilon}^{2} \mu_{0}}{\sigma_{0}^{2} \sum_{l=1}^{T} c_{l}^{2} + \sigma_{\varepsilon}^{2}}, \quad (33)$$
$$\sigma^{*2} = \frac{\sigma_{0}^{2} \sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} \sigma_{\varepsilon}^{2}}, \quad (34)$$

$$\epsilon^{2} = \frac{\sigma_{0}\sigma_{\varepsilon}}{\sigma_{0}^{2}\sum_{t=1}^{T}c_{t}^{2} + \sigma_{\varepsilon}^{2}},$$
 (34)

$$c_t = \sum_{j=0}^{t-1} \pi_j(d_{s_t}),$$
 (35)

$$a_t = \sum_{j=0}^{t-1} \pi_j(d_{s_t}) y_{t-j}.$$
 (36)

ARFIMA model and Change point

The Conditional distribution (RPS)

When sampling S_T , we use the conditional distribution $f(y_t|Y_{t-1}, \theta)$.

• The conditional distribution

$$f(y_t|Y_{t-1}, \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\nu_t}} \exp\left\{-\frac{1}{2\nu_t} \sum_{j=0}^{t-1} \pi_j(d_{s_t})(y_{t-j} - \mu)^2\right\}, \quad (38)$$

$$\nu_t = Var(y_t - \hat{y}_t) = \gamma_0(d_{s_0}) \times \prod_{j=1}^{t-1} (1 - \phi_{jj}^2(d_{s_j})), \quad (39)$$

$$\phi_{tj} = -\binom{t}{j} \frac{\Gamma(j - d)\Gamma(t - d - j + 1)}{\Gamma(-d)\Gamma(t - d + 1)}. \quad (40)$$

where $\Gamma(\cdot)$ is the gamma function.

odel and Change point Random level-shift ARFIMA mode

RLS-ARFIMA+CSS+HMM

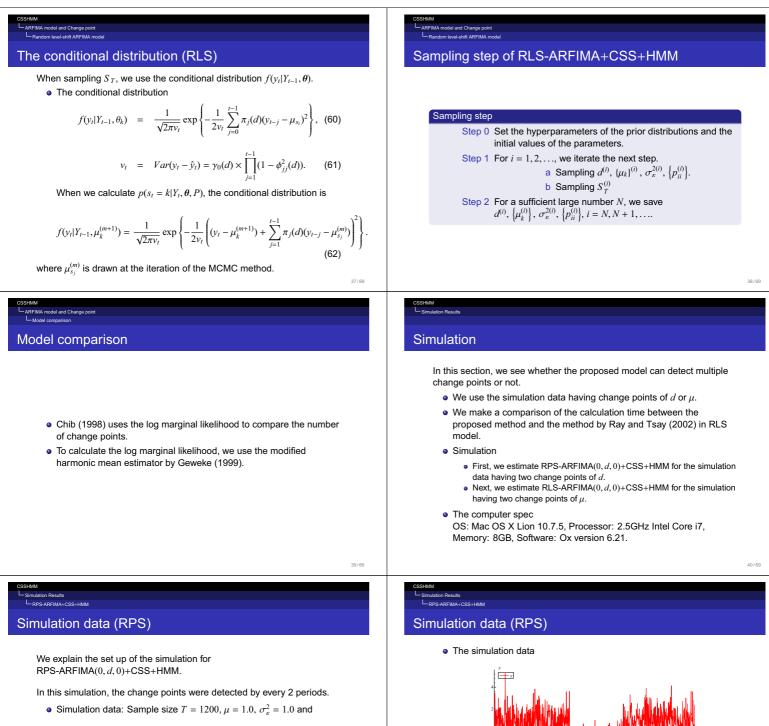
Next, we propose the another estimation method for RLS-ARFIMA model.

 ε_t

 μ_k

RLS-ARFIMA+CSS+HMM

$$\phi(L)(1-L)^{d}(y_{t}-\mu_{s_{t}}) = \theta(L)\varepsilon_{t},$$
(41)
$$c_{s_{t}}^{i,i,d} = N(0, c_{s}^{-2})$$
(42)


$$\sim^{i.d.} \mathcal{N}(0, \sigma_{\varepsilon}^2),$$
 (42)

$$= \begin{cases} \mu_0, & 0 < t \le t_1, \\ \mu_1, & t_1 < t \le t_2, \\ \vdots \\ \mu_m, & t_m < t \le T. \end{cases}$$
(43)

$$S_T = (s_1, s_2, \dots, s_T)',$$
(44)

$$s_t \in \{0, 1, \dots, m\},$$
(45)

29/69

$$d_k = \begin{cases} d_0 = 0.15, & 0 < t \le 449, \\ d_1 = 0.45, & 449 < t \le 849, \\ d_2 = 0.10, & 849 < t \le 1200. \end{cases}$$
(63)

• The hyperparameters of the prior distributions

$$u_0 = 0.0, \ \sigma_0^2 = 5.0, \ v_0 = 4.0, \ \lambda_0 = 4.0, \ a = 8.0, \ b = 0.1.$$
 (64)

and (burn-in,draw)=(15000,10000).

41/60

42/69

Figure: The simulation data having two change points of fractional difference

CSSHMM Simulation Results	CSSHMM Simulation Results
Log marignal likelihood (RPS)	Mean of the parameters with \mathcal{M}_2 (RPS)
The comparison of the proposed models with M1, M2, and M3.Table: Log marginal likelihood of RPS-ARFIMA(0, d, 0)+CSS+HMM <a block"="" href="https://doi.org/10.1016/10.1000/10.1000/1000/</th><td>Table: Esitmation result of RPS-ARFIMA(0, d, 0)+CSS+HMM with <math>\mathscr{M}_2</math><math>\overline{\mu \ 1.060} \ 0.127 \ 0.810 \ 1.320 \ 0.11 \ 1.86 \ 0.0 \ 0.172 \ 0.043 \ 0.955 \ 1.123 \ 0.3 \ 0.7 \ d_0 \ 0.172 \ 0.043 \ 0.091 \ 0.261 \ 0.1 \ 1.66 \ d_1 \ 0.482 \ 0.015 \ 0.445 \ 0.499 \ 0.7 \ 1.1 \ d_2 \ 0.184 \ 0.075 \ 0.053 \ 0.358 \ 0.1 \ 8.4 \ 0.00 \ 0.997 \ 0.003 \ 0.991 \ 1.000 \ 0.2 \ 1.8 \ 0.1 \ 0.997 \ 0.004 \ 0.987 \ 1.000 \ 0.1 \ 2.3 \ 0.1 \ 0.1 \ 0.1 \ 0.1 \ 0.997 \ 0.004 \ 0.987 \ 1.000 \ 0.1 \ 2.3 \ 0.1 \ </math></td></tr><tr><th>CSSHMM
L-Simulation Results</th><th>CSSHMM</th></tr><tr><th>Posterior probability of <math>s_t = k</math> with <math>\mathcal{M}_2</math> (RPS)</th><td>Summary of RPS-ARFIMA<math>(0, d, 0)</math>+CSS+HMM</td></tr><tr><th><math display=">= \frac{1}{2} \sum_{i=1}^{n} 	
Figure: Posterior probability of $s_t = k$ with \mathcal{M}_2 given the data Y_T	 From the log marginal likelihood, this model can estimate the true number of the change points From the posterior probability, RPS-ARFIMA(0, <i>d</i>, 0)+CSS+HMM can estimate the change points of the simulation data From the table, RPS-ARFIMA(0, <i>d</i>, 0)+CSS+HMM can also estimate change in parameters and another parameters
45/69 CR5EMM	46/69 #358000
Simulation data (RLS)	Simulation data (RLS)
We explain the set up of the simulation for RLS-ARFIMA(0, d, 0)+CSS+HMM. In this simulation, the change points were detected by every 1 period. And the calculation time were also compared between the proposed method and the method by Ray and Tsay (2002). • The simulation data: Sample size $T = 1200$, $d = 0.4$, $\sigma_e^2 = 1.0$ and $\mu_e = \begin{cases} \mu_0 = 0.0, & 0 < t < 350, \\ \mu_1 = 2.5, & 350 \le t < 850, \\ \mu_2 = -1.0, & 850 \le t \le 1200. \end{cases}$ • The hyperparameters $\mu_0 = 1.0, \sigma_0^2 = 5.0, \nu_0 = 4.0, \lambda_0 = 4.0, a = 8.0, b = 0.1.$ (66)	$f_{\rm resc}$ $f_{$

CSSHMM	CSSHMM Simulaton Results
Log marginal likelihood (RLS)	LRLS ARFIMAL COSCILIMM Estimation result of \mathcal{M}_2 (RLS)
Table: Log marginal likelihood of RLS-ARFIMA(0, d , 0)+CSS+HMM \mathcal{M}_1 \mathcal{M}_2 \mathcal{M}_3 Log marginal likelihood -1736.6 -1733.3 -1754.7	Table: Estimation result of RLS-ARFIMA(0, d, 0)+CSS+HMM with \mathcal{M}_2 $\boxed{ \begin{aligned} \hline \mathbf{Estimates} & \mathbf{S.D.} & \mathbf{2.5\%} & \mathbf{97.5\%} & \mathbf{CD} & \mathbf{IF} \\ \hline d & 0.396 & 0.023 & 0.350 & 0.443 & 0.9 & 1.7 \\ \sigma_{\varepsilon}^2 & 0.997 & 0.041 & 0.920 & 1.081 & 0.5 & 0.9 \\ \mu_0 & -0.065 & 0.380 & -0.811 & 0.688 & 0.9 & 2.6 \\ \mu_1 & 2.790 & 0.426 & 1.935 & 3.618 & 0.9 & 4.1 \\ \mu_2 & -1.135 & 0.496 & -2.122 & -0.171 & 0.5 & 3.3 \\ p_{00} & 0.997 & 0.003 & 0.989 & 1.000 & 0.6 & 1.0 \\ p_{11} & 0.998 & 0.002 & 0.992 & 1.000 & 0.1 & 1.0 \\ \hline \end{tabular}$
CSSHMM $_$ Simulation Results $_$ RIS-ARFIMA+CSS+HMM Posterior probability of $s_t = k$ with \mathcal{M}_2 (RLS)	CSSHMM CSSHMM Landation Results Lacs-ARFINA-CSS-HMM Calculation time (RLS)
Figure: Posterior probability of $s_t = k$ with \mathcal{M}_2 given the data Y_T , Simulation data	Table: Calculation timeRay and Tsay (2002) \mathcal{M}_1 \mathcal{M}_2 \mathcal{M}_3 Calc.time21:17'50.053:20'34.523:26'24.653:40'27.15where the order is $M = 40$ and a change point was detected every 100 periods in Ray and Tsay (2002).
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	CSSHMM L Simulation Results L-Summary of the simulation result Summary of simulation result
 From the log marginal likelihood, we can select the true model M₂ with two change points. From the table, this model can estimate the change points of this simulation data. From the table, this model can also estimate change in parameters and the another parameters. From the table, the proposed model needs less the calculation time than the method by Ray and Tsay (2002). 	 Using the hidden Markov model, we can estimate the ARFIMA model with multiple change points. The propose method can estimate the variable parameters. CSS method's calculation time is shorter than the time of the MA approximation method. The proposed method needn't to decide the order of an approximated AR model.
53769	54/69

M	CSSHMM Logpications Listerwer
plications	The yearly minima of the Nile river
	It has been known that the yearly minima of the Nile river had a long memory property.
In this section, we estimate the data. The yearly minima of the Nile river 	And this data that has one change point of d is shown by Beran and Terrin (1996).
The yearly mining of the Nie Ne The realized volatility of Nikkei 225	Sample period is A.D.622-A.D.1284 and sample size is $T = 663$.
	We use the models
	 ARFIMA(0, <i>d</i>, 0)+CSS, <i>M</i>₀ RPS-ARFIMA(0, <i>d</i>, 0)+CSS+HMM with <i>M</i>₁ and <i>M</i>₂.
55/69	
alone In form	CSSHMM L-Applications
e yearly minima of the Nile river	Previous study (Nile river)
Yearly minima of Nile iver	Beran and Terrin (1996) estimates the change points of d for the Nile river data.
	Table: Estimation result of Beran and Terrin (1996)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$t = 101, \dots, 200$ 0.8531 0.3531
	$t = 201, \dots, 300 0.8652 0.3652 \\ t = 301, \dots, 400 0.8281 0.3281 \\ 0.381 0.381 \\ 0.381 0.381 0.381 \\ 0.381 0.381 0.381 \\ 0.381 0.381 $
	$\begin{array}{c cccc} t = 401, \dots, 500 & 0.8435 & 0.3435 \\ \hline t = 501, \dots, 600 & 0.9354 & 0.4354 \\ \end{array}$
Figure: The yearly minima of the Nile River	Beran and Terrin (1996) shows that d is different between for $t = 1,, 100$ and for $t = 101,$
57/69	
e cators le ror	CSSHMM L Applications Nie river
e prior distribution (Nile river)	Log marginal likelihood (Nile river)
We set the hyperparameters of the prior distributions. • The hyperparameters of ARFIMA(0, d, 0)+CSS	
$\mu_0 = 1100.0, \ \sigma_0^2 = 200.0, \ \nu_0 = 4.0, \ \lambda_0 = 4.0. $ (67)	
• The hyperparameters of RPS-ARFIMA $(0, d, 0)$ +CSS+HMM	Table: Log marginal likelihood of the yearly minima of Nile River
	Log marginal likelihood $-3778.0 -3777.5 -3778.9$
$\mu_0 = 1100.0, \ \sigma_0^2 = 200.0, \ \nu_0 = 4.0, \ \lambda_0 = 4.0, \ a = 8.0, \ b = 0.1.$ (68)	
 (burn-in,draw) are (10000, 10000). When we use RPS-ARFIMA+CSS+HMM, we detect a change point every 10 periods. 	
59/69	

CSSHMM Applications UNIE river Estimation result (Nile river)	Posterior probability of $s_t = k$ with \mathcal{M}_1 (Nile river)
Table: Estimation result of \mathcal{M}_1 EstimatesS.D.2.5%97.5%CDIF d_0 0.1750.1140.0100.4350.91.1 d_1 0.4240.0340.3600.4880.91.7 μ 1118.96013.7911091.8381145.1550.31.0 σ_{ε}^2 4856.900274.0444348.9375425.5530.41.0 p_{00} 0.9560.0480.8270.9990.50.9	Figure: Posterior probability of $s_t = k$ with \mathcal{M}_1 given the data Y_T
61/69	62769
 Bestime and the second secon	Control Preattood valuatility Realized volatility of Nikkei 225 made by five-minutes log-return. Realized volatility is the sum of the square of intraday returns by Hansen and Lunde (2005) and Watanabe (2007). Realized volatility (RV) by Hansen and Lunde (2005) is $RV_t = c \sum_{i=1}^n r_{i,t}^2,$ (69) $c = \frac{\sum_{i=1}^r (R_t - \overline{R})^2}{\sum_{i=1}^r r_{i,t}^2}.$ (70) • $r_{i,t}$ is the <i>i</i> th intraday log-return at date <i>t</i> . • R_i is a dairy log-return. The empirical result and conclusion will be given today.
CSSHMM L Condusion References	CSSHMM Conclusion References
 Beran, J. (1994) Statistics for Long-Memory Processes, Chapman & Hall, London. Beran, J. (1995) "Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models", <i>Journal of the Royal Statistical Society. Ser. B</i> 57 659–672. Beran, J. and Terrin, N. (1996) "Testing for a change of the long-memory parameter", <i>Biometrica</i> 83 627–638. Chan, N. H. and Palma, W. (1998) "State Space Modeling of Long-Memory Processes", <i>Annals of Statistics</i> 26 719–740. 	 Chib, S. (1996) "Calculating posterior distributions and modal estimates in Markov mixture models", <i>Journal of Econometrics</i> 75 79–97. Chib, S. (1998) "Estimation and comparison of multiple change-point models", <i>Journal of Econometrics</i> 86 221–241. Chib, S. and Greenberg, E. (1995) "Understanding the Metropolis-Hastings Algorithm", <i>The American Statistician</i> 49 327–335. Doornik, J. A. (2011). <i>Ox: Object Oriented Matrix Programming Language</i>, Version 6.21, Timberlake Consultants Press, London. Geweke, J. (1992) "Evaluating the accuracy of sampling-based approaches to calculating posterior moments", In Bernado, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), <i>Bayesian Statistics</i>, volume 4. London: Clarendon Press.
65/69	667/69

References

CSSHMM

Geweke, J. (1999) "Using simulation methods for bayesian economic models: inference, development, and communication", *Econometric Reviews* **18** 1–73.

Hansen, P. R. and Lunde, A. (2005) "A Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?", *Journal of Applied Econometrics* **20**, 873–889.

Nishino, H. (2010) "Tests on Long Memory Time Series (in Japanese)", *Journal of The Japan Statistical Society* **40**, 147–175.

Palma, W. (2007) *Long-Memory Time Series: Theory and Methods*, Wiley, New York.

CSSHMM Conclusion

References

Watanabe, T. (2007) "Realized Volatility (in Japanese)", *The Economic Review*, **58**, 352–373.

Watanabe, T. (2010) "Bayesian analysis of structural changes in ARFIMA Models with an application to realized volatility", *International Workshop on Bayesian Econometrics and Statistics*.

69/69

67/69

Condition

References

Ray, B.K. and Tsay, R.S. (2002) "Bayesian methods for change-point detection in long-range dependent processes", *Journal of Time Series Analysis* **23** 687–705.

Robinson, P.M. (ed.) (2003) *Time Series with Long Memory*, Oxford, Oxford.

Robinson, P.M. (2006) "Conditional-Sum-of-Squares Estimation of Models for Stationary Time Series with Long Memory" In *Time Series and Related Topics: In Memory of Ching-Zong Wei.* (H.-C. Ho, C.-K. Ing and T.L. Lai, eds.). IMS Lecture Notes - Monograph Series, 52, 130–137.

Watanabe, T. (2001) "On Sampling the Degree-of-Freedom of Student's-t Disturbances", *Statistics & Probability Letters*, **52**, 177–181.

2