A Rate-Optimal Estimator for the Integrated Covariance of Nonsynchronously Observed Diffusion Processes with Endogenous Noise

Yuta Koike

Graduate School of Mathematical Sciences

University of Tokyo

JAPAN

November 17, 2012

Outline

- □ Introduction
- □ Model
- $\hfill\square$ Construction of the proposed estimator
- □ Main results
- □ Simulation study
- □ Conclusions

- \Box X^1 , X^2 : Latent log-price processes of two assets
- \Box Assume that X^1 and X^2 are diffusion processes.
- □ Then we can define the integrated covariance process $[X^1, X^2]$ of two assets.
- □ As is well known, integrated covariance plays a central role for many issues in finance.

 \Rightarrow It is important to estimate this quantity from observation data of X^1 and X^2 .

- The aim of this talk Estimating the integrated covariance using high-frequency observation data
- □ I try to deal with the following problems:
 - Observation noise correlated with the latent log-returns (motivated by an empirical study of Hansen and Lunde (2006))
 - Nonsynchronicity of observation times
 - Dependence of observation times on observed processes (motivated by recent studies in the absence of noise; see e.g. Hayashi and Yoshida (2011))

- The *Realized kernel* proposed in Barndorff-Nielsen et al.
 (2011) is known as a consistent estimator in such a situation.
- □ However, it does not attain the optimal convergence rate given in Gloter and Jacod (2001).

 \Rightarrow I propose an estimator which overcomes this issue.

 This is the first rate-optimal estimator in the presence of the (asymptotically non-degenerate) correlation between the latent log-returns and the observation noise (as far as I know). \Box X^1, X^2 : Latent log-price processes of two assets

$$\mathrm{d}X_t^k = a_t^k \mathrm{d}t + \sigma_t^k \mathrm{d}w_t^k, \qquad \mathrm{d}[w^1, w^2]_t = \vartheta_t \mathrm{d}t.$$

- $\mathcal{B}^{(0)} = (\Omega^{(0)}, \mathcal{F}^{(0)}, (\mathcal{F}^{(0)}_t), P^{(0)})$: A stochastic basis
- w^k is a standard Wiener process on $\mathcal{B}^{(0)}$,
- a^k , σ^k and ϑ are càdlàg adapted processes.

- $\Box \ \mathcal{I} = (S^i)_{i=0}^{\infty}, \ \mathcal{J} = (T^j)_{j=0}^{\infty}: \text{ Sequences of } (\mathcal{F}_t^{(0)}) \text{-stopping times satisfying } S^i \uparrow \infty, \ T^i \uparrow \infty \text{ as } i \to \infty.$
- $\Box \mathcal{I}$ and \mathcal{J} depend on a parameter $n \in \mathbb{N}$ which represents the frequency of the observation, and I assume that

$$n^{1-\varepsilon} \left[\sup_{i:S^i \le t} (S^i - S^{i-1}) \lor \sup_{j:T^j \le t} (T^j - T^{j-1}) \right] \to^p 0$$

as $n \to \infty$ for any $\varepsilon, t > 0$ ($S^{-1} = T^{-1} := 0$).

 \square X¹_{Sⁱ}, X²_{T^j}: Noisy observation data of X¹ and X² observed at each times in \mathcal{I} and \mathcal{J} respectively:

$$\mathsf{X}_{S^{i}}^{1} = X_{S^{i}}^{1} + U_{S^{i}}^{1}, \qquad \mathsf{X}_{T^{j}}^{2} = X_{T^{j}}^{2} + U_{T^{j}}^{2}.$$

 $\hfill\square$ The observation noise is of the form

$$U_{S^{i}}^{1} = \sqrt{n}(Z_{S^{i}}^{1} - Z_{S^{i-1}}^{1}) + \epsilon_{S^{i}}^{1},$$
$$U_{T^{j}}^{2} = \sqrt{n}(Z_{T^{j}}^{2} - Z_{T^{j-1}}^{2}) + \epsilon_{T^{j}}^{2}.$$

 \Box Z_t^1 , Z_t^2 : Diffusion processes govern by the following SDE:

$$dZ_t^k = \underline{a}_t^k dt + \underline{\sigma}_t^k d\underline{w}_t^k, \qquad d[\underline{w}^1, \underline{w}^2]_t = \underline{\vartheta}_t dt,$$
$$d[\underline{w}^k, w^l]_t = \underline{\vartheta}_t^{kl} dt \ (l = 1, 2).$$

• \underline{w}^k is a standard Wiener process on $\mathcal{B}^{(0)}$,

• \underline{a}^k , $\underline{\sigma}^k$, $\underline{\vartheta}$ and $\underline{\vartheta}^{kl}$ are càdlàg adapted processes.

- $\begin{tabular}{ll} \hline & (\epsilon_{S^i}^1) \text{ and } (\epsilon_{T^j}^2) \text{ are two i.i.d. random variables independent of} \\ & \mathcal{F}^{(0)}. \ \epsilon_{S^i}^1 \text{ and } \epsilon_{T^j}^2 \text{ are centered and mutually independent if} \\ & S^i \neq T^j. \end{tabular}$
- □ Mathematical construction: Let Q be a probability measure on \mathbb{R}^2 with $\int zQ(dz) = 0$. We endow the space $\Omega^{(1)} = (\mathbb{R}^2)^{[0,\infty)}$ with the product Borel σ -field $\mathcal{F}^{(1)}$. Set $P^{(1)}$ as $P^{(1)} = \bigotimes_{t \in [0,1]} P_t$ with $P_t = Q$ for all t. Then, $(\epsilon_t^1, \epsilon_t^2)$ is defined as the canonical process on $(\Omega^{(1)}, \mathcal{F}^{(1)}, (\mathcal{F}^{(1)}_t), P^{(1)})$ with $(\mathcal{F}^{(1)}_t)$ being the canonical filtration.

□ I work with the product stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ given by

$$\Omega = \Omega^{(0)} \times \Omega^{(1)}, \qquad \qquad \mathcal{F} = \mathcal{F}^{(0)} \otimes \mathcal{F}^{(1)}, \\ \mathcal{F}_t = \bigcap_{s>t} \mathcal{F}^{(0)}_s \otimes \mathcal{F}^{(1)}_s, \qquad \qquad P = P^{(0)} \otimes P^{(1)}.$$

□ The aim of this talk Estimating

$$IC_T = \int_0^T \sigma_s^1 \sigma_s^2 \vartheta_s \mathrm{d}s$$

from the observation data $(X_{S^i}, Y_{T^j})_{i,j:S^i,T^j \leq T}$ in the time interval [0, T] as $n \to \infty$.

Construction of the proposed estimator: Pre-averaging

- \Box Choose a positive number θ .
- \Box Choose a positive integer k_n satisfying

$$k_n = \theta \sqrt{n} + o(n^{1/4}).$$

 $(k_n = \lceil \theta \sqrt{n} \rceil \text{ for example})$

Choose a continuous real-valued function g on [0,1] which is piecewise C^1 with piecewise Lipschitz derivative g' (e.g. $g(x) = x \land (1-x)$).

Construction of the proposed estimator: Pre-averaging

□ The *pre-averaging in tick time*, which was first introduced in Christensen et al. (2010), is defined by

$$\overline{\mathsf{X}}^{1}(\mathcal{I})^{i} = \sum_{p=1}^{k_{n}-1} g\left(\frac{p}{k_{n}}\right) (\mathsf{X}_{S^{i+p}}^{1} - \mathsf{X}_{S^{i+p-1}}^{1}).$$

- For a technical reason (computing the asymptotic variance explicitly), I use the *pre-averaging in refresh time* instead of the pre-averaging in tick time.
- □ The refresh time was first introduced to this area in Barndorff-Nielsen et al. (2011).

Construction of the proposed estimator: Refresh time

 \Box The *refresh times* are stopping times R^0, R^1, \ldots defined sequentially by $R^0 := S^0 \vee T^0$ and

$$R^{k} := \min\{S^{i} | S^{i} > R^{k-1}\} \vee \min\{T^{j} | T^{j} > R^{k-1}\},\(k = 1, 2, ...)$$

 $\hfill\square$ New sampling times \widehat{S}^k and \widehat{T}^k are defined by $\widehat{S}^0:=S^0$, $\widehat{T}^0:=T^0$ and

$$\widehat{S}^{k} := \min\{S^{i} | S^{i} > R^{k-1}\}, \qquad \widehat{T}^{k} := \min\{T^{j} | T^{j} > R^{k-1}\}$$
$$(k = 1, 2, \dots)$$

Construction of the proposed estimator: Pre-averaging

□ The pre-averaging in refresh time is defined by

$$\overline{\mathsf{X}}^{1}(\widehat{\mathcal{I}})^{i} = \sum_{p=1}^{k_{n}-1} g\left(\frac{p}{k_{n}}\right) (\mathsf{X}^{1}_{\widehat{S}^{i+p}} - \mathsf{X}^{1}_{\widehat{S}^{i+p-1}}).$$

 $\overline{\mathsf{X}}^2(\widehat{\mathcal{J}})^j$ is also defined in a similar manner.

Construction of the proposed estimator

 \Box Our estimator \widehat{PHY}_T^n is defined by

$$\widehat{PHY}_T^n = \frac{1}{(\psi_{HY}k_n)^2} \sum_{i,j:\widehat{S}^{i+k_n} \vee \widehat{T}^{j+k_n} \leq T} \overline{\mathsf{X}}^1(\widehat{\mathcal{I}})^i \overline{\mathsf{X}}^2(\widehat{\mathcal{J}})^j \overline{K}^{ij},$$

where

•
$$\psi_{HY} = \int_0^1 g(x) dx$$
 (Normalizing factor),

K^{ij} = 1_{{[Ŝⁱ,Ŝ^{i+kn})∩[Î^j,Î^{j+kn})≠∅}}
 (Hayashi-Yoshida type factor).

□ Let
$$N_t^n = \sum_{k=1}^{\infty} 1_{\{R^k \le t\}}$$
 for each t .
Theorem 1
Suppose that $\int |z|^2 Q(dz) < \infty$ and $N_T^n = O_p(n)$ as $n \to \infty$.
 ∞ . Then
 $\widehat{PHY}_T^n \to^p IC_T$
as $n \to \infty$.

□ We need no restriction on the observation times except for the standard one (cf. Hayashi and Kusuoka (2008)).

 \Box For each $k \geq 1$, set

 $\Gamma^k = [R^{k-1}, R^k), \qquad \check{I}^k = [\check{S}^k, \widehat{S}^k), \qquad \check{J}^k = [\check{T}^k, \widehat{T}^k),$

where $\check{S}^k = \sup_{S^i < \widehat{S}^k} S^i$ and $\check{T}^k = \sup_{T^j < \widehat{T}^k} T^j$.

□ Assume that for each n we have a filtration (\mathcal{H}_t^n) of \mathcal{F} to which $N^{n,1}$, $N^{n,2}$, σ^k , ϑ , $\underline{\sigma}^k$, $\underline{\vartheta}$ and $\underline{\vartheta}^{kl}$ (k, l = 1, 2) are adapted, where

$$N_t^{n,1} = \sum_{i=1}^{\infty} \mathbb{1}_{\{S^i \le t\}}, \qquad N_t^{n,2} = \sum_{j=1}^{\infty} \mathbb{1}_{\{T^j \le t\}}.$$

 $\hfill\square$ For each $\rho>0,$ define the processes $G(\rho)^n,$ $F(\rho)^{n,1},$ $F(\rho)^{n,2},$ $F(1)^{n,1*2}$ and χ^n by

$$G(\rho)_{s}^{n} = E\left[\left(n|\Gamma^{k}|\right)^{\rho} \left|\mathcal{H}_{R^{k-1}}^{n}\right], \quad F(\rho)_{s}^{n,1} = E\left[\left(n|\check{I}^{k+1}|\right)^{\rho} \left|\mathcal{H}_{R^{k-1}}^{n}\right], \\ F(\rho)_{s}^{n,2} = E\left[\left(n|\check{J}^{k+1}|\right)^{\rho} \left|\mathcal{H}_{R^{k-1}}^{n}\right], \quad \chi_{s}^{n} = P(\widehat{S}^{k} = \widehat{T}^{k} \left|\mathcal{H}_{R^{k-1}}^{n}\right])$$

and

$$F(1)_{s}^{n,1*2} = nE\left[|\check{I}^{k} \cap \check{J}^{k}| + |\check{I}^{k+1} \cap \check{J}^{k}| + |\check{I}^{k} \cap \check{J}^{k+1}| \left|\mathcal{H}_{R^{k-1}}^{n}\right]\right]$$

when $s \in \Gamma^k$ ($|\cdot|$ denotes the Lebesgue measure).

[A1] (i) There exists a càdlàg F⁽⁰⁾-adapted process G such that G and G₋ do not vanish and sup_{0≤s≤T} |G(1)ⁿ_s - G_s| →^p 0 as n → ∞.
(ii) There exists a càdlàg F⁽⁰⁾-adapted process χ such that sup_{0≤s≤T} |χⁿ_s - χ_s| →^p 0 as n → ∞.
(iii) There exist càdlàg F⁽⁰⁾-adapted processes F¹, F² and F^{1*2} such that sup_{0≤s≤T} |F(1)^{n,l}_s - F^l_s| →^p 0 as n → ∞ for every l = 1, 2, 1 * 2.

(iv) There exists a constant $\rho > 1$ such that the sequences

$$\left(\sup_{0 \le s \le T} G(\rho)_s^n \right)_{n \in \mathbb{N}}, \ \left(\sup_{0 \le s \le T} F(\rho)_s^{n,1} \right)_{n \in \mathbb{N}}, \ \left(\sup_{0 \le s \le T} F(\rho)_s^{n,2} \right)_{n \in \mathbb{N}}$$
are tight.

- $\square \left[\text{Example} \right] (S^i) \text{ (resp. } (T^j)\text{) are Poisson arrival times with intensity } np^1, p^1 > 0 \text{ (resp. } np^2, p^2 > 0\text{).}$
- \Box (Sⁱ) and (T^j) are mutually independent as well as independent of X^k , Z^k and ϵ^k (k = 1, 2).
- □ Then, [A1] holds with (\mathcal{H}_t^n) being the filtration generated by N^n , σ^k , ϑ , $\underline{\sigma}^k$, $\underline{\vartheta}$ and $\underline{\vartheta}^{kl}$ (k, l = 1, 2) and

$$G_s = \frac{1}{p^1} + \frac{1}{p^2} - \frac{1}{p^1 + p^2}, \qquad F_s^1 = \frac{1}{p^1}, \qquad F_s^2 = \frac{1}{p^2},$$
$$F_s^{1*2} = \frac{2}{p^1 + p^2}, \qquad \chi_s = 0.$$

- The following condition is an analogue of the strong predictability condition introduced in Hayashi and Yoshida (2011):
- [A2] There exists a constant $\eta \in (0, \frac{1}{2})$ such that S^i and T^i are $(\mathcal{G}_t^{(n)})$ -stopping times for every $n, i \in \mathbb{N}$, where

$$\mathcal{G}_t^{(n)} = \mathcal{F}_{(t-n^{-\eta})_+}^{(0)}$$

for each $t \in \mathbb{R}_+$.

 \Box For a real-valued function x on [0,T], put

$$w(x; \delta, T) = \sup \left\{ |x(t) - x(s)| | s, t \in [0, T], |s - t| \le \delta \right\}$$

for each $\delta > 0$.

 \Box The following condition is satisfied when f is a Brownian semimartingale, for example.

[A3] For every
$$f = a^k$$
, σ^k , ϑ^k , \underline{a}^k , $\underline{\sigma}^k$, $\underline{\vartheta}^k$ and $\underline{\vartheta}^{kl}$ $(k, l = 1, 2)$, $w(f; h, T) = O_p(h^{\frac{1}{2}-\lambda})$ as $h \to 0$ for any $\lambda > 0$.

The following condition is an analogue of the condition [A6] in Hayashi and Yoshida (2011):

[A4]
$$n \sum_{k:R^k \leq T} |\Gamma^k|^2 = O_p(1)$$
 as $n \to \infty$.

- The following condition is a regularity condition for the exogenous noise:
 - $[\mathsf{N}] \quad \int |z|^8 Q(\mathrm{d}z) < \infty.$
- \Box Set $\Psi = \int z z^* Q(\mathrm{d}z)$.

 \Box For two real-valued continuous functions α, β on \mathbb{R} , set

$$\psi_{\alpha,\beta}(x) = \int_0^1 \int_{x+u-1}^{x+u+1} \alpha(u)\beta(v) \mathrm{d}v \mathrm{d}u.$$

□ We extend the functions g and g' to the whole real line by setting g(x) = g'(x) = 0 for $x \notin [0, 1]$. Then we put

$$\kappa := \int_{-2}^{2} \psi_{g,g}(x)^2 \mathrm{d}x, \qquad \widetilde{\kappa} := \int_{-2}^{2} \psi_{g',g'}(x)^2 \mathrm{d}x,$$
$$\overline{\kappa} := \int_{-2}^{2} \psi_{g,g'}(x)^2 \mathrm{d}x.$$

Theorem 2

Suppose [A1]-[A4] and [N] hold. Then we have

$$n^{1/4} (\widehat{PHY}_T^n - IC_T) \to^{d_s} \sqrt{V_T} \zeta$$

as $n \to \infty$, where ζ is a standard normal random variable independent of \mathcal{F} and $V_T = \int_0^T w_s^2 \mathrm{d}s$ with

$$\begin{split} w_{s}^{2} = \psi_{HY}^{-4} \left[\theta \kappa (\sigma_{s}^{1} \sigma_{s}^{2})^{2} (1 + \vartheta_{s}^{2}) G_{s} + \theta^{-3} \widetilde{\kappa} \left\{ \overline{\Psi}_{s}^{11} \overline{\Psi}_{s}^{22} + \left(\overline{\Psi}_{s}^{12} \right)^{2} \right\} \frac{1}{G_{s}} \\ + \theta^{-1} \overline{\kappa} \left\{ (\sigma_{s}^{1})^{2} \overline{\Psi}_{s}^{22} + (\sigma_{s}^{2})^{2} \overline{\Psi}_{s}^{11} + 2\sigma_{s}^{1} \sigma_{s}^{2} \vartheta_{s} \overline{\Psi}_{s}^{12} \\ - \left(\underline{\sigma}_{s}^{1} \sigma_{s}^{2} \underline{\vartheta}_{s}^{12} F_{s}^{1} - \underline{\sigma}_{s}^{2} \sigma_{s}^{1} \underline{\vartheta}_{s}^{21} F_{s}^{2} \right)^{2} \right\} \right], \\ \overline{\Psi}_{s}^{ll} = \Psi^{ll} + \left(\underline{\sigma}_{s}^{l} \right)^{2} F_{s}^{l} \ (l = 1, 2), \quad \overline{\Psi}_{s}^{12} = \Psi^{12} \chi_{s} + \underline{\sigma}_{s}^{1} \underline{\sigma}_{s}^{2} \underline{\vartheta}_{s} F_{s}^{1*2}. \end{split}$$

 \Box X^1, X^2 : SV1F model (e.g. Barndorff-Nielsen et al. (2011))

$$dX_t^k = \mu^k dt + \rho^k \sigma_t^k B_t^k + \sqrt{1 - (\rho^k)^2} \sigma_t^k W_t,$$

$$\sigma_t^k = \exp(\beta_0^k + \beta_1^k \varrho_t^k), \qquad d\varrho_t^k = \alpha^k \varrho_t^k dt + dB_t^k,$$

where

- $(\mu^k, \beta_0^k, \beta_1^k, \alpha^k, \rho^k) = (0.03, -5/16, 1/8, -1/40, -0.3),$
- (B^1, B^2, W) is a 3-dimensional standard Wiener processes,
- $\varrho_0^k \sim N(0, (-2\alpha^k)^{-1}).$

- \Box (Sⁱ) (resp. (T^j)): Poisson arrival times with intensity np^1 (resp. np^2)
- $\hfill\square$ n=23400 and $p^1=1/6$, $p^2=1/60$, 1/6

$$\Box Z^k = -\sqrt{\psi p^k} X^k \text{ and } \epsilon^k = 0 \ (k = 1, 2)$$

- $\Box \ \psi = 0, 0.001, 0.01$
- □ Number of repetition: 1000

- □ Benchmark estimators:
 - Pre-averaged HY estimator in tick time (PHY; proposed in Christensen et al. (2010))
 - Realized kernel (RK)
 - Modulated realized covariance based on refresh sampling (MRC; proposed in Christensen et al. (2010). This estimator is rate-optimal but inconsistent when $Z^k \neq 0$.)
- □ Tuning parameters: $\theta = 0.15$ and $g(x) = x \land (1 x)$ for \widehat{PHY} , PHY and MRC (following Christensen et al. (2011)). For RK, I followed Barndorff-Nielsen et al. (2009, 2011).

	$\psi = 0$		$\psi = 0.001$		$\psi = 0.01$	
$p^2 = \frac{1}{60}$	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE
\widehat{PHY}	-0.013	0.181	-0.013	0.184	0.007	0.249
PHY	-0.026	0.244	-0.034	0.240	-0.037	0.241
RK	-0.022	0.211	-0.035	0.210	-0.018	0.243
MRC	-0.044	0.112	-0.312	0.504	-0.064	0.445
$p^2 = \frac{1}{6}$	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE
\widehat{PHY}	-0.003	0.107	-0.002	0.110	0.013	0.197
PHY	-0.004	0.115	-0.004	0.116	0.005	0.148
RK	-0.006	0.127	-0.002	0.135	0.043	0.217
MRC	-0.002	0.052	0.080	0.129	1.469	2.084

Combining the pre-averaged HY estimator with the refresh time, I proposed a new estimator for the integrated covariance.

 \Rightarrow It can deal with both of the nonsynchronicity of sampling schemes and endogenous observation noise.

- □ I have shown the consistency and the asymptotic mixed normality of the proposed estimator.
 - It attains the optimal convergence rate.
- The simulation study shows that the proposed estimator performs well in finite samples.

References

- O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, and N. Shephard. Realized kernels in practice: trades and quotes. *Econom. J.*, 12:C1–C32, 2009.
- O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, and N. Shephard. Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. *J. Econometrics*, 162:149–169, 2011.
- K. Christensen, S. Kinnebrock, and M. Podolskij. Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data. *J. Econometrics*, 159:116–133, 2010.
- K. Christensen, M. Podolskij, and M. Vetter. On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes. CREATES Research Paper 2011-53, Aarhus University, 2011.

- A. Gloter and J. Jacod. Diffusions with measurement errors. II. Optimal estimators. *ESAIM Probab. Stat.*, 5:243–260, 2001.
- P. R. Hansen and A. Lunde. Realized variance and market microstructure noise. *Journal of Business and Economic Statistics*, 24(2):127–161, 2006.
- T. Hayashi and S. Kusuoka. Consistent estimation of covariation under nonsynchronicity. *Stat. Inference Stoch. Process.*, 11:93–106, 2008.
- T. Hayashi and N. Yoshida. Nonsynchronous covariation process and limit theorems. *Stochastic Process. Appl.*, 121:2416–2454, 2011.