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Introduction

Introduction (Realized Volatility)

ARFIMA model has often used to estimate data that has a long

memory property, for example financial data.

ACF-log(RV)

0 20 40 60 80 100 120 140 160 180 200 220 240

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

ACF-log(RV)

Figure: The sample ACF of the log realized volatility of Nikkei 225,

2001.7.2-2010.6.30
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Introduction

Introduction (Realized Volatility)

This figure shows that the log realized volatility has a long memory

property.

It has been shown that the log realized volatility had a long memory

property in previous studies, for example Watanabe (2007),

Watanabe (2010), and Nishino (2010) etc.
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Introduction (Estimation methods of ARFIMA model)

Some methods are surveyed.

Estimation methods of ARFIMA model

Beran (1995) proposes estimation model using an approximated AR(M)

model.

Chan and Palma (1998) proposes estimation model using an approximated

MA(M) model.

Robinson (2006) proposes the method using Conditional-sum-of-squares

estimation (CSS) method.

We want to estimate an ARFIMA model with change points of

fractional difference or mean.
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Introduction (Detecting the change points)

Some methods that can estimate the ARFIMA model with change points

have been proposed in Bayesian framework.

Ray and Tsay (2002) detects change points using the approximated

MA(M) model.

Detect change points of µ

µt = µ0 +

t
∑

j=1

δ jβ j = µt−1 + δtβt. (1)

If there is a change point, we set δt = 1 otherwise δt = 0.

βt is a scale value from µt−1 to µt when δt = 1.

Watanabe (2010) used an approximated AR(M) model which

introduced by Beran (1995) and a hidden Markov model to detect

change points.

An approximated AR(M) model and a hidden Markov model are

described later.
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Introduction

These methods in previous studies need the decision of the order of

the approximated MA or AR model before estimation.

Ray and Tsay (2002)’s method needs much time until finishing the

calculation.
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Our goal

We propose the method that can estimate ARFIMA model with change

points using the Markov chain Monte Carlo (MCMC) method.

The proposed method also uses an approximated AR model and a

hidden Markov model.

Conditional-sum-of-squares estimation (CSS) method with the

approximated AR model is introduced by Robinson (2006).

CSS method uses all observed residuals, so we need not decide the

order of the approximated AR model.

The hidden Markov model is used to detect multiple change points.

The proposed method needs less calculation time than the method

by Ray and Tsay (2002).

We apply the proposed method to the simulation data, to the yearly

minima of Nile river, and to the log realized volatility of Nikkei 225.
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ARFIMA model and Change point

ARFIMA model

ARFIMA model

Introduce an ARFIMA(p, d, q) model estimates data with a long memory

process.

Let {yt} is a long memory process.

ARFIMA(p, d, q) model

φ(L)(1 − L)d(yt − µ) = θ(L)εt, t = 1, 2, . . . ,T. (2)

{εt} i.i.d.∼ WN(0, σ2
ε), we use a Gaussian white noise.

d is a fractional difference and 0 < d < 1
2
.

µ is mean.

L is the lag operator, Lyt = yt−1.

If the roots of φ(L) = 1 − φ1L − φ2L
2 − · · · − φpLp = 0 and

θ(L) = 1 + θ1L + θ2L
2
+ · · · + θqLq = 0 lie outside of the unit circle, the

process has stationary and invertible.

And the roots have no common root.
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Conditional-sum-of-squares estimation method

Representation of likelihood function

To use the MCMC method, we need a likelihood function.

Beran (1994), Robinson (2003), and Palma (2007) give the survey of the

estimation methods.

Beran (1995), Chan and Palma (1998), and Robinson (2006) propose the

following estimation methods.

Various approximated likelihood functions

Beran (1995) proposes the AR approximation method.

Chan and Palma (1998) proposes the MA approximation method.

Robinson (2006) proposes the conditional-sum-of-squares

estimation (CSS) method.
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Conditional-sum-of-squares estimation method

Beran’s AR approximation method

The difference between Beran’s method and CSS method is whether

uses M or not in the residuals.

The Beran’s AR approximation method is

The likelihood function is

L(YT |d, µ, σ2
ε,Φ,Θ) ∝

(

1

σ2
ε

)
T
2

exp















− 1

2σ2
ε

T
∑

t=1

e2
t















, (3)

et =

min(t−1,M)
∑

j=0

π j(d,Φ,Θ)(yt− j − µ). (4)

M is the order of the approximated AR model.

YT = (y1, y2, . . . , yT )′.
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Conditional-sum-of-squares estimation method

Conditional-sum-of-squares estimation method

The conditional-sum-of-squares estimation method

The likelihood function is represented as an AR approximation.

The CSS method needs less calculation time than the MA

approximation method.

The CSS method needs not to decide the order of an approximated

AR model.

The Beran’s method can be seen as a special case of the CSS

method.

The likelihood function is

L(YT |d, µ, σ2
ε,Φ,Θ) ∝

(

1

σ2
ε

)
T
2

exp















− 1

2σ2
ε

T
∑

t=1

e2
t















, (5)

et =

t−1
∑

j=0

π j(d,Φ,Θ)(yt− j − µ). (6)
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Hidden Markov model

Hidden Markov model

To estimate multiple change points of time series data, we use the

irreversible hidden Markov model.

If the state shifts from state i to state j, the state can never shift to state i.

From Chib (1998), the hidden Markov model is

Variable parameters are

θk =



































θ0, 0 < t ≤ t1,
θ1, t1 < t ≤ t2,
...

θm, tm < t ≤ T.

(7)

The hidden values are

S T = (s1, s2, . . . , sT )′, (8)

st ∈ {0, 1, . . . ,m} . (9)
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Hidden Markov model

Hidden Markov model

The transition probability matrix is

P =













































p00 p01 0 · · · 0 0

0 p11 p12 · · · 0 0
...

. . .
...

0 0 · · · pm−1,m−1 pm−1,m

0 0 · · · 0 1













































. (10)

The element pi j = P(st = j|st−1 = i) on the matrix is the probability of

state i to state j.

When we use this model, we decide the number of change points

before estimation.

The number of change points should be compared with the log

marginal likelihood.
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Hidden Markov model

Sampling {st}

When using the MCMC method, the hidden values S T = (s1, . . . , sT )′ and
the elements of P are estimated.

And the {θk}’s sampling method is described later.

The conditional posterior distribution of S T , π(S T |YT ) by Chib (1996)

π(S T |YT ) = π(sT−1|YT , sT , θ, P) × · · · × π(st |YT , S t+1, θ, P) × · · ·
× π(s1|YT , S 2, θ, P). (11)

From this conditional distribution, {st} can be sampled from sT−1 to

s1.
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Hidden Markov model

Sampling {st}

{st} is sampled by the following the probability function.

Sampling {st}
st is sampled by p(st |YT , S t+1, θ, P)

p(st |YT , S t+1, θ, P) ∝ p(st |YT , θ, P)p(st+1|st, P). (12)

θ is the parameter vector that consists of the variable parameters and

the another parameters.

S t+1
= (st+1, . . . , sT )′, S t = (s1, . . . , st)

′.

p(st |YT , θ, P) is the mass function.

p(st+1|st, P) is the element of the transition probability matrix.
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Hidden Markov model

Sampling {st}

To sample {st}, we have to calculate the mass function.

The mass function

p(st = k|Yt, θ, P) =
p(st = k|Yt−1, θ, P) × f (yt |Yt−1, θk)

∑k
l=k−1 p(st−1 = l|Yt−1, θ, P) × f (yt |Yt−1, θl)

. (13)

The part of the numerator

p(st = k|Yt−1, θ, P) =

k
∑

l=k−1

plk × p(st−1 = l|Yt−1, θ, P). (14)

The initial value

p(s1 = 0|Y0, θ) = 1. (15)

where f (yt |Yt−1, θl) is the conditional distribution.
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Hidden Markov model

Sampling {pii}

{pii} are sampled by the Gibbs sampler.

Sampling {pii}
The prior distribution

pii ∼ Beta(γ1, γ2). (16)

The conditional posterior distribution

pii|θ, S T ∼ Beta(γ1 + nii, γ2 + 1). (17)

nii is the number of one-step transitions from state i to state i.
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Hidden Markov model

Sampling step of the hidden Markov model

Sampling step

1 Sampling θ and P
2 Calculate the mass function p(st |YT , S t+1, θ, P)
3 Sampling {st}

sT−1 is sampled from p(sT−1 |YT , sT = m, θ, P),

sT−2 is sampled from p(sT−2 |YT , S T−1, θ, P),

.

.

.

s1 is sampled from p(s1 |YT , s2, θ, P).

where we set sT = m.

Detect the time having a change point from P(st |YT )

We can get P(st |YT ) taking average of p(st |Yt−1, θ, P) over the MCMC

iteration.
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Random persistence-shift ARFIMA model

Previous studies

Ray and Tsay (2002) proposes a random persistence-shift (RPS)

ARFIMA model and a random level-shift ARFIMA (RLS) model.

RPS and RLS-ARFIMA model ( Ray and Tsay (2002) )

Estimate multiple change points of fractional difference (RPS).

Estimate multiple change points of mean (RLS).

Use the MA approximation method by Chan and Palma (1998).

The hidden Markov model isn’t used.

ARFIMA model with change points ( Watanabe (2010) )

Estimate multiple change points of fractional difference, mean, and

variance.

Use the AR approximation method by Beran (1995).

The hidden Markov model by Chib (1998) is used.
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Random persistence-shift ARFIMA model

Proposed method

The proposed model

Estimate multiple change points of fractional difference (RPS).

Estimate multiple change points of mean (RLS).

Use the CSS method by Robinson (2006).

The hidden Markov model by Chib (1998) is used.

The proposed method follows the method by Watanabe (2010).
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Random persistence-shift ARFIMA model

RPS-ARFIMA+CSS+HMM

Propose the another estimation method for RPS-ARFIMA model.

RPS-ARFIMA+CSS+HMM

φ(L)(1 − L)dst (yt − µ) = θ(L)εt, (18)

dk =



































d0, 0 < t ≤ t1,
d1, t1 < t ≤ t2,
...

dm, tm < t ≤ T.

(19)

S T = (s1, s2, . . . , sT )′, (20)

st ∈ {0, 1, . . . ,m} . (21)
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Random persistence-shift ARFIMA model

RPS-ARFIMA+CSS+HMM

RPS-ARFIMA+CSS+HMM

P =













































p00 p01 0 · · · 0 0

0 p11 p12 · · · 0 0
...

. . .
...

0 0 · · · pm−1,m−1 pm−1,m

0 0 · · · 0 1













































. (22)

The likelihood function with CSS method

L(YT |d0, . . . , dm, µ, σ
2
ε, P, S T ) ∝

(

1

σ2
ε

)
T
2

exp















− 1

2σ2
ε

T
∑

t=1

e2
t















, (23)

et =

t−1
∑

j=0

π j(dst ,Φ,Θ)(yt− j − µ). (24)

where we call this model as RPS-ARFIMA+CSS+HMM.
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Random persistence-shift ARFIMA model

The prior distribution (RPS)

We describe RPS-ARFIMA(0, d, 0)+CSS+HMM to use the MCMC

method.

The prior distributions

dk ∼ U(0, 0.5), (25)

µ ∼ N(µ0, σ
2
0), (26)

σ2
ε ∼ IG

(

ν0

2
,
λ0

2

)

, (27)

pii ∼ Beta(a, b). (28)

The posterior distributions

π(d0, . . . , dm, µ, σ
2
ε, P, S T ) ∝ L(θ)π(d0) · · · π(dm)π(µ)π(σ2

ε)π(p00) · · · π(pmm).

(29)
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Random persistence-shift ARFIMA model

The conditional posterior distribution (RPS)

{dk} is estimated by an acceptance-reject (AR) MH algorithm.

The another parameters are estimated by the Gibbs sampler.

First, we show about the another parameters.

The conditional posterior distributions

σ2
ε |d0, . . . , dm, µ, P, S T ,YT ∼ IG















ν0 + T

2
,
λ0

2
+

1

2

T
∑

t=1

e2
t















, (30)

pii|d0, . . . , dm, µ, σ
2
ε, S T ,YT ∼ Beta(a + nii, b + 1), (31)
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Random persistence-shift ARFIMA model

Conditional posterior distribution (RPS)

The conditional posterior distributions

µ|d0, . . . , dm, σ
2
ε, P, S T ,YT ∼ N(µ∗, σ∗2), (32)

µ∗ =
σ2

0

∑T
t=1 ctat + σ

2
εµ0

σ2
0

∑T
t=1 c

2
t + σ

2
ε

, (33)

σ∗2
=

σ2
0
σ2
ε

σ2
0

∑T
t=1 c

2
t + σ

2
ε

, (34)

ct =

t−1
∑

j=0

π j(dst ), (35)

at =

t−1
∑

j=0

π j(dst )yt− j. (36)
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Random persistence-shift ARFIMA model

Sampling {dk}
Sampling {dk}, we use an acceptance-rejection (AR) MH algorithm.

The log proposal distribution ln q(dk) following by Chib and

Greenberg (1995) and Watanabe (2001).

The log proposal distribution is the second-order Taylor expansion of

the likelihood function around d∗
k
.

ln L(d∗k |θ) ≈ ln L(d∗k |θ) +
∂ ln L(d∗

k
|θ)

∂dk
(dk − d∗k) +

1

2

∂2 ln L(d∗
k
|θ)

∂d2
k

(dk − d∗k)2

= ln q(dk). (37)

d∗
k
is the posterior mode.

ln L(d∗
k
|θ) is the log likelihood function.

θ exclude the parameter dk from the parameters.

Mean: d∗
k
−

(

∂ ln L(d∗
k
|θ)

∂dk

)

/

(

∂2 ln L(d∗
k
|θ)

∂2dk

)

Variance: −
(

∂2 ln L(d∗
k
|θ)

∂d2
k

)−1
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Random persistence-shift ARFIMA model

The Conditional distribution (RPS)

When sampling S T , we use the conditional distribution f (yt |Yt−1, θ).

The conditional distribution

f (yt |Yt−1, θ) =
1

√
2πvt

exp



















− 1

2vt

t−1
∑

j=0

π j(dst )(yt− j − µ)2



















, (38)

vt = Var(yt − ŷt) = γ0(ds0 ) ×
t−1
∏

j=1

(1 − φ2
j j(ds j )), (39)

φt j = −
(

t

j

)

Γ( j − d)Γ(t − d − j + 1)

Γ(−d)Γ(t − d + 1)
. (40)

where Γ(·) is the gamma function.
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Random persistence-shift ARFIMA model

Sampling step (RPS)

Sampling step (RPS)

Step 0 Set the hyperparameters of the prior distributions and the

initial values of the parameters.

Step 1 For i = 1, 2, . . ., we iterate the next step.

a Sampling {dk}(i) , µ(i), σ
2(i)
ε ,

{

p
(i)

ii

}

.

b Sampling S
(i)

T

Step 2 For a sufficient large number N, we save
{

d
(i)

k

}

, µ(i), σ
2(i)
ε ,

{

p
(i)

ii

}

, S
(i)

T
, i = N,N + 1, . . ..
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Random level-shift ARFIMA model

RLS-ARFIMA+CSS+HMM

Next, we propose the another estimation method for RLS-ARFIMA

model.

RLS-ARFIMA+CSS+HMM

φ(L)(1 − L)d(yt − µst ) = θ(L)εt, (41)

εt
i.i.d.∼ N(0, σ2

ε), (42)

µk =



































µ0, 0 < t ≤ t1,
µ1, t1 < t ≤ t2,
...

µm, tm < t ≤ T.

(43)

S T = (s1, s2, . . . , sT )′, (44)

st ∈ {0, 1, . . . ,m} , (45)
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Random level-shift ARFIMA model

RLS-ARFIMA+CSS+HMM

P =













































p00 p01 0 · · · 0 0

0 p11 p12 · · · 0 0
...

. . .
...

0 0 · · · pm−1,m−1 pm−1,m

0 0 · · · 0 1













































. (46)

The likelihood function of RLS-ARFIMA+CSS+HMM

L(YT |d,µ, σ2
ε, P, S T ) ∝

(

1

σ2
ε

)
T
2

exp















− 1

2σ2
ε

T
∑

t=1

e2
t















, (47)

et =

t−1
∑

j=0

π j(yt− j − µst− j). (48)

where µ = (µ0, . . . , µm)′ and we call this model as

RLS-ARFIMA+CSS+HMM.
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Random level-shift ARFIMA model

The prior distribution (RLS)

We describe RLS-ARFIMA(0, d, 0)+CSS+HMM.

The prior distributions

d ∼ U(0, 0.5), (49)

σ2
ε ∼ IG

(

ν0

2
,
λ0

2

)

, (50)

pii ∼ Beta(a, b), (51)

µk ∼ N(µ0, σ
2
0). (52)
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Random level-shift ARFIMA model

The conditional posterior distribution (RLS)

d is estimated by the AR-MH algorithm.

Another parameters are estimated by the Gibbs sampler.

The conditional posterior distributions

σ2
ε |d,µ, P, S T ,YT ∼ IG















ν0 + T

2
,
λ0

2
+

1

2

T
∑

t=1

e2
t















, (53)

pii|d,µ, σ2, S T ,YT ∼ Beta(a + nii, b + 1). (54)
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Random level-shift ARFIMA model

The conditional posterior distribution (RLS)

The conditional posterior distributions

µk |d,µ(−k), σ
2
ε, P, S T , YT ∼ N(µ∗0, σ

∗2
0 ), (55)

µ∗0 =







































σ2
0

∑T
j=1 c ja j + σ

2
εµ0

σ2
0

∑T
j=1 c

2
j
+ σ2

ε

, k = 0

σ2
0

∑T
j=tk+1 c ja j + σ

2
εµ0

σ2
0

∑T
j=tk+1 c

2
j
+ σ2

ε

, 1 ≤ k ≤ m
(56)

µ(−k) exclude µk from µ.

at exclude the terms of µk from et.
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Random level-shift ARFIMA model

The conditional posterior distribution (RLS)

The conditional posterior distributions

ct =































































































































t−1
∑

j=0

π j, t ≤ t1, k = 0

t−t1
∑

j=t−t1

π j, t1 < t, k = 0

t−tk−1
∑

j=0

π j, t ≤ tk+1, 1 ≤ k < m

t−tk−1
∑

j=t−tk+1

π j, tk+1 < t, 1 ≤ k < m

t−tm−1
∑

j=0

π j, k = m,

(57)
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Random level-shift ARFIMA model

The conditional posterior distribution (RLS)

The conditional posterior distributions

σ∗20 =
σ2

0
σ2
ε

G
, (58)

G =











































σ2
0

T
∑

j=1

c2
j + σ

2
ε, k = 0,

σ2
0

T
∑

j=tk+1

c2
j + σ

2
ε, 1 ≤ k ≤ m.

(59)
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Random level-shift ARFIMA model

The conditional distribution (RLS)

When sampling S T , we use the conditional distribution f (yt |Yt−1, θ).

The conditional distribution

f (yt |Yt−1, θk) =
1

√
2πvt

exp



















− 1

2vt

t−1
∑

j=0

π j(d)(yt− j − µst )2



















, (60)

vt = Var(yt − ŷt) = γ0(d) ×
t−1
∏

j=1

(1 − φ2
j j(d)). (61)

When we calculate p(st = k|Yt, θ, P), the conditional distribution is

f (yt |Yt−1, µ
(m+1)

k
) =

1
√

2πvt
exp



















− 1

2vt

















(yt − µ(m+1)

k
) +

t−1
∑

j=1

π j(d)(yt− j − µ(m)
s j

)

















2


















.

(62)

where µ
(m)
s j is drawn at the iteration of the MCMC method.
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Random level-shift ARFIMA model

Sampling step of RLS-ARFIMA+CSS+HMM

Sampling step

Step 0 Set the hyperparameters of the prior distributions and the

initial values of the parameters.

Step 1 For i = 1, 2, . . ., we iterate the next step.

a Sampling d(i), {µk}(i) , σ2(i)
ε ,

{

p
(i)

ii

}

.

b Sampling S
(i)

T

Step 2 For a sufficient large number N, we save

d(i),
{

µ
(i)

k

}

, σ
2(i)
ε ,

{

p
(i)

ii

}

, i = N,N + 1, . . ..
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Model comparison

Model comparison

Chib (1998) uses the log marginal likelihood to compare the number

of change points.

To calculate the log marginal likelihood, we use the modified

harmonic mean estimator by Geweke (1999).
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Simulation Results

Simulation

In this section, we see whether the proposed model can detect multiple

change points or not.

We use the simulation data having change points of d or µ.

We make a comparison of the calculation time between the

proposed method and the method by Ray and Tsay (2002) in RLS

model.

Simulation

First, we estimate RPS-ARFIMA(0, d, 0)+CSS+HMM for the simulation

data having two change points of d.

Next, we estimate RLS-ARFIMA(0, d, 0)+CSS+HMM for the simulation

having two change points of µ.

The computer spec

OS: Mac OS X Lion 10.7.5, Processor: 2.5GHz Intel Core i7,

Memory: 8GB, Software: Ox version 6.21.
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RPS-ARFIMA+CSS+HMM

Simulation data (RPS)

We explain the set up of the simulation for

RPS-ARFIMA(0, d, 0)+CSS+HMM.

In this simulation, the change points were detected by every 2 periods.

Simulation data: Sample size T = 1200, µ = 1.0, σ2
ε = 1.0 and

dk =



















d0 = 0.15, 0 < t ≤ 449,

d1 = 0.45, 449 < t ≤ 849,

d2 = 0.10, 849 < t ≤ 1200.

(63)

The hyperparameters of the prior distributions

µ0 = 0.0, σ2
0 = 5.0, ν0 = 4.0, λ0 = 4.0, a = 8.0, b = 0.1. (64)

and (burn-in,draw)=(15000,10000).

41 / 69

CSSHMM

Simulation Results

RPS-ARFIMA+CSS+HMM

Simulation data (RPS)

The simulation data
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Figure: The simulation data having two change points of fractional difference
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Simulation Results

RPS-ARFIMA+CSS+HMM

Log marignal likelihood (RPS)

The comparison of the proposed models with M1, M2, and M3.

Table: Log marginal likelihood of RPS-ARFIMA(0, d, 0)+CSS+HMM

M1 M2 M3

Log marginal likelihood −1749.1 −1738.5 −1741.5
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RPS-ARFIMA+CSS+HMM

Mean of the parameters with M2 (RPS)

Table: Esitmation result of RPS-ARFIMA(0, d, 0)+CSS+HMM with M2

Mean S.D. 2.5% 97.5% CD IF

µ 1.060 0.127 0.810 1.320 0.1 1.8

σ2
ε 1.036 0.043 0.955 1.123 0.3 0.7

d0 0.172 0.043 0.091 0.261 0.1 1.6

d1 0.482 0.015 0.445 0.499 0.7 1.1

d2 0.184 0.075 0.053 0.358 0.1 8.4

p00 0.997 0.003 0.991 1.000 0.2 1.8

p11 0.997 0.004 0.987 1.000 0.1 2.3

The convergence diagnostic (CD) gives a criteria on whether a

sample convergence or not, proposed by Geweke (1992).

The inefficiency factor (IF) measures efficiency of sampling.
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RPS-ARFIMA+CSS+HMM

Posterior probability of st = k with M2 (RPS)
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Figure: Posterior probability of st = k with M2 given the data YT
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RPS-ARFIMA+CSS+HMM

Summary of RPS-ARFIMA(0, d, 0)+CSS+HMM

From the log marginal likelihood, this model can estimate the true

number of the change points

From the posterior probability, RPS-ARFIMA(0, d, 0)+CSS+HMM

can estimate the change points of the simulation data

From the table, RPS-ARFIMA(0, d, 0)+CSS+HMM can also estimate

change in parameters and another parameters
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RLS-ARFIMA+CSS+HMM

Simulation data (RLS)

We explain the set up of the simulation for

RLS-ARFIMA(0, d, 0)+CSS+HMM.

In this simulation, the change points were detected by every 1 period.

And the calculation time were also compared between the proposed

method and the method by Ray and Tsay (2002).

The simulation data: Sample size T = 1200, d = 0.4, σ2
ε = 1.0 and

µk =



















µ0 = 0.0, 0 < t < 350,

µ1 = 2.5, 350 ≤ t < 850,

µ2 = −1.0, 850 ≤ t ≤ 1200.

(65)

The hyperparameters

µ0 = 1.0, σ2
0 = 5.0, ν0 = 4.0, λ0 = 4.0, a = 8.0, b = 0.1. (66)
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Simulation data (RLS)

y

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

-4

-2

0

2

4

6

y

y

Figure: Simulation data having two change points of µ
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RLS-ARFIMA+CSS+HMM

Log marginal likelihood (RLS)

Table: Log marginal likelihood of RLS-ARFIMA(0, d, 0)+CSS+HMM

M1 M2 M3

Log marginal likelihood −1736.6 −1733.3 −1754.7
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RLS-ARFIMA+CSS+HMM

Estimation result of M2 (RLS)

Table: Estimation result of RLS-ARFIMA(0, d, 0)+CSS+HMM with M2

Estimates S.D. 2.5% 97.5% CD IF

d 0.396 0.023 0.350 0.443 0.9 1.7

σ2
ε 0.997 0.041 0.920 1.081 0.5 0.9

µ0 −0.065 0.380 −0.811 0.688 0.9 2.6

µ1 2.790 0.426 1.935 3.618 0.9 4.1

µ2 −1.135 0.496 −2.122 −0.171 0.5 3.3

p00 0.997 0.003 0.989 1.000 0.6 1.0

p11 0.998 0.002 0.992 1.000 0.1 1.0

50 / 69

CSSHMM

Simulation Results

RLS-ARFIMA+CSS+HMM

Posterior probability of st = k with M2 (RLS)
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Figure: Posterior probability of st = k with M2 given the data YT , Simulation data
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RLS-ARFIMA+CSS+HMM

Calculation time (RLS)

Table: Calculation time

Ray and Tsay (2002) M1 M2 M3

Calc.time 21:17’50.05 3:20’34.52 3:26’24.65 3:40’27.15

where the order is M = 40 and a change point was detected every 100

periods in Ray and Tsay (2002).
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RLS-ARFIMA+CSS+HMM

Summary of RLS-ARFIMA(0, d, 0)+CSS+HMM

From the log marginal likelihood, we can select the true model M2

with two change points.

From the table, this model can estimate the change points of this

simulation data.

From the table, this model can also estimate change in parameters

and the another parameters.

From the table, the proposed model needs less the calculation time

than the method by Ray and Tsay (2002).
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Summary of the simulation result

Summary of simulation result

Using the hidden Markov model, we can estimate the ARFIMA

model with multiple change points.

The propose method can estimate the variable parameters.

CSS method’s calculation time is shorter than the time of the MA

approximation method.

The proposed method needn’t to decide the order of an

approximated AR model.
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Applications

In this section, we estimate the data.

The yearly minima of the Nile river

The realized volatility of Nikkei 225
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Nile river

The yearly minima of the Nile river

It has been known that the yearly minima of the Nile river had a long

memory property.

And this data that has one change point of d is shown by Beran and

Terrin (1996).

Sample period is A.D.622-A.D.1284 and sample size is T = 663.

We use the models

ARFIMA(0, d, 0)+CSS, M0

RPS-ARFIMA(0, d, 0)+CSS+HMM with M1 and M2.
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The yearly minima of the Nile river

Yearly minima of Nile river 
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Figure: The yearly minima of the Nile River
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Nile river

Previous study (Nile river)

Beran and Terrin (1996) estimates the change points of d for the Nile

river data.

Table: Estimation result of Beran and Terrin (1996)

H d = H − 1
2

t = 1, . . . , 100 0.5433 0.0433

t = 101, . . . , 200 0.8531 0.3531

t = 201, . . . , 300 0.8652 0.3652

t = 301, . . . , 400 0.8281 0.3281

t = 401, . . . , 500 0.8435 0.3435

t = 501, . . . , 600 0.9354 0.4354

Beran and Terrin (1996) shows that d is different between for

t = 1, . . . , 100 and for t = 101, . . ..
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The prior distribution (Nile river)

We set the hyperparameters of the prior distributions.

The hyperparameters of ARFIMA(0, d, 0)+CSS

µ0 = 1100.0, σ2
0 = 200.0, ν0 = 4.0, λ0 = 4.0. (67)

The hyperparameters of RPS-ARFIMA(0, d, 0)+CSS+HMM

µ0 = 1100.0, σ2
0 = 200.0, ν0 = 4.0, λ0 = 4.0, a = 8.0, b = 0.1. (68)

(burn-in,draw) are (10000, 10000).

When we use RPS-ARFIMA+CSS+HMM, we detect a change point

every 10 periods.
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Log marginal likelihood (Nile river)

Table: Log marginal likelihood of the yearly minima of Nile River

M0 M1 M2

Log marginal likelihood −3778.0 −3777.5 −3778.9
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Nile river

Estimation result (Nile river)

Table: Estimation result of M1

Estimates S.D. 2.5% 97.5% CD IF

d0 0.175 0.114 0.010 0.435 0.9 1.1

d1 0.424 0.034 0.360 0.488 0.9 1.7

µ 1118.960 13.791 1091.838 1145.155 0.3 1.0

σ2
ε 4856.900 274.044 4348.937 5425.553 0.4 1.0

p00 0.956 0.048 0.827 0.999 0.5 0.9
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Nile river

Posterior probability of st = k with M1 (Nile river)
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Figure: Posterior probability of st = k with M1 given the data YT
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Result (Nile river)

M1 has the largest log marginal likelihood among these models.

There is one change point of d in the yearly minima of the Nile river.

From the figure, the change point is around at t = 120, A.D.742.

We can see the this estimation result is consistent with Beran and

Terrin (1996).
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Realized volatility

We use the realized volatility of Nikkei 225 made by five-minutes

log-return.

Realized volatility is the sum of the square of intraday returns by Hansen

and Lunde (2005) and Watanabe (2007).

Realized volatility (RV) by Hansen and Lunde (2005) is

RVt = c

n
∑

i=1

r2i,t, (69)

c =

∑T
t=1(Rt − R)2

∑T
t=1 r

2
i,t

. (70)

ri,t is the ith intraday log-return at date t.

Rt is a dairy log-return.

R is the sample mean of dairy log-return.

The empirical result and conclusion will be given today.
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