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Abstract 

The standard vector error correction (VEC) model assumes the iid normal 
distribution of disturbance term in the model. This paper extends this assumption 
to include GARCH process. We call this model as VEC-GARCH model. 
However as the number of parameters in a VEC-GARCH model are large, the 
maximum likelihood (ML) method is computationally demanding. To overcome 
these computational difficulties, this paper searches for alternative estimation 
methods and compares them by Monte Carlo simulation. As a result a feasible 
generalized least square (FGLS) estimator shows comparable performance to ML 
estimator.  Furthermore an empirical study is presented to see the applicability of 
the FGLS. 

 
1. Introduction 

Vector Error correction (VEC) model is often used in econometric analysis and 
estimated by maximum likelihood (ML) method under the normality assumption. ML 
estimator is known as the most efficient estimator under the iid normality assumption. 
However there are disadvantages such that the normality assumption is often violated in 
real date, especially in financial time series, and that ML estimation is computationally 
demanding for a large model. Furthermore in our experience of empirical study error 
terns in VEC model often show a GARCH phenomenon, which violates iid assumption. 
To overcome these disadvantages and to reduce computational burden of ML estimator it 
may be worthwhile to reconsider the feasible generalized least square (FGLS) estimator 
instead of ML estimator (MLE) because FGLS method is relatively free from the 
distributional assumptions and ease computational burden.   

The purpose of this paper is to examine the finite sample properties of FGLS 
estimator in VEC-GARCH model by Monte Carlo simulation and by real data analysis of 
the international financial time series. The paper is organized as follows: Section 2 briefly 
surveys the multivariate GARCH (MGARCH hereafter) model; Section 3 describes VEC 
representation of the vector autoregressive (VAR) model; Section 4 presents a VEC-
GARCH model and shows that this model can be estimated by FGLS within the 
framework of the seemingly unrelated regression (SUR) model; Section 5 examines the 
performance of FGLS by Monte Carlo simulation; Section 6 presents an empirical 
application of VEC-GARCH model and shows the applicability of FGLS; finally Section 
7 gives some concluding remarks. 

   
2. Multivariate GARCH  

Multivariate GARCH model has been developed and applied in financial 
econometrics and numerous literature were published. The recent development in this 
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area were surveyed by Bauwens, L., S. Laurent and J. V. K. Rombouts (2006) and T. 
Ter svirta (2009) . Before investigating MGARCH model in this paper we briefly 
introduce MGARCH model focusing on relevant MGARCH models in our study.  

 
2.1. vech-GARCH model 

The univariate GARCH model has been generalized to N-variable multivariate 
GARCH models in many ways. The most straightforward generalization is the following 
vech-GARCH model by Bollerslev, Engle, and Woodridge (1988): 
       򻤠 򻤠򻤠/򻤠 򻤠 򻤠 ,  򻤠 򻤠򻤠  (1) 
where 򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠, and  򻤠 is assumed to follows a multivariate normal  
distribution 򻤠 . An element of the variance covariance  matrix 򻤠 is denoted by 򻤠򻤠򻤠 : 򻤠 򻤠򻤠򻤠  In the most general vech-GARCH model 򻤠  is given by     

  
   򻤠 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠  (2) 
where  is an operator that vectorizes a symmetric matrix. We briefly illustrate the 
2-variable case (N=2) for simplicity. For N=2 and p=q=1 򻤠  is written as follows: 

 򻤠򻤠,򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠
, 

 
and c is an (N(N+1)/2)×1=3×1 vector, and 򻤠 and 򻤠 are N(N+1)/2×N(N+1)/2 =3×3 
parameter matrices. Then 򻤠 򻤠 is written as 

 

򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠򻤠򻤠,򻤠
 

򻤠򻤠򻤠򻤠򻤠򻤠
򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠򻤠򻤠  (3) 

or  򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠  򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠
 

This representation is very general and flexible but there is a disadvantage that only a 
sufficient condition for the positive definiteness of the matrix 򻤠 is known. Furthermore 
the number of parameters is 򻤠  which is large unless 
N is small. For example, if  and , the number of parameters is 21, if N=3 
it is 78. This may cause computational difficulties. 
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2.2. Diagonal vech model 
To reduce such disadvantages mentioned above Bollerslev, Engle, and Wooldridge 

(1988) proposed diagonal vech model in which the coefficient matrices 򻤠  and 򻤠 are 
assumed diagonal. In this case the number of parameters is reduced to 

. For example, if  and  then the number is 9, and if N=3 it is 8. 
Furthermore in this case the necessary and sufficient conditions for the positive 
definiteness of 򻤠 are obtained by Bollerslev, Engle, and Nelson (1994). The variance 
equation (3) is simplified as follows: 

 

򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠򻤠򻤠,򻤠
򻤠򻤠򻤠򻤠򻤠򻤠

򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠򻤠,򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠,򻤠򻤠򻤠
or 򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 

 
 

2.3. BEKK model 
To ensure the positive definiteness of 򻤠 Engle and Kroner (1995) proposed a 

following model called as Baba-Engle-Kraft-Kroner (BEKK) model. 
 򻤠 򻤠 򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠

 
where 򻤠򻤠 򻤠򻤠  are N × N coefficient matrices, C is a lower triangular matrix.  
Although this decomposition of the constant term can ensure the positive definiteness of 򻤠, which is the advantage of this model, the number of parameters is quite large. 
Because of this, estimation of this model is often infeasible for a large model.  When K=1 
this model is written as  
 򻤠 򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠

 
In this case the number of parameters is np 򻤠 . If  

and N=2, then , and  for N=3. If  it may not be feasible to 
estimate this model. To reduce number of parameters it is common and popular to 
assume that the coefficient matrices A, B are diagonal. This model is called Diagonal 
BEKK model (Engle and Kroner (1995)). In this model np= . If 

 and N=2, then , and  for N=3. For small size Diagonal BEKK 
model the calculation is feasible. However, even in Diagonal BEKK model, np will be 
large when N is not small. For example, np=35 when  and N=5.  

 
 
 
 



5 
 
 

We illustrate several versions of (5) for a simple case N=2 and K=1: 
 

Unrestricted BEKK. In this case the variance covariance matrix 򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠 򻤠򻤠,򻤠  is 

expressed as  

򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠
򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠

򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠  
or 򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠

 
where 򻤠 is positive definite by construction.  
 
Diagonal BEKK is expressed as  
 

򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠

򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠
or 򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠 򻤠򻤠 򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠
 
where 򻤠򻤠,򻤠 in these variance covariance equations only depend on their own lagged 
values 򻤠򻤠,򻤠򻤠򻤠. 
    Engle and Kroner (1995) shows that the diagonal vech and the diagonal BEKK are 
equivalent as follows: By stacking the diagonal elements of A and B of the diagonal 
vech model, i.e., 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 
and write  򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠 򻤠򻤠򻤠 
 
then it is easy to see that 򻤠  is identical to the diagonal vech. 
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There are many other types of multivariate GARCH model. They are surveyed, for 
example, in Bauwens, L., S. Laurent and J. V. K. Rombouts (2006) and Silvennoinen 
and Terasvirta (2009).   

Bollerslev, Engle, and Wooldridge (1988) introduced a restricted version of the general 
multivariate vec model of GARCH with following representation: 

 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠
 
where the operator  is the Hadamard product and  is Kronecker Product. To ensure 
the positive semi-definiteness (PSD) there are several ways for specifying coefficient 
matrices. One example is to specify , , and B as products of Cholesky factorized 
triangular matrices. Such parameterization will be used in the latter section in this paper. 
 
2.4. Log-likelihood function of vech-GARCH 

If the distribution of errors 򻤠 is a multivariate normal, then the log-likelihood 
function of (1) is given by 
 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠

 
In calculating MLE we have to invert 򻤠 at every time t. This is computationally 

tedious when T and N are not small. Furthermore 򻤠 is often noninvertible.  
 

3. VEC representation of VAR model  
We consider M-variate and k-th order vector autoregressive time series 򻤠 

= 򻤠,򻤠 򻤠,򻤠 򻤠 ,򻤠  
  򻤠 򻤠 򻤠򻤠򻤠 򻤠 򻤠򻤠򻤠 򻤠
This model is called Vector Autoregressive (VAR) Model. The subscript t denotes 

time: . The errors 򻤠 are assumed to follows iid M-dimensional multivariate 
normal distribution N(0, . Note that  does not depend on time t. Later in this paper we 
consider the time dependent case, i.e., 򻤠. Now by introducing a  matrix defined 
by 򻤠 򻤠 򻤠 
We can rewrite (7) as  
 򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠
 
where, 򻤠򻤠򻤠  = 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠 ,򻤠򻤠򻤠 򻤠

 a vector of first order lagged of 򻤠. 򻤠  = 򻤠,򻤠 򻤠,򻤠 򻤠,򻤠 򻤠 ,򻤠 : a vector of first difference of 򻤠 at time t. 
C0  = 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 : a vector of constant terms. 
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򻤠  = 򻤠 򻤠 򻤠 : a vector of disturbance errors which is assumed iid M-dimensional 
multivariate normal distribution N(0, . 

 
In what follows we consider a case in which all elements in 򻤠 are I(1). In this case as 

the left hand side variables 򻤠 are sationary I(0) the right hand side of (8) should be also 
stationary. To ensure the stationarity of the right hand side of (8), the rank of the 
coefficient matrix  is less than M or rank( )<M. The reason is as follows: if rank( )=M 
then there exists 򻤠򻤠 and the equation (8) can be solved for I(1) variable 򻤠򻤠򻤠 as a linear 
combination of stationary variables 򻤠 and 򻤠򻤠򻤠 . This is a contradiction. This is 
because why rank( )<M. Under this rank condition  can be decomposed as follows: 

  
where 
A = 򻤠 򻤠 򻤠 򻤠 : vector of coefficients in cointegrating equation (loading 

matrix that contains adjustment parameters) and, 
B = 򻤠 򻤠 򻤠 򻤠 : a vector of cointegrating coefficient, 

  = 
򻤠򻤠 򻤠򻤠
򻤠 򻤠 򻤠 򻤠 : a M by M matrix, 

where 򻤠򻤠򻤠  is assured to be stationary (Granger’s representation theorem). The 
stationarity of 򻤠򻤠򻤠 means that a linear combination of elements in 򻤠򻤠򻤠 is stationary, in 
such elements are called as co-integrated and B is called as co-integration vector. The 
coefficient matrix A is called as loading vector because A conveys cointegrated variables 
to the system. 
 
4. Vector Error correction with GARCH errors (VEC-GARCH model) 
4.1. VECM with BEKK errors 

So far we have considered the standard Vector Error Correction Model (VECM), 
where a set of time series is nonstationary at level, but stationary at their first differences 
and 򻤠   Matrix  represents the long run relationship between the variables 
in Equation (8) and Johansen (1988) proposed a maximum likelihood estimation of (8) 
for the case of the rank of matrix , where .  

In what follows, we relaxed the assumption of homoscedasticity of the errors. Instead, 
we assume that 򻤠 has zero mean and time dependent variance-covariance matrix of 򻤠 
that has the BEKK GARCH structure as given by (6): 
 򻤠 򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠
 
4.2. SUR representation 

VEC model with GARCH errors can be represented by Seemingly Unrelated 
Regression (SUR) model as follows. SUR representation of VEC model seems to be 
worthwhile to consider.  For simplicity we consider three-equation VEC model such as: 

򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠
or 
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򻤠,򻤠򻤠,򻤠򻤠,򻤠
򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠
򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠
򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠򻤠,򻤠򻤠򻤠

for t=1, 2, …, n. 
 
Alternatively this system can be written as 

 򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠
 
where 򻤠 and  򻤠 are the ith row of  and  respectively, i.e., 
 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠򻤠򻤠   
򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠򻤠򻤠   

򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠

򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠 򻤠,򻤠򻤠򻤠  

򻤠,∙ 򻤠,򻤠 򻤠,򻤠 򻤠,򻤠 򻤠,򻤠   and, 򻤠 򻤠,򻤠 򻤠,򻤠 򻤠,򻤠 򻤠,򻤠 . 
 

Defining new matrices X and  by 
 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠
 
the 3-equation VEC model (8) can be written as SUR model as follows: 
 򻤠򻤠򻤠

򻤠򻤠򻤠
 

We assume that , 򻤠򻤠 򻤠򻤠  for , and the variance and covariance 򻤠򻤠򻤠 򻤠򻤠򻤠 and 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 follow MGARCH(1,1).  Let us define 򻤠 , or in 
the complete form: 
 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠
 
where, 򻤠򻤠 is a n×n diagonal matrix where its main diagonal elements are elements of n-
vector of 򻤠򻤠,򻤠 and zeros on the off diagonal elements and, 򻤠򻤠 򻤠򻤠 , i.e., 
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򻤠򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

 

 
 
 
Thus we have 
 

 

򻤠򻤠,򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠
 
򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

 
򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

 k

 
k

򻤠򻤠,򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠
 
򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

  

 

򻤠򻤠,򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

򻤠򻤠,򻤠
 
򻤠򻤠,򻤠

򻤠򻤠,򻤠
򻤠򻤠,򻤠

  

 
where 򻤠򻤠,򻤠 follow multivariate MGARCH(1,1) process.  
 

After obtaining an estimate , we have FGLS, 
 򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 .
 
Note that inverting a large and sparse matrix  often causes computational problems such 
as memory size, computer time, and inaccurate numerical results. To avoid those 
problems we propose the following algorithm: After estimating MGARCH process we 
construct a relatively small matrix 򻤠 and its inverse 򻤠򻤠򻤠 at each time t such that,  
    

 򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠  (10) 

where  򻤠 and 򻤠򻤠,򻤠are estimated variance covariance of MGARCH.  
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򻤠򻤠,򻤠 򻤠򻤠򻤠 򻤠򻤠
 
5. Monte Carlo Simulation 
5.1 Data generating Process (DGP) 
 Monte Carlo simulation is carried out by generating artificial data of three series. 
The data generating process (DGP) is repeated for 1000 times. We run the 
simulation for the number of observations n : 100, 300 and 500.  For removing the 
initial value effect, we generate 2n observations for each series and remove the first 
half of the generated data in each simulation run. The true model for generating the 
data is specified as follows: 
 
 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠 (11) 
 
or in stacked model it can be restated as, 
 򻤠򻤠򻤠򻤠򻤠򻤠

򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠

򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠
򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠򻤠

򻤠򻤠򻤠򻤠򻤠򻤠  

 
where 򻤠 follow GARCH process, 򻤠 򻤠  and 򻤠 follows the diagonal BEKK: 򻤠 ∗ ∗ 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 ∗ 򻤠򻤠򻤠 
with 

∗ 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠  

∗ 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠  

∗ 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠  

 ∗, ∗ are transformed matrices of  and  where where  and  are [0.3,0.6,0.2], 
[0.3,0.5,0.4] respectively. M* is a transformed matrix of M’M where M is a diagonal 
matrix with its diagonal elements are [0.5,0.3,0.7]. Equivalently, the variance-
covariance equations are as follow: 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 
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 Equation (11) can be rewritten as Vector Error Correction Model (VECM): 

 
 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠 (12) 

 
where  and . The true values of P and Q are set as follow: 

 
  and   

 
thus  which can be decomposed into loading vector  
and cointegrating vector . 
 
Before we generate 򻤠, we have to generate 򻤠 ~N(0, 򻤠) as follows. 

 
Step 1. Generate 򻤠 򻤠򻤠򻤠򻤠򻤠򻤠  
Step 2. Generate 򻤠 using Diagonal BEKK model from 򻤠 
Step 3. Transform 򻤠 to 򻤠 by applying Cholesky Decomposition: 򻤠 򻤠 򻤠, 

where 򻤠 is lower triangular matrix obtained from decomposing 򻤠 򻤠 򻤠򻤠. 
By construction, the positive definiteness (PD) of  򻤠 is assured.  

  
5.2.  Estimation Strategy 

Under the above DGP we carried out Monte Carlo simulation for the following 
five cases:  
 
Case 1 (OLS): We estimate parameters equation by equation in equation (9) by OLS 
without considering GARCH error structure and obtain the followings: 򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 򻤠,∙ 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠 
 
Case 2 (VECM): We estimate parameters in equation (12) by VECM system equation 
without considering GARCH error structure and obtain the followings: 
 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠 
 
Case 3 (FGLS-OLS-GARCH/FOLSH): First we calculate OLS residuals 򻤠 for each 
equations without considering GARCH error structure as in Case 1.  Next, we use 򻤠 
for obtaining variance covariance matrix 򻤠 and 򻤠򻤠򻤠 in the diagonal BEKK model. 
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Having 򻤠 and 򻤠򻤠򻤠 in hand we can construct  and 򻤠򻤠 to have feasible generalized 
least square (FGLS) estimator. 
 
Case 4 (FGLS-VECM-GARCH/FVECH): We use VECM system equations as in Case 2 
for estimating . First we obtain each residual 򻤠 from VECM in Case 2.  Next, we use  򻤠 for obtaining variance covariance matrix 򻤠 and 򻤠򻤠򻤠 in the diagonal BEKK model. 
Having 򻤠 and 򻤠򻤠򻤠 in hand we can construct  and 򻤠򻤠 to have feasible generalized 
least squre (FGLS) estimator. 
 
Case 5 (MLE): We estimate all parameters in the mean equation (12) and the 
diagonal BEKK variance equation (5) by MLE and obtain the estimated system as 
follows: 
 
Mean equation: 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠 
Variance equation: 򻤠 򻤠 򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠򻤠   
 
or equivalently the variance-covariance equations are as follow: 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠򻤠򻤠򻤠 򻤠򻤠򻤠 򻤠򻤠,򻤠򻤠򻤠 
 
In estimating the parameters we maximize log likelihood function as specified in 
Equation (6). We run the simulation in Eviews program (version 7.2). For Case 5, in 
order to starting the iteration, the initial values of VECM parameters (the mean 
equation) were set based on single OLS equations as in Case 1. Meanwhile, the initial 
values for MGARCH parameters in the variance equations were set based on 
univariate GARCH. 

 
5.2. Simulation Results  

The main estimation methods under investigation in this paper are FGLS-based 
estimator (FOLSH and FVECH) and Maximum Likelihood Estimator (MLE). These 
strategies are taking into account the presence of MGARCH error structure. 
Presumably, the strategies are expected to outperform the other strategies that 
neglect the MGARCH error structure (OLS and VECM). Summary of simulation 
results is presented in Table 1. From the table, we observed that estimation 
methods FOLSH, FVECH, and MLE seem to outperform the other methods (OLS and 
VECM); the mean of the estimated parameter from 1000 times simulation run tends 
to be closer to its true value in most cases. 

OLS and VECM under the heteroscedasticity condition still provide us an 
unbiased estimator, but their standard deviations are larger than the methods that 
assume MGARCH error structure. Table 2 shows that MLE, FOLSH, and FVECH are 
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more efficient than OLS and VECM. It shows that methods ignoring the MGARCH 
error structure would result in less efficient estimator. All methods are consistent 
estimator and the efficiency measured by the Mean Squared Error (MSE) are 
improving when larger sample size is used.  
 
Table 1 – Parameter Estimates from Monte Carlo Simulation 

n=100 
 True Value

OLS VECM FOLSH FVECH MLE 
Parameters Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.򻤠򻤠 0.000 -0.048 0.082 -0.011 0.074 -0.043 0.082 -0.042 0.081 -0.038 0.078򻤠򻤠 0.000 -0.010 0.083 -0.011 0.074 -0.008 0.083 -0.008 0.084 -0.007 0.079򻤠򻤠 0.000 0.005 0.040 0.005 0.037 0.003 0.040 0.003 0.040 0.003 0.037򻤠򻤠 -0.300 -0.272 0.127 -0.279 0.127 -0.275 0.129 -0.275 0.131 -0.282 0.122򻤠򻤠 0.000 -0.001 0.082 0.018 0.132 -0.002 0.085 -0.001 0.084 -0.002 0.079򻤠򻤠 0.000 0.001 0.049 -0.520 0.149 0.001 0.052 0.001 0.050 0.001 0.048򻤠򻤠 0.000 -0.017 0.099 -0.019 0.090 -0.009 0.092 -0.009 0.094 -0.010 0.076򻤠򻤠 0.000 -0.072 0.109 -0.020 0.091 -0.051 0.098 -0.047 0.102 -0.040 0.084򻤠򻤠 0.000 0.009 0.047 0.010 0.045 0.004 0.043 0.004 0.049 0.005 0.036򻤠򻤠 0.000 0.016 0.133 0.000 0.080 0.010 0.127 0.010 0.132 0.009 0.103򻤠򻤠 -0.700 -0.647 0.101 -0.668 0.100 -0.656 0.095 -0.660 0.095 -0.670 0.087򻤠򻤠 0.000 -0.003 0.057 -1.018 0.105 -0.004 0.052 -0.003 0.053 -0.001 0.045򻤠򻤠 1.000 1.026 0.101 1.025 0.102 1.027 0.109 1.026 0.109 1.026 0.109򻤠򻤠 1.000 1.025 0.101 1.026 0.103 1.027 0.110 1.026 0.112 1.025 0.114򻤠򻤠 -0.500 -0.512 0.048 -0.512 0.049 -0.513 0.052 -0.513 0.053 -0.513 0.052򻤠򻤠 -0.500 -0.520 0.149 0.000 0.049 -0.521 0.158 -0.523 0.157 -0.522 0.161򻤠򻤠 -1.000 -1.017 0.106 -0.003 0.056 -1.018 0.114 -1.016 0.115 -1.018 0.117򻤠򻤠 -0.100 -0.094 0.094 -0.093 0.066 -0.095 0.069 -0.093 0.071 -0.095 0.070

n=300 
OLS VECM FOLSH FVECH MLE 

Parameters True Value Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.򻤠򻤠 0.000 -0.021 0.042 -0.007 0.039 -0.019 0.043 -0.019 0.043 -0.016 0.037򻤠򻤠 0.000 -0.006 0.042 -0.007 0.039 -0.005 0.042 -0.005 0.042 -0.004 0.038򻤠򻤠 0.000 0.004 0.020 0.003 0.020 0.003 0.021 0.003 0.020 0.002 0.019򻤠򻤠 -0.300 -0.281 0.073 -0.285 0.074 -0.284 0.074 -0.285 0.073 -0.287 0.073򻤠򻤠 0.000 0.004 0.043 0.005 0.078 0.003 0.043 0.003 0.044 0.001 0.041򻤠򻤠 0.000 0.000 0.028 -0.502 0.088 0.000 0.028 0.000 0.028 0.001 0.025򻤠򻤠 0.000 -0.004 0.054 -0.004 0.052 0.000 0.045 -0.001 0.045 -0.001 0.035򻤠򻤠 0.000 -0.021 0.055 -0.004 0.052 -0.011 0.046 -0.011 0.046 -0.008 0.035򻤠򻤠 0.000 0.002 0.026 0.002 0.026 0.000 0.022 0.000 0.022 0.000 0.017򻤠򻤠 0.000 0.005 0.078 0.004 0.043 0.001 0.070 0.002 0.069 0.002 0.054򻤠򻤠 -0.700 -0.683 0.057 -0.690 0.057 -0.688 0.052 -0.689 0.051 -0.692 0.040򻤠򻤠 0.000 -0.001 0.033 -1.002 0.059 -0.001 0.028 0.000 0.028 0.000 0.021򻤠򻤠 1.000 1.003 0.056 1.003 0.056 1.002 0.055 1.002 0.056 1.002 0.057򻤠򻤠 1.000 1.003 0.056 1.004 0.056 1.003 0.056 1.003 0.056 1.002 0.057򻤠򻤠 -0.500 -0.502 0.027 -0.502 0.027 -0.502 0.027 -0.502 0.027 -0.501 0.028򻤠򻤠 -0.500 -0.502 0.088 0.000 0.028 -0.501 0.089 -0.501 0.089 -0.501 0.088򻤠򻤠 -1.000 -1.002 0.059 -0.001 0.032 -1.001 0.060 -1.002 0.059 -1.000 0.060򻤠򻤠 -0.100 -0.096 0.037 -0.096 0.037 -0.096 0.038 -0.096 0.038 -0.096 0.038
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Table 1 (Continued) – Parameter Estimates from Monte Carlo Simulation 
n=500 

OLS VECM FOLSH FVECH MLE 
Parameters True Value Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.򻤠򻤠 0.000-0.010 0.033-0.002 0.032 -0.010 0.033 -0.009 0.033 -0.007 0.029򻤠򻤠 0.000-0.001 0.033-0.002 0.031 -0.001 0.034 -0.001 0.034 0.000 0.029򻤠򻤠 0.000 0.001 0.016 0.001 0.016 0.001 0.016 0.000 0.016 0.000 0.014򻤠򻤠 -0.300 -0.297 0.056-0.299 0.056 -0.296 0.059 -0.297 0.057 -0.297 0.050򻤠򻤠 0.000 0.000 0.032 0.003 0.060 0.000 0.032 0.000 0.032 0.000 0.029򻤠򻤠 0.000-0.001 0.022-0.506 0.066 -0.001 0.022 -0.001 0.022 0.000 0.019򻤠򻤠 0.000-0.004 0.040-0.004 0.040 -0.002 0.035 -0.002 0.035 -0.001 0.026򻤠򻤠 0.000-0.015 0.041-0.004 0.040 -0.009 0.036 -0.009 0.036 -0.005 0.027򻤠򻤠 0.000 0.002 0.020 0.002 0.020 0.001 0.017 0.001 0.017 0.000 0.013򻤠򻤠 0.000 0.003 0.060 0.001 0.031 0.001 0.053 0.001 0.052 0.002 0.043򻤠򻤠 -0.700 -0.691 0.044-0.695 0.044 -0.694 0.038 -0.695 0.037 -0.696 0.029򻤠򻤠 0.000 0.001 0.025-1.002 0.042 0.001 0.022 0.000 0.021 0.000 0.016򻤠򻤠 1.000 1.004 0.039 1.004 0.039 1.004 0.040 1.003 0.040 1.005 0.044򻤠򻤠 1.000 1.003 0.040 1.003 0.040 1.003 0.041 1.002 0.041 1.004 0.043򻤠򻤠 -0.500 -0.502 0.020-0.502 0.020 -0.502 0.020 -0.501 0.020 -0.502 0.022򻤠򻤠 -0.500 -0.506 0.066-0.001 0.022 -0.504 0.066 -0.504 0.066 -0.506 0.072򻤠򻤠 -1.000 -1.002 0.042 0.001 0.025 -1.001 0.043 -1.001 0.043 -1.001 0.045򻤠򻤠 -0.100 -0.099 0.028-0.099 0.028 -0.099 0.028 -0.099 0.028 -0.099 0.031
 

MLE is still the most efficient estimator as shown by the least average MSE in 
every sample size. However, MLE become computationally demanding when 
number of parameter is large. Table 2 shows that FGLS-based estimator (FOLSH and 
FVECH) perform better than OLS and VECM and only slightly inferior to MLE. It 
suggests that FGLS-based estimator could be useful in overcoming computation 
burden of the MLE. FGLS-based estimator needs to compute inverse of  which is a 
very large and sparse matrix, but the inversion of that matrix may cause 
computational problems as mentioned above in Section 4. Such problems can be 
solved by the suggested method in that section. The algorithm for matrix inversion 
in most statistical software is still limited only for matrix in small dimension. We 
already tried to compute 򻤠򻤠 using standard command in EViews and MATLAB in 
our simulation, while n<100 FGLS-based estimators perform fairly good that 
comparable to MLE. However, when n becomes larger (i.e. n=300 and n=500), the 
FGLS-based estimator become poorly inefficient since it produces extreme values 
for the estimated parameters. All estimated parameters from FGLS-based estimators 
presented in this paper are based on our matrix inversion procedure. The results 
based on standard matrix inversion in statistical software are not presented to save 
space.  
 
Table 2 – Average of Mean Squared Error 

 OLS VECM FOLSH FVECH MLE 
n=100 0.00970 0.15012 0.00936** 0.00958* 0.00834*** 
n=300 0.00280 0.14180 0.00255* 0.00253** 0.00218*** 
n=500 0.00154 0.14104 0.00144* 0.00141** 0.00127*** 

Note: *** The best estimator, ** 2nd best estimator, * 3rd best estimator 
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Figures 1 compares the distribution of 򻤠򻤠 with n=500. The figures show that 
MLE is the most efficient estimator. FOLSH and FVECH have very similar efficiency 
as shown by the empirical distribution histogram and relatively are more efficient 
than OLS and VECM. The figure also shows that OLS estimator is biased to the left 
although the sample size is large (n=500). 

Figure 2 and 3 show example of empirical distribution of the estimated 
parameter 򻤠򻤠 by MLE and FOLSH respectively, for n=100, 300, and 500. Those 
figures suggest that both ML estimator and FOLSH are consistent estimators as the 
estimated parameter more converge to the true value when the sample size is larger. 
Both MLE and FOLSH tend to be unbiased when sample size is large.  
 
Figure 1 –Empirical Distribution Histogram of 򻤠򻤠 when n=500 

 Note: The true value for 򻤠򻤠 is 0 as shown by the vertical dashed line 
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Figure 2 –Empirical Distribution Histogram of 򻤠򻤠 by MLE 

 Note: The vertical dashed line indicates the true value of the parameter 
 
Figure 3 –Empirical Distribution Histogram of 򻤠򻤠 by FOLSH 

 Note: The vertical dashed line indicates the true value of the parameter.  
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Figure 4 –Empirical and Theoretical t-Distribution Histogram of 򻤠򻤠 by FOLSH and MLE 

 
Note: degree of freedom = nm-k, where n=number observation, m=number of equation (3), and k=number of parameter (18) 
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Table 3 – Average of Rejection Rate of Null Hypothesis* Test at 5 Percent Significance Level 

n=100 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 Average 
OLS 0.151 0.127 0.127 0.142 0.119 0.099 0.135 0.203 0.128 0.118 0.171 0.102 0.107 0.100 0.105 0.095 0.113 0.104 0.125 
VECM 0.111 0.107 0.111 0.142 0.110 0.969 0.136 0.131 0.134 0.117 0.155 1.000 0.139 0.086 0.100 1.000 1.000 0.113 0.315 
FOLSH 0.024 0.071 0.072 0.097 0.080 0.071 0.061 0.032 0.086 0.088 0.138 0.059 0.080 0.077 0.028 0.035 0.035 0.060 0.066 
FVECH 0.021 0.070 0.079 0.099 0.081 0.062 0.052 0.027 0.073 0.092 0.126 0.062 0.085 0.082 0.028 0.040 0.035 0.063 0.065 
MLE  0.008  0.031  0.033  0.037  0.028  0.026  0.033  0.022  0.043  0.043  0.070  0.037  0.049  0.043  0.015  0.018  0.012   0.023   0.032  
                    n=300 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 Average 
OLS 0.143 0.111 0.097 0.154 0.093 0.098 0.146 0.165 0.140 0.110 0.151 0.100 0.103 0.113 0.111 0.122 0.112 0.108 0.121 
VECM 0.099 0.099 0.099 0.157 0.111 1.000 0.138 0.137 0.138 0.090 0.147 1.000 0.119 0.105 0.104 1.000 1.000 0.115 0.314 
FOLSH 0.030 0.054 0.072 0.105 0.068 0.055 0.061 0.030 0.064 0.069 0.085 0.054 0.049 0.056 0.053 0.056 0.057 0.060 0.060 
FVECH 0.026 0.048 0.075 0.102 0.070 0.062 0.063 0.031 0.062 0.075 0.087 0.053 0.049 0.055 0.051 0.057 0.054 0.062 0.060 
MLE  0.015  0.030  0.041  0.075  0.043  0.038  0.045  0.026  0.053  0.071  0.077  0.042  0.038  0.042  0.048  0.049  0.053  0.046   0.046  
                    n=500 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 򻤠򻤠 Average 
OLS 0.122 0.122 0.110 0.142 0.083 0.101 0.135 0.153 0.134 0.111 0.148 0.109 0.096 0.095 0.094 0.108 0.096 0.104 0.115 
VECM 0.110 0.110 0.110 0.147 0.114 1.000 0.137 0.137 0.137 0.089 0.156 1.000 0.106 0.087 0.091 1.000 1.000 0.106 0.313 
FOLSH 0.031 0.073 0.072 0.074 0.045 0.055 0.061 0.037 0.076 0.075 0.072 0.069 0.052 0.050 0.036 0.044 0.041 0.040 0.056 
FVECH 0.038 0.077 0.067 0.073 0.042 0.053 0.065 0.040 0.070 0.071 0.065 0.063 0.052 0.049 0.036 0.045 0.044 0.041 0.055 
MLE 0.023  0.047  0.051  0.062  0.046  0.048  0.061  0.040  0.059  0.086  0.054  0.055  0.047  0.044  0.038  0.039  0.039  0.043  0.049 

*The null hypothesis: the estimated parameter = its true value, the alternative hypothesis: the estimated parameter  its true value
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 Figure 4 shows example of empirical t-statistic distribution for 򻤠򻤠. From the 
figures, both FOLSH and MLE tend to conform to student-t distribution when larger 
sample size is used. The empirical distribution for 򻤠򻤠 estimated by FVECH is very 
similar to that by FOLSH. Table 3 shows that rejection rate of null hypothesis that 
each parameter is equal to its true value is also close to the significance level (0.05) 
for parameter estimated by FOLSH, FVECH, and MLE. From the table it is also 
apparent that estimators that do not consider multivariate GARCH error structure 
(OLS and VECM) has higher rejection rate compares to those of estimators that 
consider the error structure (FOLSH, FVECH, and MLE). These findings show us that 
neglecting the presence of multivariate GARCH error structure will increase the 
rejection rate or the type I error. 
 
5. Empirical Application 
 Weekly data from July 1997 until July 2011 of US S&P500, Japan Nikkei225 and 
Malaysia KLSE composite index are collected as a dataset for our model (n=732). 
The indexes are stated in logarithmic and are measured in US Dollar. Since they are 
in log index, their first order differences can be regarded as stock market return of 
the respective markets. 
 Unit root test indicates that the three time series are non-stationary at level, but 
they are stationary at their first difference. The Augmented Dickey Fuller (ADF) 
statistic ( -stat.) for data in level indicates the null hypothesis that the series has 
unit root cannot be rejected at 10 percent significance level or less. Meanwhile, the 

-stat. for the respective series in the first order difference significantly rejects the 
null hypothesis of unit root at one percent significance level. 

 
Table 4 - Unit Root Test 

 
Level 1st Differences 

Unit Root Test ADF -stat. P-Value ADF -stat. P-Value 
S&P500 -2.4618 0.1254 -29.7881 0.0000 
Nikkei225 -2.4258 0.1349 -27.8684 0.0000 
KLSE -0.8080 0.8158 -28.1092 0.0000 
Null Hypothesis: Series has unit root 

 
 Johansen’s cointegration test was performed for the dataset, the results, as 
presented in Table 5, show that one cointegrating equation is found from tests 
based on both Trace and Maximum Eigenvalue method. 
 Estimation of VECM with one cointegrating equation is shown in Table 6, where 
Y1, Y2, and Y3 correspond to log of S&P500, Nikkei225, and KLSE index respectively. 
From the table, it shows that coefficients of error correction for cointegrating 
equation are all significant to show that the stock markets have long run price 
relationship. In the VAR part, lagged S&P500 return has significant effect to itself 
and to both Japanese and Malaysian stock market returns. The results indicate that 
US stock market is still a very dominant market that shares its greater influence to 
other markets. 
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Table 5 - Johansen Cointegration Test 
Unrestricted Cointegration Rank Test (Trace) 
Hypothesized Trace 0.05 
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
None * 0.0436 38.0006 29.7971 0.0046 
At most 1 0.0058 5.4141 15.4947 0.7634 
At most 2 0.0016 1.1569 3.8415 0.2821 
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
Hypothesized Max-Eigen 0.05 
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 
None * 0.0436 32.5865 21.1316 0.0008 
At most 1 0.0058 4.2572 14.2646 0.8313 
At most 2 0.0016 1.1569 3.8415 0.2821 
Trace and Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values 

  
Table 6 - Vector Error Correction Model (VECM) 

Coint.Eq. Coef. 
  Y1t-1 1.000 

Y2t-1 -0.682 
  (0.090) 

Y3t-1 -0.024 
 

(0.054) 
  C -3.700 

E.C. Eq. ∆Y1t ∆Y2t ∆Y3t 
Coint.Eq. -0.024 0.027 0.040 

(0.009) (0.012) (0.015) 
∆Y1t-1 -0.095 0.214 0.174 

(0.041) (0.053) (0.069) 
∆Y2t-1 -0.007 -0.076 0.032 

(0.032) (0.042) (0.055) 
∆Y3t-1 0.012 -0.047 -0.076 
 

(0.024) (0.031) (0.040) 
C 0.000 -0.001 0.000 

(0.001) (0.001) (0.002) 
Standard Error in Parenthesis 

 
 In addition, the significant VECM coefficients also indicate that past information 
(lagged variables of both price and return) can explain the present stock market 
returns. It implies that the stock markets are neither informationally efficient nor 
perfectly integrated. The importance of past information may be used for setting 
arbitrage strategies in the markets to exploit the market inefficiency. 
 The residuals of estimated VECM show a non-homoscedastic structure as it is 
shown in Figure 5. The residual of VECM can be regarded as a market shock or the 
unexpected return, and from the figure we can observed that during period of 1999-
2002 and 2008-2009 the volatility of the US residuals were higher compared to that 
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in the other periods. The two sub-periods are known as the burst of dot-com bubble 
and the collapse of financial institutions in the US market. The pattern of the Japan 
residuals is less clear to be connected with some events; however, it is clear that the 
residuals are also not homoscedastic. Meanwhile, the residuals plot of Malaysian 
stock market returns show that higher volatility is detected during the Asian 
financial crisis in 1997-1998 and also during the US financial turmoil in late 2008 
until 2009.  
 The similar pattern of residuals during a crisis period, i.e. during the collapse of 
Lehman Brothers in US, indicates the presence of volatility spillover from US to 
other markets, and thus it become evidence of the correlated structure of the 
residuals. This phenomenon is often seen in financial market. The latter property of 
the residuals becomes a motivation to apply SUR type model. 

Residuals from each single OLS model are also computed, the results are similar 
to those of VECM’s residuals that they indicate that the residuals are heteroscedastic. 
The residuals are then used in estimating 򻤠 by Diagonal BEKK. Having the 
variance-covariance series, we proceed to the next step for constructing matrix  
and used it to obtain FGLS estimators. 
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Figure 5 - Residuals of VECM 
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Figure 6 - Estimated Conditional Variance-Covariance 

  (a) Conditional Variance 

 (b) Conditional Covariance 
 
The FGLS estimators, the restated VECM (without GARCH), OLS, and MLE 

estimated parameters are shown in Table 7. As shown in the table, although the sign 
and value of the estimated parameters are very similar among the various 
estimation methods, but the probability of significance are sometime different. 
Based on the data properties shown in Figure 5 and 6, the GARCH error structure 
does exists. And based on the simulation results, estimation methods that take into 
account the GARCH structure are more efficient than those that ignore the structure. 
Therefore, in the empirical example, the use of such methods (OLS and VECM) might 
produce wrong conclusion regarding the significance of the estimated parameters. 
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For example, 򻤠򻤠 estimated by OLS (and VECM) is significantly different from zero, 
but it is not significant when it is estimated by FOLSH, FVECH, and MLE.  It means 
that when we estimate the parameter using method that neglecting the MGARCH 
error structure we would conclude that lagged of Nikkei225 Index (Japanese stock 
prices) affects Malaysia KLSE returns (Malaysian stock returns), while we should 
not. 

 
Table 6 - Estimated Parameters of OLS, VECM, FOLSH, FVECH, and MLE 
Estimated 
Parameter 

OLS VECM FOLSH FVECH MLE 
Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

򻤠򻤠 0.139 0.047** 0.089 # 0.138 0.045** 0.195 0.045 ** 0.139 0.038** 

򻤠򻤠 -0.028 0.009** -0.024 # -0.029 0.010** -0.040  0.010 ** -0.024 0.007** 

򻤠򻤠 0.014 0.007* 0.016 # 0.014 0.004** 0.019  0.004 ** 0.008 0.004 

򻤠򻤠 -0.001 0.003 0.001 # 0.000 0.000** 0.000  0.000 ** -0.001 0.002 򻤠򻤠 -0.093 0.041* -0.095 0.041* -0.091 0.159 -0.090  0.061  -0.106 0.040** 

򻤠򻤠 -0.006 0.032 -0.007 0.032 0.007 0.010 0.008  0.005  -0.004 0.024 򻤠򻤠 0.013 0.024 0.012 0.024 0.038 0.028 0.038  0.017 * 0.035 0.015* 

򻤠򻤠 -0.023 0.061 -0.102 # -0.017 0.025 0.028  0.016 * -0.006 0.048 

򻤠򻤠 0.020 0.012 0.027 # 0.015 0.016 0.005  0.003 * 0.019 0.009* 򻤠򻤠 -0.024 0.009** -0.019 # -0.020 0.031 -0.015  0.009 * -0.023 0.006** 

򻤠򻤠 -0.001 0.003 -0.001 # 0.001 0.002 0.001  0.000 * -0.003 0.003 򻤠򻤠 0.218 0.053** 0.214 0.053** 0.259 0.086** 0.261  0.066 ** 0.200 0.042** 

򻤠򻤠 -0.075 0.042 -0.076 0.042 -0.094 0.045* -0.095  0.031 ** -0.050 0.038 

򻤠򻤠 -0.046 0.031 -0.047 0.031 -0.056 0.037 -0.057  0.023 ** -0.026 0.022 

򻤠򻤠 -0.129 0.079 -0.147 # -0.109 0.272 -0.052  0.035  -0.017 0.050 򻤠򻤠 0.040 0.016* 0.040 # 0.026 0.041 0.011  0.007 * 0.007 0.011 򻤠򻤠 -0.026 0.011* -0.027 # -0.014 0.029 -0.004  0.003  -0.003 0.008 򻤠򻤠 -0.005 0.004 -0.001 # -0.001 0.001 -0.001  0.001  -0.003 0.004 򻤠򻤠 0.173 0.069* 0.174 0.069* 0.246 0.119* 0.251  0.082 ** 0.223 0.036** 

򻤠򻤠 0.031 0.055 0.032 0.055 0.006 0.003* 0.002  0.001 ** 0.011 0.030 򻤠򻤠 -0.073 0.040 -0.076 0.040 -0.067 0.041 -0.061  0.023 ** -0.026 0.037 

** significant at 0.01 
* significant at 0.05 
The Standard error marked by # indicates that the coefficient is computed from loading vector and 
adjustment vector in the error correction equations, the respective standard error for these 
parameters are shown in Table 5.  
 
 
6. Concluding Remarks 
The standard Vector Error correction model (VECM), which is based on normality 
assumption of error term, is often applied to analyze the real financial time series. 
However, as shown in the section 5 it is often seen that residuals of this model seem 
to follow GARCH errors process. From this experience we extend the standard 
VECM to include GARCH error process. We call such model as VEC-GARCH model. 
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Although the maximum likelihood (ML) estimator is known as the most efficient 
estimator under the normality assumption, ML estimation is computationally 
demanding when a model to be estimated is not small. To overcome these 
disadvantages and to reduce computational burden of ML estimator we consider the 
generalized least square estimator (GLS) instead of ML estimator. GLS is relatively 
free from the distributional assumptions.   

In this paper we mainly concerns with the GLS representation, the algorithm of it, 
and the properties of it, we have examined the performance of GLS and MLE in VEC-
GARCH model by Monte Carlo simulation and the applicability of it by real data 
analysis of the financial time series. The Monte Carlo simulation naturally has 
shown that MLE is still better than the FGLS.  However FGLS-based estimators that 
also consider GARCH error structure are also more efficient than estimators that 
neglect the error structure. The performance of MLE and FGLS-based estimator in 
our simulation are only slightly different, yet both are better estimators compare to 
the OLS and VECM. Thus, the suggested FGLS-based estimator may overcome the 
disadvantages of MLE, especially in reducing the computational burden.  

Our suggested method for the large matrix inversion successfully overcomes the 
computational problem such as memory size, computer time, and innacurate 
numerical results. The estimated parameters from the FGLS-based estimator 
performed in the simulation is as good as the MLE.  

There, however, remain several problems in estimating VECM with GARCH 
errors for the future research as follows: (1) to use realized volatility (RV) instead of 
multivariate GARCH model, (2) to compare the GLS and MLE under non-normality 
by Monte Carlo simulation, (3) to carry out theoretical comparisons of asymptotic 
properties of the GLS and MLE, under normality and non-normality, (4) to examine 
the performance of VEC model with GARCH errors when it is applied to empirical 
analysis of financial time series. We have a plan to attack these problems in future. 
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