# Realized Factor GARCH:

Peter Christoffersen and Peter Reinhard Hansen and Asger Lunde and ...



Hiroshima, November 17, 2012

- Multivariate GARCH model that utilizes realized measures of volatility and covolatility
- Hierarchical Structure
  - Market Returns + Realized Measure (RM) Modeled with Realized EGARCH.
  - K Sector Returns + RMs Modeled jointly, conditional on market.
  - Individual Assets + RMs modeled conditional on K + 1 Market and Sector returns

- Enhance GARCH models to include realized measures of volatility.
- E.g. Realized Variance  $x_t = \sum_{i=1}^n y_{i,t}^2$  in place of squared returns

 $h_t = \omega + \beta h_{t-1} + \gamma x_{t-1}.$ 

• where  $y_{i,t}$  are intraday high-frequency data.

## Figure with HF DATA

#### • Figure

## Realized GARCH Framework

• Key for Realized GARCH: Measurement Equation (Takahashi, Omori, and Watanabe, 2009)

 $x_t = \xi + \varphi h_t + \operatorname{error}_t.$ 

• Similar for covariance, and correlation,  $\rho_t$ , i.e.

 $f(y_t) = \tilde{\xi} + \tilde{\varphi}f(\rho_t) + \operatorname{error}_t,$ 

some function f, with  $y_t$  a realized correlation:

$$y_t = \frac{x_{ij,t}}{\sqrt{x_{ii,t}x_{jj,t}}}.$$

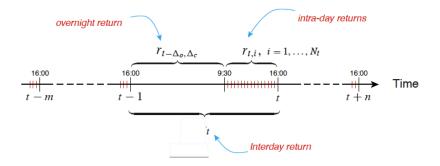
- Hansen, Huang & Shek (JoAE, 2012): Univariate + Single Realized Measure.
- Hansen & Huang (WP, 2012): Univariate + Multiple Realized Measures + Refinements
- Hansen, Lunde & Voev (WP, 2012)
   Multivariate: Market + Conditional Model for Each Individual Asset "single factor" evidence of residual un-modeled correlation.

## Realized Beta-GARCH

Table 2: Unconditional correlations  $\hat{z}_{i,t}$ . (Grouped by GICS)

|                        | Energy | $M_{aterials}$ | Industrials | Consumer<br>Discretionary | Consumer<br>Staples | $H_{ealthcare}$ | Financials | Information<br>Technology | Telecommun.<br>Services | Utilities |
|------------------------|--------|----------------|-------------|---------------------------|---------------------|-----------------|------------|---------------------------|-------------------------|-----------|
| Energy                 | 0.599  | 0.324          | 0.275       | 0.202                     | 0.160               | 0.180           | 0.229      | 0.217                     | 0.197                   | 0.298     |
| Materia                | ls     | 0.418          | 0.377       | 0.309                     | 0.243               | 0.244           | 0.342      | 0.299                     | 0.273                   | 0.285     |
| Industri               | als    |                | 0.402       | 0.331                     | 0.261               | 0.264           | 0.357      | 0.323                     | 0.288                   | 0.286     |
| Consumer Discretionary |        |                | 0.323       | 0.238                     | 0.234               | 0.327           | 0.283      | 0.252                     | 0.238                   |           |
| Consumer Staples       |        |                |             | 0.266                     | 0.211               | 0.263           | 0.207      | 0.216                     | 0.235                   |           |
| Healthcare             |        |                |             | 0.263                     | 0.260               | 0.231           | 0.218      | 0.223                     |                         |           |
| Financia               | als    |                |             |                           |                     |                 | 0.429      | 0.302                     | 0.290                   | 0.300     |
| Information Technology |        |                |             |                           |                     |                 |            | 0.360                     | 0.268                   | 0.230     |
| Telecommun. Services   |        |                |             |                           |                     |                 |            |                           | 0.368                   | 0.250     |
| Utilities              |        |                |             |                           |                     |                 |            |                           |                         | 0.487     |

#### Some Unfinished Business Unexplained Correlation


Table 3: Unconditional correlations  $\hat{w}_{i,t}$ . (Grouped by GICS)

|                        | Energy | $M_{aterials}$ | Industrials | Consumer<br>Discretionary | Co <sub>nsumer</sub><br>St <sub>aples</sub> | Healthcare | Financials | Information<br>Technology | Telecommun.<br>Services | Utilities. |
|------------------------|--------|----------------|-------------|---------------------------|---------------------------------------------|------------|------------|---------------------------|-------------------------|------------|
| Energy                 | 0.484  | 0.092          | 0.015       | -0.036                    | -0.044                                      | -0.019     | -0.057     | -0.023                    | -0.025                  | 0.099      |
| Materia                | ls     | 0.160          | 0.082       | 0.043                     | 0.007                                       | 0.004      | 0.023      | 0.018                     | 0.006                   | 0.021      |
| Industri               | als    |                | 0.105       | 0.059                     | 0.021                                       | 0.021      | 0.026      | 0.037                     | 0.013                   | 0.013      |
| Consumer Discretionary |        |                | 0.098       | 0.032                     | 0.020                                       | 0.049      | 0.033      | 0.010                     | -0.005                  |            |
| Consumer Staples       |        |                |             | 0.106                     | 0.036                                       | 0.021      | -0.015     | 0.017                     | 0.041                   |            |
| Healthcare             |        |                |             | 0.097                     | 0.012                                       | 0.010      | 0.011      | 0.022                     |                         |            |
| Financials             |        |                |             |                           |                                             | 0.145      | 0.002      | 0.011                     | 0.025                   |            |
| Information Technology |        |                |             |                           |                                             |            |            | 0.131                     | 0.022                   | -0.023     |
| Telecommun. Services   |        |                |             |                           |                                             |            |            |                           | 0.185                   | 0.028      |
| Utilities              |        |                |             |                           |                                             |            |            |                           |                         | 0.341      |

- A Core Model
  - For the Market Return (SPY)
  - Ten Sectors (XLB, XLV, XLP, XLY, XLE, XLF, XLI, XLK, XLU, <del>VOX</del>)
- A Separate (Factor) Model for Each Individual Asset
  - Conditional on CORE Model
  - Dynamic Multifactor structure.

- Market Variables:
- *R*<sub>0t</sub> Market return (SPX close-to-close returns used as proxy)
- X<sub>0t</sub> Realized measure of market volatility (Realized Kernel from intraday returns)

## High-Frequency Data and Daily Returns



Define

$$H_{0t} = \operatorname{var}(R_{0t}|\mathcal{F}_{t-1})$$
 and  $M_{0t} = \operatorname{E}(R_{0t}|\mathcal{F}_{t-1}).$ 

Assume constant mean  $M_0 = M_{0t}$ .

Studentized Return

$$Z_{0t}=\frac{R_{0t}-M_0}{\sqrt{H_{0t}}}.$$

GARCH Equation

 $\log H_{0t} = A_0 + B_0 \log H_{0,t-1} + C_0 \log X_{0,t-1} + \tau^{(0)}(Z_{0,t-1})$ 

•  $\tau^{(0)}(z) = \tau_1 z + \tau_2(z^2 - 1)$  is a leverage function.

- The Realized Measure log X<sub>0t</sub> is a noisy (possibly biased) measure of log H<sub>0t</sub>.
- Measurement Equation

$$\log X_{0,t} = F_0 + \log H_{0,t} + \delta^{(0)}(Z_{0,t}) + U_{0,t},$$

• where  $\delta^{(0)}$  is another leverage function.

• Realized EGARCH Model:

$$\begin{aligned} R_{0t} &= M_0 + \sqrt{H_{0t}} Z_{0t} \\ \log H_{0t} &= A_0 + B_0 \log H_{0,t-1} + C_0 \log X_{0,t-1} + \tau^{(0)}(Z_{0,t-1}) \\ \log X_{0,t} &= F_0 + \log H_{0,t} + \delta^{(0)}(Z_{0,t}) + U_{0,t}, \end{aligned}$$

Return Equation, GARCH Equation, & Measurement Equation.

- Core Model Variables:
  - R<sub>0t</sub> Market return (SPX returns used as proxy)
  - $R_{jt}$ , j = 1, ..., K Sector j Returns (Energy, Financials, etc.)
  - X<sub>0t</sub> Realized measure of market volatility
  - X<sub>jt</sub> Realized measure of Sector j volatility.
  - $Y_{jt}$  realized correlation measure between  $R_{0t}$  and  $R_{jt}$ .

$$X_{jt} = \frac{X_{0jt}}{\sqrt{X_{0t}X_{jt}}},$$

where  $X_{0jt}$  is a realized covariance measure.

#### Similar Structure

 $\begin{aligned} R_{jt} &= M_j + \sqrt{H_{jt}} Z_{jt}, \\ \log H_{jt} &= A_j + B_j \log H_{j,t-1} + C_j \log X_{j,t-1} + D_j \log H_{0t} + \tau^{(j)}(Z_{j,t-1}) \\ \log X_{jt} &= F_j + \log H_{jt} + \delta^{(j)}(Z_{jt}) + U_{jt}, \end{aligned}$ 

where we allow for direct impact from  $H_{0t}$  to  $H_{jt}$ .

• Modeling of dynamic correlations

$$\rho_{jt} = \operatorname{corr}(R_{0t}, R_{jt} | \mathcal{F}_{t-1}).$$

• GARCH and Measurement Equation

$$F(\rho_{j,t}) = \Xi_j + \Phi_j F(\rho_{jt-1}) + \Gamma_j F(Y_{j,t-1}),$$
  

$$F(Y_{j,t}) = \Psi_j + F(\rho_{jt}) + V_{jt},$$

where  $F(\cdot)$  denote the Fisher transform.

# Empirical Results (Core Model)

Correlation between Sector Returns & Market Returns

#### • Plot: $\rho_{jt}$ .

CHL... (EUI/CREATES)

- Since  $\rho_{jt} = \operatorname{cov}(Z_{0t}, Z_{jt})$ , we have..
- ...for  $Z_t = (Z_{0t}, \ldots, Z_{Kt})'$  that

$$\operatorname{var}(Z_t) = \begin{pmatrix} 1 & \bullet & \bullet & \bullet \\ \rho_{1t} & 1 & \bullet & \bullet \\ \rho_{2t} & ? & 1 & \bullet \\ \vdots & \vdots & \ddots & \ddots & \bullet \\ \rho_{1t} & ? & \cdots & ? & 1 \end{pmatrix}.$$

#### Core Model (Sector Returns) Residual Sector Returns Interdependence

• Define conditional and studentized sector returns

$$W_{jt} = \frac{Z_{jt} - \rho_{jt}Z_{0t}}{\sqrt{1 - \rho_{jt}^2}},$$

Assume constant correlation

 $\omega_{ij}=\operatorname{cov}(W_{ij},W_{jt}).$ 

• With  $W_t = (W_{1t}, \ldots, W_{Kt})'$ , let

 $\Omega = \operatorname{var}(W_t).$ 

#### Empirical Results: Residual Sector Correlation Preliminary Estimate

#### $\hat{\Omega} =$

|     | XLB    | XLV    | XLP    | XLY    | XLE    | XLF    | XLI    | XLK    | XI  |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| XLB | 1.010  |        |        |        |        |        |        |        |     |
| XLV | -0.099 | 1.000  |        |        |        |        |        |        |     |
| XLP | -0.084 | 0.215  | 0.990  |        |        |        |        |        |     |
| XLY | 0.010  | 0.014  | 0.149  | 0.985  |        |        |        |        |     |
| XLE | 0.283  | -0.140 | -0.164 | -0.248 | 1.021  |        |        |        |     |
| XLF | -0.091 | -0.021 | 0.011  | 0.153  | -0.294 | 1.011  |        |        |     |
| XLI | 0.256  | -0.008 | 0.038  | 0.241  | -0.063 | 0.009  | 1.005  |        |     |
| XLK | -0.038 | -0.125 | -0.070 | 0.111  | -0.198 | -0.132 | 0.076  | 0.999  |     |
| XLU | 0.051  | 0.046  | 0.093  | -0.090 | 0.196  | -0.049 | -0.063 | -0.142 | 1.0 |

#### Core Model (Sector Returns) Residual Sector Interdependence

 $\rho_t = \begin{pmatrix} \rho_{1t} \\ \vdots \\ \rho_{Kt} \end{pmatrix} \quad \text{and} \quad \Lambda_t = \begin{pmatrix} \sqrt{1 - \rho_{1t}^2} & 0 \\ & \ddots & \\ 0 & \sqrt{1 - \rho_{Kt}^2} \end{pmatrix}.$ 

• From definition of W<sub>jt</sub>,

$$Z_{jt}=\rho_{jt}Z_{0t}+\sqrt{1-\rho_{jt}^2}W_{jt}.$$

• In compact form:

Let

$$Z_t = \left[ \begin{array}{cc} 1 & 0 \\ \rho_t & \Lambda_t \end{array} \right] \left( \begin{array}{c} Z_{0t} \\ W_t \end{array} \right).$$

#### Core Model (Sector Returns) Residual Sector Returns Interdependence

| • With | $Z_t = \begin{bmatrix} 1 & 0 \\ \rho_t & \Lambda_t \end{bmatrix} \begin{pmatrix} Z_{0t} \\ W_t \end{pmatrix}.$                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •      | $\Sigma_{Z_t} = \operatorname{var}(Z_t) = \begin{bmatrix} 1 & 0 \\ \rho_t & \Lambda_t \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \Omega \end{bmatrix} \begin{bmatrix} 1 & \rho'_t \\ 0 & \Lambda_t \end{bmatrix}.$ |
|        | $= \left[ \begin{array}{cc} 1 & \rho_t' \\ \rho_t & \rho_t \rho_t' + \Lambda_t \Omega \Lambda_t \end{array} \right]$                                                                                               |

## Core Model (Sector Returns) Key Core Quantity

• The inverse of  $\Sigma_{Z_t} = \begin{bmatrix} 1 & \rho'_t \\ \rho_t & \rho_t \rho'_t + \Lambda_t \Omega \Lambda_t \end{bmatrix}$ , is central in factor models for all individual assets.

$$\begin{split} \Sigma_{Z_t}^{-1} &= \begin{bmatrix} 1 & \rho_t' \\ 0 & \Lambda_t \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & \Omega^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \rho_t & \Lambda_t \end{bmatrix}^{-1} \\ &= \begin{bmatrix} 1 & -\rho_t' \Lambda_t^{-1} \\ 0 & \Lambda_t^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \Omega^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\Lambda_t^{-1} \rho_t & \Lambda_t^{-1} \end{bmatrix} \\ &= \begin{bmatrix} 1 + \rho_t' \Lambda_t^{-1} \Omega^{-1} \Lambda_t^{-1} \rho_t & -\rho_t' \Lambda_t^{-1} \Omega^{-1} \Lambda_t^{-1} \\ -\rho_t \Lambda_t^{-1} \Omega^{-1} \Lambda_t^{-1} & \Lambda_t^{-1} \Omega^{-1} \Lambda_t^{-1} \end{bmatrix}$$

۲

#### Core Model (Sector Returns) Key Core Quantity

• Plot of 
$$\sum_{Z_t}^{-1}$$
 is some way?

• We start simple

$$\begin{aligned} r_{it} &= m_i + \sqrt{h_{it}} z_{it}, \\ \log h_{it} &= a_i + b_i \log h_{i,t-1} + c_i \log x_{i,t-1} + \tau^{(i)}(z_{i,t-1}), \\ \log x_{it} &= f_i + \log h_{it} + \delta^{(i)}(z_{i,t}) + u_{it}, \end{aligned}$$

• Related to Core model through correlation with  $Z_t$  and  $U_t$ .

#### Factor Model (Individual Return) Correlation with Core Variables

Let

$$\lambda_i = \operatorname{cov}(Z_t, z_{it}) \in \mathbb{R}^{K+1}$$

So that

$$z_{it}|Z_t \sim N(\lambda_i' \Sigma_{Z_t}^{-1} Z_t, 1 - \lambda_i' \Sigma_{Z_t}^{-1} \lambda_i).$$

Similarly

$$u_{it}|U_t \sim N(\Sigma_{iU}\Sigma_{UU}^{-1}U_t, 1-\Sigma_{iU}\Sigma_{UU}^{-1}\Sigma_{Ui}).$$

## • List $\lambda_i = \operatorname{cov}(Z_t, z_{it}) \in \mathbb{R}^{K+1}$ for some individual assets

- List  $\tilde{\lambda}_i = \operatorname{cov}(\tilde{W}_t, z_{it}) \in \mathbb{R}^{K+1}$  for some individual assets, where  $\tilde{W}_i = (Z_{0t}, W'_t)'$ .
- Better to keep model  $\tilde{\lambda}_i$  as constant?

• Factor loadings for *i*-th asset, are given by

 $\beta_{it} = \operatorname{var}(R_t)^{-1} \operatorname{cov}(R_t, r_{it})$ 

۲

$$\beta_{it} = D_{H_t}^{-1/2} \operatorname{var}(Z_t)^{-1} \operatorname{cov}(Z_t, z_{it}) \sqrt{h_{it}}$$
$$= D_{H_t}^{-1/2} \Sigma_{Z_t}^{-1} \lambda_i \sqrt{h_{it}}$$

where  $D_{H_t} = \operatorname{diag}(H_{0t}, H_{1t}, \ldots, H_{Kt})$ .

•  $\beta_{it} = D_{H_t}^{-1/2} \Sigma_{Z_t}^{-1} \lambda_i \sqrt{h_{it}}.$ 

۲

۲

• Factor loadings for studentized returns  $Z_t \mapsto z_{it}$ :

$$\tilde{\beta}_{it} = \Sigma_{Z_t}^{-1} \lambda_i$$

• Factor loadings: Studentized orthogonalized basis  $(Z_{0t}, W_t) \mapsto z_{it}$ 

$$\beta_{it}^{\perp} = \begin{bmatrix} 1 & 0 \\ \rho_t & \Lambda_t \end{bmatrix} \Sigma_{Z_t}^{-1} \lambda_i$$

#### • PLOT $\beta_{it}$ .

• PLOT 
$$\tilde{\beta}_{it} = \sum_{Z_t}^{-1} \lambda_i$$

#### • PLOT $\beta_{it}^{\perp}$ (perhaps excluding first element).

#### Realized Factor GARCH

- Multivariate GARCH Model with Realized Measures
- Flexible Factor Structure
- Key Features
  - Simple Parsimonious Structure
  - Easy to estimate.
  - Easy to Scale to Vast Systems
- Empirical Results
  - Intuitive results
  - ... much more to come.