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Introduction

2 X1, X2: Latent log-price processes of two assets

2 Assume that X1 and X2 are diffusion processes.

2 Then we can define the integrated covariance process

[X1, X2] of two assets.

2 As is well known, integrated covariance plays a central role for

many issues in finance.

⇒ It is important to estimate this quantity from observation

data of X1 and X2.



Introduction

2 The aim of this talk Estimating the integrated covariance

using high-frequency observation data

2 I try to deal with the following problems:

• Observation noise correlated with the latent log-returns

(motivated by an empirical study of Hansen and Lunde

(2006))

• Nonsynchronicity of observation times

• Dependence of observation times on observed processes

(motivated by recent studies in the absence of noise; see

e.g. Hayashi and Yoshida (2011))



Introduction

2 The Realized kernel proposed in Barndorff-Nielsen et al.

(2011) is known as a consistent estimator in such a situation.

2 However, it does not attain the optimal convergence rate

given in Gloter and Jacod (2001).

⇒ I propose an estimator which overcomes this issue.

2 This is the first rate-optimal estimator in the presence of the

(asymptotically non-degenerate) correlation between the

latent log-returns and the observation noise (as far as I know).



Model: Latent log-prices

2 X1, X2: Latent log-price processes of two assets� �
dXk

t = akt dt+ σkt dw
k
t , d[w1, w2]t = ϑtdt.� �

• B(0) = (Ω(0),F (0), (F (0)
t ), P (0)): A stochastic basis

• wk is a standard Wiener process on B(0),

• ak, σk and ϑ are càdlàg adapted processes.



Model: Observation times

2 I = (Si)∞i=0, J = (T j)∞j=0: Sequences of (F
(0)
t )-stopping

times satisfying Si ↑ ∞, T i ↑ ∞ as i→ ∞.

2 I and J depend on a parameter n ∈ N which represents the

frequency of the observation, and I assume that

n1−ε

[
sup
i:Si≤t

(Si − Si−1) ∨ sup
j:T j≤t

(T j − T j−1)

]
→p 0

as n→ ∞ for any ε, t > 0 (S−1 = T−1 := 0).



Model: Observation noise

2 X1
Si ,X

2
T j : Noisy observation data of X1 and X2 observed at

each times in I and J respectively:

X1
Si = X1

Si + U1
Si , X2

T j = X2
T j + U2

T j .

2 The observation noise is of the form

U1
Si =

√
n(Z1

Si − Z1
Si−1) + ϵ1Si ,

U2
T j =

√
n(Z2

T j − Z2
T j−1) + ϵ2T j .



Model: Endogenous noise

2 Z1
t , Z

2
t : Diffusion processes govern by the following SDE:� �
dZk

t = akt dt+ σkt dw
k
t , d[w1, w2]t = ϑtdt,

d[wk, wl]t = ϑklt dt (l = 1, 2).� �
• wk is a standard Wiener process on B(0),

• ak, σk, ϑ and ϑkl are càdlàg adapted processes.



Model: Exogenous noise

2 (ϵ1
Si) and (ϵ2

T j ) are two i.i.d. random variables independent of

F (0). ϵ1
Si and ϵ

2
T j are centered and mutually independent if

Si ̸= T j .

2 Mathematical construction: Let Q be a probability measure on R2

with
∫
zQ(dz) = 0. We endow the space Ω(1) = (R2)[0,∞) with the

product Borel σ-field F (1). Set P (1) as P (1) = ⊗t∈[0,1]Pt with

Pt = Q for all t. Then, (ϵ1t , ϵ
2
t ) is defined as the canonical process

on (Ω(1),F (1), (F (1)
t ), P (1)) with (F (1)

t ) being the canonical

filtration.



Model

2 I work with the product stochastic basis (Ω,F , (Ft), P ) given

by

Ω = Ω(0) × Ω(1), F = F (0) ⊗F (1),

Ft = ∩s>tF (0)
s ⊗F (1)

s , P = P (0) ⊗ P (1).

2 The aim of this talk Estimating

ICT =

∫ T

0
σ1sσ

2
sϑsds

from the observation data (XSi ,YT j )i,j:Si,T j≤T in the time

interval [0, T ] as n→ ∞.



Construction of the proposed estimator: Pre-averaging

2 Choose a positive number θ.

2 Choose a positive integer kn satisfying

kn = θ
√
n+ o(n1/4).

(kn = ⌈θ
√
n⌉ for example)

2 Choose a continuous real-valued function g on [0, 1] which is

piecewise C1 with piecewise Lipschitz derivative g′ (e.g.

g(x) = x ∧ (1− x)).



Construction of the proposed estimator: Pre-averaging

2 The pre-averaging in tick time, which was first introduced in

Christensen et al. (2010), is defined by

X
1
(I)i =

kn−1∑
p=1

g

(
p

kn

)
(X1

Si+p − X1
Si+p−1).

2 For a technical reason (computing the asymptotic variance

explicitly), I use the pre-averaging in refresh time instead of

the pre-averaging in tick time.

2 The refresh time was first introduced to this area in

Barndorff-Nielsen et al. (2011).



Construction of the proposed estimator: Refresh time

2 The refresh times are stopping times R0, R1, . . . defined

sequentially by R0 := S0 ∨ T 0 and

Rk := min{Si|Si > Rk−1} ∨min{T j |T j > Rk−1},

(k = 1, 2, . . . )

2 New sampling times Ŝk and T̂ k are defined by Ŝ0 := S0,

T̂ 0 := T 0 and

Ŝk := min{Si|Si > Rk−1}, T̂ k := min{T j |T j > Rk−1}

(k = 1, 2, . . . )



Construction of the proposed estimator: Pre-averaging

2 The pre-averaging in refresh time is defined by

X
1
(Î)i =

kn−1∑
p=1

g

(
p

kn

)
(X1

Ŝi+p − X1
Ŝi+p−1).

X
2
(Ĵ )j is also defined in a similar manner.



Construction of the proposed estimator

2 Our estimator P̂HY
n

T is defined by� �
P̂HY

n

T =
1

(ψHY kn)2

∑
i,j:Ŝi+kn∨T̂ j+kn≤T

X
1
(Î)iX2

(Ĵ )jK̄ij ,

� �
where

• ψHY =
∫ 1
0 g(x)dx (Normalizing factor),

• K̄ij = 1{[Ŝi,Ŝi+kn )∩[T̂ j ,T̂ j+kn )̸=∅} (Hayashi-Yoshida type

factor).



Main results: Consistency

2 Let Nn
t =

∑∞
k=1 1{Rk≤t} for each t.

Theorem 1� �
Suppose that

∫
|z|2Q(dz) < ∞ and Nn

T = Op(n) as n →
∞. Then

P̂HY
n

T →p ICT

as n→ ∞.� �
2 We need no restriction on the observation times except for

the standard one (cf. Hayashi and Kusuoka (2008)).



Main results: Asymptotic mixed normality

2 For each k ≥ 1, set

Γk = [Rk−1, Rk), Ǐk = [Šk, Ŝk), J̌k = [Ť k, T̂ k),

where Šk = sup
Si<Ŝk S

i and Ť k = sup
T j<T̂k T

j .

2 Assume that for each n we have a filtration (Hn
t ) of F to

which Nn,1, Nn,2, σk, ϑ, σk, ϑ and ϑkl (k, l = 1, 2) are

adapted, where

Nn,1
t =

∞∑
i=1

1{Si≤t}, Nn,2
t =

∞∑
j=1

1{T j≤t}.



Main results: Asymptotic mixed normality

2 For each ρ > 0, define the processes G(ρ)n, F (ρ)n,1, F (ρ)n,2,

F (1)n,1∗2 and χn by

G(ρ)ns = E
[(
n|Γk|

)ρ ∣∣Hn
Rk−1

]
, F (ρ)n,1s = E

[(
n|Ǐk+1|

)ρ ∣∣Hn
Rk−1

]
,

F (ρ)n,2s = E
[(
n|J̌k+1|

)ρ ∣∣Hn
Rk−1

]
, χn

s = P (Ŝk = T̂ k
∣∣Hn

Rk−1)

and

F (1)n,1∗2s = nE
[
|Ǐk ∩ J̌k|+ |Ǐk+1 ∩ J̌k|+ |Ǐk ∩ J̌k+1|

∣∣Hn
Rk−1

]
when s ∈ Γk (| · | denotes the Lebesgue measure).



Main results: Asymptotic mixed normality

[A1] (i) There exists a càdlàg F(0)-adapted process G such that G and

G− do not vanish and sup0≤s≤T |G(1)ns −Gs| →p 0 as n→ ∞.

(ii) There exists a càdlàg F(0)-adapted process χ such that

sup0≤s≤T |χn
s − χs| →p 0 as n→ ∞.

(iii) There exist càdlàg F(0)-adapted processes F 1, F 2 and F 1∗2

such that sup0≤s≤T |F (1)n,ls − F l
s| →p 0 as n→ ∞ for every

l = 1, 2, 1 ∗ 2.
(iv) There exists a constant ρ > 1 such that the sequences(

sup
0≤s≤T

G(ρ)ns

)
n∈N

,

(
sup

0≤s≤T
F (ρ)n,1s

)
n∈N

,

(
sup

0≤s≤T
F (ρ)n,2s

)
n∈N

are tight.



Main results: Asymptotic mixed normality

2 Example (Si) (resp. (T j)) are Poisson arrival times with

intensity np1, p1 > 0 (resp. np2, p2 > 0).

2 (Si) and (T j) are mutually independent as well as

independent of Xk, Zk and ϵk (k = 1, 2).

2 Then, [A1] holds with (Hn
t ) being the filtration generated by

Nn, σk, ϑ, σk, ϑ and ϑkl (k, l = 1, 2) and

Gs =
1

p1
+

1

p2
− 1

p1 + p2
, F 1

s =
1

p1
, F 2

s =
1

p2
,

F 1∗2
s =

2

p1 + p2
, χs = 0.



Main results: Asymptotic mixed normality

2 The following condition is an analogue of the strong

predictability condition introduced in Hayashi and Yoshida

(2011):

[A2] There exists a constant η ∈ (0, 12) such that Si and T i are

(G(n)
t )-stopping times for every n, i ∈ N, where

G(n)
t = F (0)

(t−n−η)+

for each t ∈ R+.



Main results: Asymptotic mixed normality

2 For a real-valued function x on [0, T ], put

w(x; δ, T ) = sup
{
|x(t)− x(s)|

∣∣s, t ∈ [0, T ], |s− t| ≤ δ
}

for each δ > 0.

2 The following condition is satisfied when f is a Brownian

semimartingale, for example.

[A3] For every f = ak, σk, ϑk, ak, σk, ϑk and ϑkl (k, l = 1, 2),

w(f ;h, T ) = Op(h
1
2
−λ) as h→ 0 for any λ > 0.



Main results: Asymptotic mixed normality

2 The following condition is an analogue of the condition [A6]

in Hayashi and Yoshida (2011):

[A4] n
∑

k:Rk≤T |Γk|2 = Op(1) as n→ ∞.

2 The following condition is a regularity condition for the

exogenous noise:

[N]
∫
|z|8Q(dz) <∞.

2 Set Ψ =
∫
zz∗Q(dz).



Main results: Asymptotic mixed normality

2 For two real-valued continuous functions α, β on R, set

ψα,β(x) =

∫ 1

0

∫ x+u+1

x+u−1
α(u)β(v)dvdu.

2 We extend the functions g and g′ to the whole real line by

setting g(x) = g′(x) = 0 for x /∈ [0, 1]. Then we put

κ :=

∫ 2

−2
ψg,g(x)

2dx, κ̃ :=

∫ 2

−2
ψg′,g′(x)

2dx,

κ :=

∫ 2

−2
ψg,g′(x)

2dx.



Theorem 2� �
Suppose [A1]-[A4] and [N] hold. Then we have

n1/4(P̂HY
n

T − ICT ) →ds
√
VT ζ

as n → ∞, where ζ is a standard normal random variable

independent of F and VT =
∫ T
0 w2

sds with

w2
s =ψ−4

HY

[
θκ(σ1

sσ
2
s)

2(1 + ϑ2
s)Gs + θ−3κ̃

{
Ψ

11
s Ψ

22
s +

(
Ψ

12
s

)2
}

1

Gs

+ θ−1κ
{
(σ1

s)
2Ψ

22
s + (σ2

s)
2Ψ

11
s + 2σ1

sσ
2
sϑsΨ

12
s

−
(
σ1
sσ

2
sϑ

12
s F

1
s − σ2

sσ
1
sϑ

21
s F

2
s

)2}]
,

Ψ
ll
s =Ψll +

(
σl
s

)2

F l
s (l = 1, 2), Ψ

12
s = Ψ12χs + σ1

sσ
2
sϑsF

1∗2
s .

� �



Simulation study

2 X1, X2: SV1F model (e.g. Barndorff-Nielsen et al. (2011))

dXk
t = µkdt+ ρkσktB

k
t +

√
1− (ρk)2σktWt,

σkt = exp(βk0 + βk1ϱ
k
t ), dϱkt = αkϱkt dt+ dBk

t ,

where

• (µk, βk0 , β
k
1 , α

k, ρk) = (0.03,−5/16, 1/8,−1/40,−0.3),

• (B1, B2,W ) is a 3-dimensional standard Wiener processes,

• ϱk0 ∼ N(0, (−2αk)−1).



Simulation study

2 (Si) (resp. (T j)): Poisson arrival times with intensity np1

(resp. np2)

2 n = 23400 and p1 = 1/6, p2 = 1/60, 1/6

2 Zk = −
√
ψpkXk and ϵk = 0 (k = 1, 2)

2 ψ = 0, 0.001, 0.01

2 Number of repetition: 1000



Simulation study

2 Benchmark estimators:

• Pre-averaged HY estimator in tick time (PHY; proposed in

Christensen et al. (2010))

• Realized kernel (RK)

• Modulated realized covariance based on refresh sampling

(MRC; proposed in Christensen et al. (2010). This

estimator is rate-optimal but inconsistent when Zk ̸= 0.)

2 Tuning parameters: θ = 0.15 and g(x) = x ∧ (1− x) for

P̂HY , PHY and MRC (following Christensen et al. (2011)).

For RK, I followed Barndorff-Nielsen et al. (2009, 2011).



ψ = 0 ψ = 0.001 ψ = 0.01

p2 = 1
60 BIAS RMSE BIAS RMSE BIAS RMSE

P̂HY -0.013 0.181 -0.013 0.184 0.007 0.249

PHY -0.026 0.244 -0.034 0.240 -0.037 0.241

RK -0.022 0.211 -0.035 0.210 -0.018 0.243

MRC -0.044 0.112 -0.312 0.504 -0.064 0.445

p2 = 1
6 BIAS RMSE BIAS RMSE BIAS RMSE

P̂HY -0.003 0.107 -0.002 0.110 0.013 0.197

PHY -0.004 0.115 -0.004 0.116 0.005 0.148

RK -0.006 0.127 -0.002 0.135 0.043 0.217

MRC -0.002 0.052 0.080 0.129 1.469 2.084



Conclusions

2 Combining the pre-averaged HY estimator with the refresh

time, I proposed a new estimator for the integrated

covariance.

⇒ It can deal with both of the nonsynchronicity of sampling

schemes and endogenous observation noise.

2 I have shown the consistency and the asymptotic mixed

normality of the proposed estimator.

• It attains the optimal convergence rate.

2 The simulation study shows that the proposed estimator

performs well in finite samples.
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multivariate continuous Itô semimartingales with noise in non-synchronous

observation schemes. CREATES Research Paper 2011-53, Aarhus

University, 2011.



A. Gloter and J. Jacod. Diffusions with measurement errors. II. Optimal

estimators. ESAIM Probab. Stat., 5:243–260, 2001.

P. R. Hansen and A. Lunde. Realized variance and market microstructure

noise. Journal of Business and Economic Statistics, 24(2):127–161, 2006.

T. Hayashi and S. Kusuoka. Consistent estimation of covariation under

nonsynchronicity. Stat. Inference Stoch. Process., 11:93–106, 2008.

T. Hayashi and N. Yoshida. Nonsynchronous covariation process and limit

theorems. Stochastic Process. Appl., 121:2416–2454, 2011.


