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Introduction

X1, X?: Latent log-price processes of two assets
Assume that X! and X? are diffusion processes.

Then we can define the integrated covariance process
(X1, X?] of two assets.

As is well known, integrated covariance plays a central role for

many issues in finance.

—> It is important to estimate this quantity from observation
data of X! and X?.



Introduction

O | The aim of this talk | Estimating the integrated covariance

using high-frequency observation data

O | try to deal with the following problems:

e Observation noise correlated with the latent log-returns

(motivated by an empirical study of Hansen and Lunde
(20006))

e Nonsynchronicity of observation times

e Dependence of observation times on observed processes

(motivated by recent studies in the absence of noise; see
e.g. Hayashi and Yoshida (2011))



Introduction

O The Realized kernel proposed in Barndorff-Nielsen et al.

(2011) is known as a consistent estimator in such a situation.

O However, 1t does not attain the optimal convergence rate
given in Gloter and Jacod (2001).

—> | propose an estimator which overcomes this issue.

O This is the first rate-optimal estimator in the presence of the
(asymptotically non-degenerate) correlation between the

latent log-returns and the observation noise (as far as | know).



Model: Latent log-prices

0 X!, X?: Latent log-price processes of two assets

[ dXF = afdt 4+ ofdwy, d[w', w?]; = V,dt.

o BO = (O, 7O (F P©). A stochastic basis

e w" is a standard Wiener process on BO),

e a¥ oF and ¥ are cadlag adapted processes.



Model: Observation times

0 Z=(5)%, J = (Tj);?‘;o: Sequences of (ft(o))—stopping
times satisfying S* 1 0o, T" 1 00 as i — oo.

O 7 and J depend on a parameter n € N which represents the

frequency of the observation, and | assume that

n'~¢ | sup (8*' = S )V sup (TV -1 | =P 0
i:91<t GTI<t

asn — oo forany g,t >0 (S~ =T"1:=0).



Model: Observation noise

O X}gi,X%j: Noisy observation data of X! and X? observed at

each times in Z and J respectively:
1 1 1 2 2 2
XSZ:XS7’+US“ XTj—XTj—I—UTj.
[0 The observation noise is of the form

Uli — ﬁ(zéz — Zé'z'—l) =+ 6}97:,
Ui = NM(Z3; — Zi-1) + €14



Model: Endogenous noise

O Z}, Z?: Diffusion processes govern by the following SDE:

4 ™
dZf = afdt + ofdwy,  dw', w’]y = Y,dt,

dlw®,w']y = 9'dt (1=1,2).
N Y,

o w” is a standard Wiener process on B(?),

e af oF ¥ and ¥ are cadlag adapted processes.




Model: Exogenous noise

O (e}qz) and (€2,;) are two i.i.d. random variables independent of

T
F) e}qi and ¢-,; are centered and mutually independent if
St £ T7.

Mathematical construction: Let Q be a probability measure on R?
with [ 2Q(dz) = 0. We endow the space Q1) = (R2)10:%) with the
product Borel o-field 7). Set PM) as P = @,¢19 1P with

P, = Q for all t. Then, (€},¢?) is defined as the canonical process
on (W, 7O (FM), pM)) with (FM) being the canonical

filtration.



Model

O | work with the product stochastic basis (2, F, (F;), P) given
by

Q=00 x o, F=F0grh
Fi = Nest FO @ FY, pP=PO gpl.

O | The aim of this talk | Estimating

T
ICT:/ orotdyds
0

from the observation data (Xgi, Y7s); j.5: i< in the time

interval [0,7] as n — oo.



Construction of the proposed estimator: Pre-averaging

0 Choose a positive number 6.

O Choose a positive integer k,, satisfying
kn, = 0v/n + o(nt/%).

(kn, = [0+/n] for example)

O Choose a continuous real-valued function g on [0, 1] which is

piecewise C'! with piecewise Lipschitz derivative ¢’ (e.g.
g(z) =z A (1-2)).



Construction of the proposed estimator: Pre-averaging

O The pre-averaging in tick time, which was first introduced in
Christensen et al. (2010), is defined by

kn—1
VNG ey Z p
X (I) = g <l€) (X;i—l—p — X}gz‘ﬂa—l)-

p=1

O For a technical reason (computing the asymptotic variance

explicitly), | use the pre-averaging in refresh time instead of

the pre-averaging in tick time.

[0 The refresh time was first introduced to this area in
Barndorff-Nielsen et al. (2011).



Construction of the proposed estimator: Refresh time

00 The refresh times are stopping times R?, R', ... defined
sequentially by R” := SV v TY and

R* := min{S!|S* > R* 1} v min{T7|T7 > RF 1},
(k=1,2,...)

O New sampling times S* and T* are defined by S0 .= g0,
T0 .= T° and
S¢ = min{S’$* > R* 1,  T%:= min{TV|T7 > R* 1}
(k=1,2,...)



Construction of the proposed estimator: Pre-averaging

O The pre-averaging in refresh time is defined by

kn—1
Yl /7 D 1 1
X () = Z g (kn> <X§i—|—p _ X§i+p—1)'

p=1

2, v - o -
X (J)? is also defined in a similar manner.



Construction of the proposed estimator

O Qur estimator ITHTf; is defined by

a N
—n 1 Sl ,2ig2, ovi id
- Loy RaRayE,

M Gtk Ttk <T

\_ /

where

o Yy = fol g(x)dx (Normalizing factor),

o KiJ — 1{[§i,§i+kn)m[fﬂ',Tj+kn)7é@} (Hayashi-Yoshida type

factor).



Main results: Consistency

O Let N{* = ;| 1yge<y for each t.

~ Theorem 1 ~N
Suppose that [ |2]°Q(dz) < co and NI = O,(n) as n —

00. [hen

ﬁ/;%pIC’T

as n — oQ.

\_ J

0 We need no restriction on the observation times except for
the standard one (cf. Hayashi and Kusuoka (2008)).



Main results: Asymptotic mixed normality

0 For each £ > 1, set
Fk _ [Rk_l,Rk), jk _ [Sk’§k>7 jk _ [Tk’fk),
where S* = SUD ¢i _ G St and TF = SUD s 7k TJ .

O Assume that for each n we have a filtration (H}) of F to
which N1 N™2 gk 9 gk 9 and ¥ (k,l=1,2) are

adapted, where

@) o0
1 2
NP =) lsicn, N =) Lpicy.
i=1 =1



Main results: Asymptotic mixed normality

O For each p > 0, define the processes G(p)", F(p)™!, F(p)™?
F(1)™1*2 and ™ by

Gp)2 = B [(nl0"))" M s |, Fo)2 = B [(nl1+)” 3]
F(p)2? = B | (nl ") [ s |, x = P(S® = T%[Mpe )
and

F(L)2"2 =nE [|I* 0 J* + I 0 T8 + |18 0 T [ 7y

S

when s € IT'* (| - | denotes the Lebesgue measure).



Main results: Asymptotic mixed normality

[A1] (i) There exists a cadlag F(®)-adapted process G such that G and
G do not vanish and supg< <7 |G(1)§ — Gs| =P 0 as n — oo.

(i) There exists a cadlag F(°)-adapted process x such that
SUPg<s<7 |X5 — Xs| =P 0 as n — oo.

(i) There exist cadlag F(9-adapted processes F'!, F? and F'*2
such that supg< < |[F(1)2" — Fl| =7 0 as n — oo for every
[=1,2,1x%2.

(iv) There exists a constant p > 1 such that the sequences

(sup G(p)";) | (sup F(p)gb’l) | (sup F(p)gb’?)
0<s<T neN  \0<s<T neN ~ \0sssT n€N

are tight.



Main results: Asymptotic mixed normality

O |Example| (S*) (resp. (T7)) are Poisson arrival times with

intensity np!, p! > 0 (resp. np?, p* > 0).

0 (S%) and (7V) are mutually independent as well as
independent of X*, Z¥ and €* (k = 1,2).

O Then, [A1] holds with (H}') being the filtration generated by
N ok 9, ok 9 and 9* (k,l =1,2) and

1 1 1 1 1
Gs=—F+ 5 Fslz_l’ F82:_2’
D p p-+p p p
. 2
Fl2 = 5 s = 0.

pt+p



Main results: Asymptotic mixed normality

O The following condition is an analogue of the strong
predictability condition introduced in Hayashi and Yoshida
(2011):

[A2] There exists a constant n € (0, ) such that S and T" are
(ggn))—stopping times for every n,i € N, where

g — FO

= (tin),

for each t € R.



Main results: Asymptotic mixed normality

O For a real-valued function z on [0, 7], put

w(x;6,T) = sup {|z(t) — z(s)]

s, t €10,T),]s —t| <4}
for each 6 > 0.

O The following condition is satisfied when f is a Brownian
semimartingale, for example.

[A3] For every f =a”, oF, 0% o, oF, 0% and 9™ (k,1=1,2),

w(f;h,T) = Op(h2~>) as h — 0 for any A > 0.



Main results: Asymptotic mixed normality

O The following condition is an analogue of the condition [A6]
in Hayashi and Yoshida (2011):

[A4] )y pe<r T¥[* = Op(1) as n — 0.

O The following condition is a regularity condition for the

exogenous noise:

N f12FQ(z) < oo
O Set U = [ 22*Q(dz).



Main results: Asymptotic mixed normality

O For two real-valued continuous functions o, 5 on R, set

x+u+1
VYo p(z / / (v)dvdu.
rz+u—1

O We extend the functions g and ¢’ to the whole real line by
setting g(x) = ¢'(x) = 0 for x ¢ [0,1]. Then we put

K —/ Vg,9(T)"dz, / Vg g (2)"da,
R 1= /_ 22 Vg (2)°da.



e Theorem 2

Suppose [A1l]-[A4] and [N] hold. Then we have
n1/4(ﬁ/; — ICT) =% \/V(

as n — oo, where ( is a standard normal random variable
independent of F and Vi = fOT w3ds with

11— 1o 2
w? =Py [Hm(aiaiﬂl +92)Gs + 07°R {\1111\11? + (v%) } Gi
+07 'R {(O';)QEiQ + (0?)2521 -+ 2020?198@12
(olorg2 i — oot i)Y

2 _
v, =" 4 (gi) Fl(1=1,2), U, =U"x, +alald F.,™.

—S8—S—S8




Simulation study

0 X1, X?: SVIF model (e.g. Barndorff-Nielsen et al. (2011))

AXF = phdt + pPof B +\/1 - (ph)20f W,
of =exp(Bs + Blof),  dof =« @fdt +dBy,

where

¢ (:uka 657 5%7 Oékv pk> — (0037 _5/167 1/87 _1/407 _0'3)'
e (B!, B? W) is a 3-dimensional standard Wiener processes,

* of ~ N(0,(—2a")7).



Simulation study

(S*) (resp. (17)): Poisson arrival times with intensity np?
(resp. np?)

n = 23400 and p! =1/6, p* = 1/60, 1/6
ZF = —\/yYp*X* and € =0 (k = 1,2)
» = 0,0.001, 0.01

Number of repetition: 1000



Simulation study

0 Benchmark estimators:

e Pre-averaged HY estimator in tick time (PHY; proposed in
Christensen et al. (2010))

e Realized kernel (RK)

e Modulated realized covariance based on refresh sampling
(MRC,; proposed in Christensen et al. (2010). This
estimator is rate-optimal but inconsistent when Z% #£ 0.)

O Tuning parameters: § = 0.15 and g(z) =z A (1 — x) for
PHY, PHY and MRC (following Christensen et al. (2011)).
For RK, | followed Barndorff-Nielsen et al. (2009, 2011).



Y = ¥ = 0.001 Y = 0.01
p> =L | BIAS | RMSE | BIAS | RMSE | BIAS | RMSE
PHY |-0013 1 0.181 | -0.013 1 0.184 | 0.007 | 0.249
PHY | -0.026 1 0.244 | -0.034 1 0.240 | -0.037 | 0.241

RK | -0.022 + 0.211 | -0.035 1 0.210 | -0.018 1 0.243
MRC | -0.044 1 0.112 | -0.312 1 0504 | -0.064 1 0.445
p>=1 | BIAS | RMSE | BIAS | RMSE | BIAS | RMSE
PHY |-0.003 ' 0.107 | -0.002 ' 0.110 | 0.013 ' 0.197
PHY | -0.004 1 0.115 | -0.004 | 0.116 | 0.005 | 0.148
RK | -0.006 1 0.127 | -0.002 | 0.135 | 0.043 | 0217
MRC | -0.002 1 0052 | 0.080 ' 0.120 | 1.469 1 2.084




Conclusions

O Combining the pre-averaged HY estimator with the refresh
time, | proposed a new estimator for the integrated

covariance.

—> It can deal with both of the nonsynchronicity of sampling

schemes and endogenous observation noise.

O | have shown the consistency and the asymptotic mixed
normality of the proposed estimator.
e |t attains the optimal convergence rate.

O The simulation study shows that the proposed estimator

performs well in finite samples.
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