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Abstract

In order to investigate sources of Great Recession (Dec. 2007 to Jun. 2009)
of the US economy in late 2000’s, we modify the standard New Keynesian
DSGE model by embedding financial frictions in both banking and corporate
sectors. Further, the structural shocks in the model are assumed to possess
stochastic volatility (SV) with leverage effect. Then, we estimate the model
using the Data-Rich estimation method and utilize up to 40 macroeconomic
time series in the estimation. In the light of a DSGE model, we suggest the
following three empirical evidences in Great Recession; (1) negative bank net
worth shock has gradually outspreaded before corporate net worth shock has
burst down, (2) the Data-Rich approach and structural shocks with SV eval-
uate the contribution of corporate net worth shock to the substantial portion
of macroeconomic fluctuations after Great Recession, in contrast to a standard
DSGE model, and (3) Troubled Asset Relief Program (TARP) would work to
bail out financial institutions, whereas balance sheets in corporate sector could
not have stopped deteriorating yet. Incorporating time-varying-volatilities of
shocks into the DSGE model make their credible bands narrower than half of
constant volatilities, implying it is a realistic assumption of dynamics of struc-
tural shocks. It is plausible that the tiny volatilities (or the uncertainty) in or-
dinary times change to extraordinary magnitude at the turning points of busi-
ness cycles. We also estimate that monetary policy shock has opposite leverage
effect of SV which implies tightening policy makes interest rate more volatile.
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1 Introduction
It is reported that the Great Recession began in December 2007 and ended in
June 2009, by the U.S. National Bureau of Economic Research (NBER). The emer-
gence of sub-prime loan losses in 2007 began the recession and exposed other risky
loans and over-inflated asset prices. With loan losses mounting and the collapse
of Lehman Brothers on September 15, 2008, a major panic broke out on the inter-
bank loan market. In the recession the financial crisis played a significant role in
the failure of key businesses, declines in consumer wealth estimated in trillions of
US dollars, and a downturn in economic activity leading to the 2008–2012 global
recession and contributing to the European sovereign-debt crisis. Paul Krugman
commented on this as seemingly the beginning of "a second Great Depression"
in New York Times in January 2009. The central debate about the origin of the
recession has been focused on the respective parts played by the public mone-
tary policy and by the practices of private financial institutions. The U.S. Sen-
ate’s Levin–Coburn Report asserted that the financial institution crisis, one of the
causes, was the result of "high risk, complex financial products; undisclosed con-
flicts of interest; the failure of regulators, the credit rating agencies, and the mar-
ket itself to rein in the excesses of Wall Street." In order to strengthen the financial
sector, the Troubled Asset Relief Program (TARP), in which assets and equity are
purchased from financial institutions by the U.S. government, was enforced and
originally authorized expenditures of $700 billion in October 2008.

The purpose of this study is to argue macroeconomic fluctuations and mutual re-
lationship among macroeconomic and financial endogenous variables and to iden-
tify what structural exogenous shocks contribute in the Great Recession in the light
of a dynamic stochastic general equilibrium (DSGE) model. Because we obtain
broad consensus that solvency and liquidity problems of the financial institutions
are chief among the fundamental factors causing the recession itself as described
above, it is plausible to embed financial frictions in both banking and corporate
sectors of a New Keynesian DSGE model. In fact, according to Ireland (2011)
who firstly attempted to analyze the impact of the recession using a New Key-
nesian DSGE model, there are three sets of considerations which are premature
for existing DSGE models. First, banking failures and liquidity dry-ups should
be endogenously explained with other fundamental macroeconomic variables for
producing economic insights. Second, most recessions have always been accompa-
nied by an increase in bankruptcies among financial and nonfinancial firms alike.
And recessions featured systematic problems in banking and loan industry. And
third, declines in housing prices and problems in credit markets might have played
an independent and causal role in the Great Recession’s severity. By identifying
structural shocks generated from two financial frictions in both financial and non-
financial sectors into a DSGE model, our study will cope with the former two ex-
ercises. In addition, we will focus on the extreme change of volatility in financial
markets and across economy as a whole in the recession, by estimating time vary-
ing volatility of these structural shocks.

To this end, we will follow Nishiyama et al. (2011) who have already studied
the US economy using a New Keynesian DSGE model with these two financial
frictions in a Data Rich environment. In this model with asymmetric information
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between borrowers and lenders, banks have two roles generating two agency costs:
one is the lenders of corporate sector and the other is the borrowers from deposi-
tors. To decompose the effects of the two kinds of agency costs on macroeconomic
fluctuations might be important for sounding the origin of the recession as well as
measuring how bad they damage the US economy. The data rich approach is a
useful method separating coherence of endogenous variables with mutual relation-
ship and measurement errors from many macroeconomic panel data, inducing to
identify structural shocks more robustly. This study will extend estimated sample
period to 2012Q2 and incorporate stochastic volatility (hereafter SV) model with
leverage effect, which has been recently developed for measuring volatilities of
stock returns in financial market, as explaining dynamics of structural shocks into
the DSGE model above. Because we will more efficiently extract structural shocks
as well as model variables by adopting the data rich approach, we will able to relax
specifications of structural shocks and measure the impact of financial shocks on
the real economy in the Great Recession and after it.

We will consider four alternative cases depending on the number of observation
variables (11 vs. 40 observable variables) and specification of volatilities of struc-
tural shocks (constant volatility vs. time-varying volatility). It is expected that
by adopting forty macroeconomic time series as observable variables, data rich in-
formation makes decomposition between measurement errors and model variables
from data more robust, and that relaxation of specifying the volatilities makes
rapid change of shocks more detailed. Comparing the four cases, we will suggest
the following three empirical evidences in Great Recession; (1) negative bank net
worth shock has gradually outspreaded before corporate net worth shock has burst
down, (2) the data-rich approach and structural shocks with SV evaluate the con-
tribution of corporate net worth shock to the substantial portion of macroeconomic
fluctuations after the Great Recession, in contrast to a standard DSGE model, and
(3) Troubled Asset Relief Program (TARP) would work to bail out financial institu-
tions, whereas balance sheets in corporate sector could not have stopped deterio-
rating yet. Incorporating time-varying-volatilities of shocks into the DSGE model
make their credible bands narrower than half of constant volatilities, implying
it is a realistic assumption of dynamics of structural shocks. It is plausible that
the tiny volatilities (or the uncertainty) in ordinary times change to extraordinary
magnitude at the turning points of business cycles. We also estimate that mone-
tary policy shock has opposite leverage effect of SV which implies tightening policy
makes interest rate more volatile.

Finally, we compare the achievements of our study with the earlier studies from
the three aspects: financal frictions, time varying volatilities of structural shocks
and data rich approach. First, there is large literature estimating a large scaled
DSGE model adopting a New Keynesian framework with nominal rigidities pro-
posed by Chirstiano, Eichenbaum and Evans (CEE)(2005), e.g., Smets and Wouters
(2007). And one financial friction between bank and corporate sectors is developed
by Bernanke et al. (1999) and incorporated into a CEE model by Christensen and
Dib (2008). Meanwhile, the other financial friction between banks and deposi-
tors are recently proposed by Gertler and Karadi (2011) and Gertler and Kiyotaki
(2010). To the best of our knowledge, there is no literature combing these two fric-
tions with a CEE model except Nishiyama et al. (2011) which is our based model.
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Second, there are some researches allowing for time variation in the volatility of
the structural disturbances. In this respect, Justiniano and Primiceri (2008) fo-
cused on the Great Moderation using model with structural shocks including SV
models but neither financial frictions nor leverage effect. And Liu et al (2011)
estimated a DSGE model without financial frictions by another approach regime-
switching the volatilities for analyzing sources of the Great Moderation. And third,
there is few literature dealing with the data rich approach proposed by Boivin and
Giannoni (2006) except Kryshko (2011), Nishiyama et al. (2011) and Iiboshi et al.
(2012). Our study is the first attempt of combination of data rich approach and
time varying volatilities of structural disturbances.

The paper is organized as follows. Section 2 provides the framework of the
DSGE model including the data rich approach and structural SV shock with lever-
age effect. Section 3 illustrate two financial fictions of the DSGE model. Section 4
presents the estimation technique. In Section 5, preliminary setting of structural
parameters and data description are dealt with. Section 6 discusses the estima-
tion results and interpretation of the Great Recession in terms of New Keynesian
model. Section 7 concudes.

2 Data Rich Approach with Stochastic Volatility
Shocks

2.1 Stochastic Volatility with Leverage in DSGE models
A DSGE model is the system of equations which is a collection of constraints and
first-order conditions derived from micro-founded models in which economic agents
such as households and firms are assumed to solve intertemporal optimization
problem based on their rational expectation under economic frictional environ-
ment. A log-linearized model is derived in the neighborhood of stady state of the
DSGE model by the first-order approximation. Using, for example, Sims’ (2002)
method, the law of motion around steady state of the model solved from log-linear
approximation is represented as below.

St︸︷︷︸
N×1

= G(θ)︸ ︷︷ ︸
N×N

St−1 + E(θ)︸ ︷︷ ︸
N×M

εt︸︷︷︸
M×1

, (2.1)

where St is a N × 1 vector of endogenous variables referred to as model vari-
ables, whereas εt is a M×1vector of exogenous disturbances represented structural
shocks. θ is structural parameters derived DSGE models based on macroeconomic
theory. In particular, its core parameters are referred to as deep parameters which
govern the rational behaviors of economic agents. MatricesG(θ), and E(θ) are the
function of θ. So far, disturbance terms εt are assumed to be i.i.d. (independent
and identically distributed) normal distributions in most of DSGE models. This
study extends this assumption and replaces them with time varying variances as
below.

εt = Σt︸︷︷︸
M×M

zt︸︷︷︸
M×1

, (2.2)
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zt ∼ i.i.d.N ( 0, IM ),

Σt = diag(σ1,t, σ2,t · · · σM,t),

where zt is a M×1 vector with all elements following standard normal distribution.
IM is a M × M identity matrix. And, Σt is standard deviation; or volatility, of
disturbance shocks εt, and represented as a diagonal matrix with elements such as
σ1,t. · · · , σM,t which move following a stochastic volatility model.

log σi,t+1 = µi + φi(log σi,t − µi) + ηi,t, i = 1, 2, · · · ,M, (2.3)

(
zi,t
ηi,t

)
∼ i.i.d. N(0, Ωi), Ωi =

[
1 ρiωi
ρiωi ω2

i

]
(2.4)

Because volatility σit necessarily has positive value, it is converted into logarithmic
value in order to throw off the limitation of sign. µi denotes the mean of volatility
σi,t of i-th shock. And φi is a coefficient of persistence of the i-th volatility. In
this SV model, leverage effect of volatility σi,t is introduced as equation (2.4) which
measures the correlation between the sign of disturbance terms and the size of
volatility. Typically, the correlation ρ is negative signifying that a negative stock
return (zi,t < 0) tends to increase the volatility of a stock price (ηi,t > 0). We try
to verify whether volatility of net-worth shock in firms and bank sectors increases
when they are negative. Although Justiniano and Primiceri (2008) inserted a SV
model into a DSGE model, they did not consider leverage effect of volatility. This
extension is one of advantages of our model.

2.2 Data Rich DSGE Models
2.2.1 Significance of Data Rich DSGE models

A data rich DSGE model is developed by Boivin and Giannoni (2006), and Kryshko
(2011)1 and composed from combination of a DSGE model and a dynamic factor
model (DFM). This combination is basically possible since their frameworks are
based on same state space representation. As result, it enjoys the advantages of
two existing models, and compensates the drawbacks of these two models. We
consider these advantages and properties of the combination before explaing the
two models.

(1) Drawbacks of a standard DSGE model, and overcome by a DFM

In general speaking, it is difficult to identify model variables St and measurement
error et from observable varibles Xt in a standard DSGE model. However, it is
plausible that data Xt is composed from comovement (or systematic) components
and idiosyncratic components indicating measurement errors or noise which are
not correlated with systematic movements. That is,

data = common (or systematic) component + idiosyncratic component,
1Recently, Schorfheide et al. (2010) was published as an empirical study applying a data-rich

DSGE approach to forecasting economic fluctuations.
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where two components are unobservable. Accordingly, it is assumed that there is
no idiosyncratic component or measurement errors and “data = systematic compo-
nents” in a standard DSGE model. A separation approach of these two factors is a
DFM. In this model, comovement is likely to be a component explained from eco-
nomic system affected by multi-variables with their mutual impacts. It indicates
that a dynamic equation of comovement might be appropriate to be represented as
a VAR model. On the other hand, idiosyncratic components should be expressed as
univariable AR process, since they are thought to independently fluctuate.

(2) Drawbacks of a DFM, and overcome by a standard DSGE model

A DFM is nowadays focused on as a model decomposing comovement and idiosyn-
cratic errors from data. However, is it possible to decompose them only from a
statistical method? Conventionally, we just focused on generic correlation among
macroeconomic variables but not on causal association among them from the view-
point of an economic model. But, according to Woodford (2009), new neo-classical
synthesis providing the theoretical foundation for much of contemporary main-
stream macroeconomics asserts that models built out of theory should be focused
on instead of looking at more generic correlations among data. In a DFM, comove-
ment tends to be measured from a conventional VAR model in which it is difficult to
interpret their coefficients from economic theory. Instead, a DSGE model expresses
comovement of multi-variables from causal association and theoretical coherence,
based on a micro-founded dynamic model, following the spirit of new neo-classical
synthesis. That is, converting from a conventional VAR model to a DSGE model in
a systematic component part of a DFM indicates that

comovement (systematic variation) = genetic correlation ,

⇒ comovement = causal association

which induces resolution of drawback of a DFM.

(3) Synergetic effect of combination

According to Stock and Watson (2002a,b), consistency of DFM suggests that in-
creasing the number of observation series Xt is expected to increase the certainty
that idiosyncratic components not explained by an economic system, are removed
from data using a DFM. It improves accuracy of measuring the comovement St
and exogenous structural shocks εt. If the estimation of structural shocks εt suc-
cessfully explain actual business cycles, this will indicate validity of the structural
shocks and in addition, that of the DSGE model. And in data rich framework, same
data set is applicable even for DSGE models with different model variables, so that
the possibility of model selection among many alternative models emanates. It im-
plies that data rich approach is expected to contribute the evaluation and selection
among DSGE models from the point of view of validity of structural shocks and
marginal likelihood (or Bayes factor).
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2.2.2 Dynamic Factor Model (DFM)

Recently, the estimation method of DFMs are rapidly developed and applied for
many fields of macroeconomics and finance. The DFM, which are a statistical
model estimating common factors of business cycles, are proposed by Sargent and
Sims (1977) and empirically applied by Stock and Watson (1989) who extract one
unobserved common factor of business fluctuation from many macroeconomic time
series using Kalman filter.2

The DFMs are represented by state space models composed from following three
linear equations. Let F t denote the N × 1 vector of unobserved common factor, and
X t denote the J × 1 vector of massive panel of macroeconomic and financial data.
Note that J � N .

X t︸︷︷︸
J×1

= Λ︸︷︷︸
J×N

F t︸︷︷︸
N×1

+ et︸︷︷︸
J×1

, (2.5)

F t︸︷︷︸
N×1

= G︸︷︷︸
N×N

F t−1︸︷︷︸
N×1

+ εt,︸︷︷︸
N×1

εt ∼ i.i.d.N(0, Q), (2.6)

et︸︷︷︸
J×1

= Ψ︸︷︷︸
J×J

et−1︸︷︷︸
J×1

+ νt︸︷︷︸
J×1

νt ∼ i.i.d.N(0, R), (2.7)

where Λ is J × N matrix of factor loadings, et is the idiosyncratic components (or
measrement errors) which is allowed to be serially correlated as equation (2.7). G
is N × N matrix, and common factor F t is following AR process (2.6). Matrices,
Ψ, Q and R are assumed to be diagonal in an exact DFM as Stock and Watson
(2005). Equation (2.5) is a measurement equation, and equations (2.6) and (2.7)
are transition equations. A state space model is composed from the two kinds of
equations (2.5), (2.6) and (2.7).

The property of the model is to decompose common components, ΛF t, and id-
iosyncratic component et from massive panel of macroeconomic and financial data
X t in (2.5). Meanwhile, it is difficult to make an interpretation of factor F t in terms
of economic theory, since above equations are statistically estimated by a conven-
tional VAR model (2.6) and the parameters are not derived from a structural model
with micro-foundation.

2.2.3 Data-Rich DSGE Model

The idea of data-rich approach is to extract the common factor F t from massive
panel of macroeconomic and financial time series data X t and to match the model
variable St to the common factor F t. A virtue of this approach is that even if a
model variable St and observed data X t are slightly detached, one can estimate
the DSGE model by matching model variables to the common factors extracted

2Stock and Watson (2002a,b) developed approximate DFMs using principal component analysis,
extracting several common factors from more than one hundred macroeconomic time series and
verifying that these factors include useful information on forecasting of macroeconomic time series.
Nowadays, there are many studies in the literature concerning theoretical and empirical studies of
DFMs. For example, Boivin and Ng (2005, 2006), Stock and Watson (2002a, b, 2005). The survey
of DFMS covering the latest studies is Stock and Watson (2006, 2010). Kose et al. (2003) tried to
extract common factors of world-wide and regional business cycles using a Kalman filter and DFM.
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from large panel data and expect improved efficiency in estimating the parameters
and structual shocks of the model.

The DSGE model is known to be state space models and estimated using Kalman
filter as well as the DFM. So we can apply the framework of the DFM to a DSGE
model. But the big difference between a DFM and a DSGE model is the meaning
of their parameters. The those of later is derived from structural parameters θ. A
data -rich DSGE model is given as

X t︸︷︷︸
J×1

= Λ(θ)︸ ︷︷ ︸
J×N

St︸︷︷︸
N×1

+ et︸︷︷︸
J×1

, (2.8)

St︸︷︷︸
N×1

= G(θ)︸ ︷︷ ︸
N×N

St−1︸︷︷︸
N×1

+ E(θ)︸ ︷︷ ︸
N×M

εt,︸︷︷︸
M×1

εt ∼ i.i.d.N(0, Q(θ)), (2.9)

et︸︷︷︸
J×1

= Ψt︸︷︷︸
J×J

et−1︸︷︷︸
J×1

+ νt︸︷︷︸
J×1

νt ∼ i.i.d.N(0, R), (2.10)

where observable variablesX t are a J×1 vector, state variables St are aN×1vector,
and structural shocks εt are aM×1 vector. In a data-rich DSGE model, the number
of observable variables is much larger than that of state variables (J � N ) as well
as a DFM. (On the other hand, in a regular DSGE model J ≤ N .) And idiosyncratic
components et, which are a J × 1 vector, means measurement errors following AR
(1) process in (2.10) . (2.8) shows measurement equation which splits off compo-
nents of common factors St and idiosyncratic components et, from massive panel of
macroeconomic indicators X t and which consists common factorsSt with economic
concepts.3 A transition equation (2.9) indicates AR(1) process of common factors (or

3Alternatively, representing matrix-base equation (2.8) as element-base equation as below, the
framework of a data-rich DSGE model might be more understandable. As can be seen from the sec-
ond row of matrix Λ(θ): [λy2 0 · · · 0], observable variables are directly relation with only one spec-
ified model variableSt. And in order to identify the magnitude of each linkage model variableSt.,
the value of λ of just one variable of data indicators Xt is unity as the first N#1 rows of matrix Λ:
N#1 × N#1 identity matrix. Meanwhile, the parameters of information indicators (the remaining
part ofXt ) can be represented as full elements in matrix Λ such as [λ11 λ12 · · · λ1n] which connects
information indicators through many-to-many relation with all model variable St.



Output Gap series #1
inflation series #1

...
Output Gap series #2

inflation series #2
...

Output Gap series #n
inflation series #n

...
−−−−−−−

information series #1
...

information series #ni


︸ ︷︷ ︸

Xt (J×1)

=



1 0 · · · 0
0 1 · · · 0
...

...
...

...
λy2 0 · · · 0
0 λπ2 · · · 0
...

...
...

...
λyn 0 · · · 0

0 λπn · · ·
... 0

...
... · · ·

...
−−− −− −− −−−
λ11 λ12 · · · λ1N

...
...

...
...

λni1 λni2 · · · λniN


︸ ︷︷ ︸

Λ(θ) (J×N)


ŷt
π̂t
...

S̄nonN,t


︸ ︷︷ ︸
S̄t (N×1)

+



ey1 t

eπ1 t

...
ey2 t

eπ2 t

...
eyn t
eπn t

...
−−
ei1 t

...
ein t


︸ ︷︷ ︸
et (J×1)

,

where ŷt is the concept of output gap, π̂t is the concept of inflation.
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model concepts) St with structural shocks εt and also dynamics converging to a ra-
tional expectation equilibrium determined by a macroeconomic model. From (2.8)
and (2.9), we can see that the model varaible St is realized from inter-correlation
of data indicators X t whose movement is coherent with each economic concept
derived from economic theory. In contrast, measurement errors et fluctuate from
only specific factors of each observable variablesX t but do not depend on economic
theory and other data indicators. 4

Structural shocks εt and disturbance terms νt of measurement errors et follow
normal distributions, i.e., εt ∼ i.i.d. N(0, Q(θ)) and νt ∼ i.i.d. N(0, R), respectively.
And their variance covariance matrix Q(θ), and R are positive definite and diag-
onal matrix. Coefficients Ψ of AR(1) process (2.10) is also diagonal matrix. These
indicate that measurement errors et are independent with each other in terms of
cross section but dependent with their lag variables in terms of time series restric-
tion. Matrices G(θ), E(θ) and Q(θ) are functions of structural parameters θ.

2.3 Data Rich DSGE models with Stochastic Volatility
2.3.1 Stochastic Volatility in a Data-Rich DSGE models

In the previous subsection, structural shocks εt of the DSGE model are assumed
to follow i.i.d. normal distribution. Since adoption of data-rich approach is ex-
pected to improve the accuracy of structural shocks, the next task of the approach
is thought to specify the structural shocks. In this paper, we consider relaxation of
assumption of the shocks by inserting a SV model with leverage effects into a data-
rich DSGE model. If the flexibility of the shocks changes to interpret sources of
Great Recession described in Section 6, to insert this will be valuable for analyzing
business cycles from the DSGE model’s views. Combining a SV model described in
Section 2.1 and a data-rich DSGE model, our model is represented as

X t︸︷︷︸
J×1

= Λ(θ)︸ ︷︷ ︸
J×N

St︸︷︷︸
N×1

+ et︸︷︷︸
J×1

, (2.11)

St︸︷︷︸
N×1

= G(θ)︸ ︷︷ ︸
N×N

St−1︸︷︷︸
N×1

+ E(θ)︸ ︷︷ ︸
N×M

εt,︸︷︷︸
M×1

(2.12)

et︸︷︷︸
J×1

= Ψt︸︷︷︸
J×J

et−1︸︷︷︸
J×1

+ νt︸︷︷︸
J×1

νt ∼ i.i.d.N(0, R), (2.13)

εt = Σt︸︷︷︸
M×M

zt︸︷︷︸
M×1

, (2.14)

zt ∼ i.i.d.N ( 0, IM ),

Σt = diag(σ1,t, σ2,t · · · σM,t),

4Measurement errors play important role, since we could expect that they remove some degree of
undesirable relation between observable variables and model concept variable influenced by model
misspecification and mismatch of model concepts into observable variables. In addition, stochastic
singularities can be avoided with measurement errors in a data-rich environment.
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log σi,t+1 = µi + φi(log σi,t − µi) + ηi,t, i = 1, 2, · · · ,M, (2.15)(
zi,t
ηi,t

)
∼ i.i.d. N(0, Ωi), Ωi =

[
1 ρiωi
ρiωi ω2

i

]
(2.16)

where the notations of system of equations is the same as the previous sections
2.1 and 2.2, so that we omit the explanation of them here. Compared to Justini-
ano and Primiceri (2008), this study extends their model to data rich approach
and adds leverage effect to the SV model. Meanwhile, we combine the SV model
with the data-rich model, in contrast to Boivin and Giannoni (2006)’s approach.
In addition, these two models consider only nominal rigidities of goods and labor
markets, whereas our model considers two financial frictions of bank sector as well
as nominal rigidities of goods and labor markets. These extensions in terms of both
economic and econometric approaches are thought to be appropriate for analyzing
the sources of Great Recession.

2.3.2 Transformation into Estimated State Space Model

It is difficult to directly estimate state space representation (2.11), (2.12) and (2.13)
as shown above for applying to large panel data set, since the size of matrix in tran-
sition equations (2.12) and (2.13) is equal to the total number of model variables St
and measurement errors et. This framework induces a dramatically increase of the
matrix as the number of data X t is increasing. To avoid this situation, we try to
transform to small size for the transition equations as following. That is, we elimi-
nate AR process of measurement errors of (2.10) and express from only νt with i.i.d.
process for measurement errors. Inserting (2.13) into (2.11), measurement equation
is transformed as

(I−ΨL)X t = (I−ΨL)ΛSt + νt, νt ∼ i.i.d.N(0, R).

where L is lag operator. By using notations X̃ t = X t −ΨX t−1,and S̃t = [S′t S
′
t−1]′,

this equation can be rewritten as

X̃ t = [Λ −ΨΛ]︸ ︷︷ ︸
Λ̃

[
St
St−1

]
︸ ︷︷ ︸

S̃t

+νt, νt ∼ i.i.d.N(0, R). (2.17)

In the similar way, transition equation (2.12) is also rewritten as[
St
St−1

]
︸ ︷︷ ︸

S̃t

=

[
G(θ) O

I O

]
︸ ︷︷ ︸

G̃

[
St−1

St−2

]
︸ ︷︷ ︸

S̃t−1

+

[
E(θ)
O

]
︸ ︷︷ ︸

Ẽ

εt, (2.18)

where I is a N × N identity matrix. Estimation method of data rich DSGE model
is explained using state space model (2.17) and (2.18), and we estimate this model
using Bayesian Method via MCMC in Section 4. For convenience, we set parame-
ters of measurement equation (2.17) as Γ = {Λ,Ψ,R}. And Bayesian estimation
of prameters Γ are following Chib and Greenberg (1994) which is described in Ap-
pendices A3.
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3 The DSGE model with Two Financial Frictions
in Corporate and Banking Sectors

In order to model the balance sheets of the corporate and banking sectors in a
DSGE framework, this paper combines the essence of Bernanke, Gertler, and Gilchrist
(hereafter, BGG) (1999), Gertler and Karadi (2011), and Gertler and Kiyotaki (2010).
We adopt the stylized DSGE model based on CEE (2005) and Smets and Wouters
(2003, 2007), which focused on nominal rigidities of price level and wage as well
as quadratic adjustment cost of investment, and embed the financial frictions of
corporate and banking sectors to it. This section is the high light modeling the
frictions in our DSGE model. The rest of our model is described in Appendix A4.

3.1 Financial Friction in Corporate Sector
3.1.1 Enterance and Exit of Entrepreneurs

Following BGG (1999), there is a continuum of entrepreneurs indexed by j ∈ [0, 1]
where each entrepreneur is risk-neutral and has a finite expected horizon.5 Each
entrepreneur faces an exogenous time-varying stochastic survival rate of γEt+1 from
period t to t+ 1 which is common across all entrepreneurs.6

Between period t and t + 1, after 1 − γEt+1 fraction of entrepreneurs have exited
from the business, exactly the same amount of new entrepreneurs will enter the
business so that the population of entrepreneurs in the economy remains the same
(i.e., fraction fE of the total members of the household) from period t to t+ 1. Each
entering entrepreneur receives a ‘start-up’ transfer from the household and the
total ‘start-up’ transfer from the household will be equal to the constant fraction
ξE of aggregate net worth available in the corporate sector, nEt , i.e., ξEnEt . For
1 − γEt+1 fraction of entrepreneurs who happened to exit the business, they will
first sell off the capital they purchased last period and retire all of their debts
before maturity. And then, they will transfer their remaining net worth back to
the household. The total amount of transfers from exiting entrepreneurs to the
household will be (1 − γEt+1)nEt . Accordingly, net transfer, ΞE

t+1, that the household
receives from entrepreneurs at period t+ 1 is (1− γEt+1 − ξE)nEt .

3.1.2 Individual Entrepreneur’s Problem

Each entrepreneur produces homogenous intermediate goods, yt(j), and they are
perfectly competitive when selling their products to retailers. The production func-
tion for the intermediate goods is given by

yt(j) = ωt(j)Atkt(j)
αlt(j)

1−α, (3.1)

where kt(j) is capital inputs and lt(j) is labor inputs. The total factor productiv-
ity shock (hereafter, TFP shock), At, is common across all entrepreneurs. How-
ever, following Carlstrom and Fuerst (1997) and BGG (1999), we assume each

5These assumptions ensure that each entrepreneur will not accumulate enough net worth to
self-finance their new capital.

6We assume that the stochastic process of γEt is uncorrelated with any other shocks in the econ-
omy and has its mean equal to γE , i.e., E[γEt ] = γE .
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entrepreneur is subject to an idiosyncratic shock, ωt(j), which is a private infor-
mation to entrepreneur j and assumed to be i.i.d. shock with mean equal to one,
i.e., E[ωt(j)] = 1.

The balance sheet statement of each entrepreneur at the end of period t can be
expressed as

qtkt+1(j) = bEt (j) + nEt (j) (3.2)
where qt is the real price of capital, kt+1(j) is the capital which will be used for
production in period t + 1 but purchased at the end of period t, bEt (j) is the real
debt issued at period t and nEt (j) is the net worth at period t. With the assumption
of risk-neutrality and finite planning horizon, net worth itself is never enough in
financing the cost of capital purchase and, therefore, each entrepreneur will rely
on external financing in equilibrium.

The income statement for entrepreneur j is specified as follow

nEt (j) = pmct (j)yt(j)− wtlt(j)−
RE
t−1(j)

πt
bEt−1(j) + qt(1− δ)kt(j) (3.3)

where pmct (j) is the real price of intermediate goods j, RE
t−1(j)/πt is the real rate of

borrowing cost (RE
t−1(j) is nominal borrowing rate and πt is inflation rate) and δ is

capital depreciation rate.
Each entrepreneur entering period t maximizes her discounted cash flow by

choosing capital inputs, labor inputs and debt issuance subject to (3.1), (3.2), and
(3.3).7 The FOCs for each entrepreneur j are given by

wt = (1− α)
pmct (j)yt(j)

lt(j)
(3.4)

Et

[
γEt+1

RE
t (j)

πt+1

]
= Et

[
γEt+1

αpmct+1(j)yt+1(j)/kt+1(j) + (1− δ)qt+1

qt

]
. (3.5)

(3.4) equates marginal cost of labor to marginal product of labor and, thus, can be
thought of as labor demand function by entrepreneur j. (3.5) equates the expected
marginal cost of capital financed by debt to the expected marginal return of capital
financed by debt and can be thought of as capital demand function by entrepreneur
j. Since stochastic survival rate, γEt+1, is uncorrelated to any other shocks in the
economy, (3.5) can be further rearranged as

Et

[
RE
t (j)

πt+1

]
= Et

[
αpmct+1(j)yt+1(j)/kt+1(j) + (1− δ)qt+1

qt

]
(3.6)

Under the assumption of risk-neutrality, introduction of stochastic survival rate
will not alter the capital demand equation for any entrepreneur j compared to the
case with constant survival rate as in BGG (1999).

7Each entrepreneur is a price-taker in the labor market, financial market, and capital market.
At the beginning of period t, each entrepreneur will utilize capital, kt(j), and labor input, lt(j), to
produce the intermediate goods, yt(j). Then, they will sell off the intermediate goods to retailers in
a perfectly competitive manner and earn the revenue, pmct (j)yt(j). After earning the revenue, each
entrepreneur will pay the labor cost and also repay the debt. Finally, each entrepreneur will sell off
a depreciated capital at the capital market. The net income after these activities are captured by
nEt and will be a net worth for the entrepreneur j at the end of period t. Given this net worth, each
entrepreneur will plan for the next period and decide how much capital to purchase and how much
debt to issue at the end of period t which appears in the balance sheet equation (3.2).
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3.1.3 Debt Contract

Each period, entrepreneur j issues a debt and engages in a debt contract with
an arbitrary chosen financial intermediary m where m is an indexed number uni-
formly distributed from 0 to 1. Debt contract is for one period only and if en-
trepreneur j needs to issue a debt again next period, another arbitrary financial
intermediary m′ will be chosen next period. Following BGG (1999), idiosyncratic
TFP shock, ωt(j), is private information of entrepreneur j that there exists asym-
metric information between entrepreneur j and financial intermediary m. Due to
costly state verification, financial intermediary m cannot observe entrepreneur j’s
output costlessly, but need to incur a monitoring cost to observe it. Entrepreneur
j, after observing the project outcome, will decide whether to repay the debt or de-
fault at the beginning of period t. If the entrepreneur decides to repay, financial
intermediary will receive repayment of RE

t−1(j)/πt for each unit of credits outstand-
ing, regardless of the realization of idiosyncratic shock. Otherwise, the financial
intermediary will pay a monitoring cost to observe yt(j) and seize the project out-
come from the entrepreneur.

Under the optimal debt contract, BGG (1999) shows that the external finance
premium, st(j), to be an increasing function of the leverage ratio. For estimation
purpose, we follow Christensen and Dib’s (2008) specification of the external fi-
nance premium as follow,

st(j) =

(
qtkt+1(j)

nEt (j)

)ϕ
(3.7)

where parameter ϕ > 0 can be interpreted as the elasticity of external finance
premium with respect to the leverage ratio. In addition, discounting the external
finance premium from the borrowing rate RE

t (j), the expected risk-adjusted nomi-
nal return for financial intermediary m from the debt contrat from period t to t+ 1
can be expressed as

EtR
F
t+1(m) =

RE
t (j)

st(j)
. (3.8)

3.1.4 Aggregation

Since bankruptcy cost is constant-return-to-scale and leverage ratio are equal for
all entrepreneur j, the external finance premium is equal across all solvent en-
trepreneurs in equilibrium, i.e., st = st(j) for all j. Since (3.6) holds in aggregate
level, the nominal borrowing rates across all solvent entrepreneurs become equal,
i.e., RE

t = RE
t (j) for all j. Consequently, because RE

t = RE
t (j) and st = st(j) for all j,

the expected risk-adjusted nominal return for banker m becomes equal across all
bankers, i.e.,

Et
[
RF
t+1(m)

]
=
RE
t

st
for all m. (3.9)

Next, we derive the law of motion of the aggregate net worth of corporate sector.
As for notation, aggregate variable is expressed by suppressing the argument j.
Aggregating over income statement (3.3) and taking into account the entrance and
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exit of entrepreneurs from period t to t + 1, we obtain the following aggregate net
worth transition equation

nEt+1 = γEt+1

[
rkt+1qtkt+1 −

RE
t

πt+1

bEt

]
+ ξEnEt (3.10)

where rkt+1 is realized gross return from capital investment at period t + 1 and is
defined as

rkt+1 ≡
αpmct+1yt+1/kt+1 + (1− δ)qt+1

qt
. (3.11)

Here, yt+1 is the average of project outcomes, yt+1(j), across all entrepreneurs.
Thus, idiosyncratic factor stemming from ωt(j) is averaged away and rkt+1 only re-
flects the aggregate factors in the economy. Using entrepreneur’s balance sheet
(3.2), the aggregate net worth transition (3.10) can be rearranged as

nEt+1 = γEt+1

[(
rkt+1 −

RE
t

πt+1

)
qtkt+1 +

RE
t

πt+1

nEt

]
+ ξEnEt . (3.12)

Notice how the realization of rkt+1 can affect the aggregate net worth next period.
Ex-ante, by the rational expectation equilibrium condition (3.6), the expected re-
turn from capital investment and borrowing cost are equalized. Ex-post, however,
realized return from capital investment can exceed or fall below the borrowing cost
depending on the realizations of the aggregate shocks and it affects the evolution of
the aggregate net worth. This is a case where forecast error has an actual effect on
the economy. Another factor that affects the evolution of the aggregate net worth
is the realization of stochastic survival rate γEt+1. At the micro-level, γEt+1 has an
interpretation of stochastic survival rate of entrepreneur j from period t to t+1. At
the aggregate level, γEt+1 is interpreted as an exogenous shock to the aggregate net
worth in corporate sector. In our paper, we interpret it as an aggregate corporate
net worth shock.

3.2 Financial Friction in Banking Sector
3.2.1 Entrance and Exit of Bankers

Following Gertler and Karadi (2011) as well as Gertler and Kiyotaki (2010), there is
a continuum of bankers indexed by m ∈ [0, 1] where each banker is risk-neutral and
has a finite horizon. We assume that each banker faces exogenous time-varying
stochastic survival rate of γFt+1 from period t to t+1 which is common to all bankers.
By the same token as in corporate sector, the stochastic process of γFt is uncor-
related with any other shocks in the economy and has it mean equal to γF , i.e.,
E[γFt ] = γF .

After 1−γFt+1 fraction of bankers have exit between period t and t+1, exactly the
same number of new bankers will enter the banking business from the household.
Each banker entering the baking business will receive a ‘start-up’ transfer from the
household, while each banker exiting the business will transfer his net worth back
to the household. In aggregate, ‘start up’ transfer is assumed to be the constant
fraction ξF of aggregate net worth available in the banking sector, nFt , i.e., ξFnFt
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and the aggregate transfer from the exiting bankers is equal to γFt+1n
F
t . Thus, net

transfer from the banking sector to the household, ΞF
t , is equal to (1− γFt+1− ξF )nFt .

3.2.2 Individual Banker’s Problem

We now describe the individual banker’s problem. The treatment here basically
follows that of Gertler and Karadi (2011) and perfect inter-bank market version of
Gertler and Kiyotaki (2010). The balance sheet equation of the individual banker
m is given by

bEt (m) = nFt (m) + bFt (m) (3.13)

where bEt (m) is the asset of banker m which is lent out to an aribitrarily chosen
entrepreneur j at period t, nFt (m) is the net worth of banker m, and bFt (m) is the
liability of banker m which is also a deposit made by the household at period t.

By receiving deposits bFt (m) from household at period t, banker m pledges to
pay the deposit rate of Rt/πt+1 in real terms next period. As a result of the banking
business, the net worth transition for banker m at period t+1 is given by nFt+1(m) =
rFt+1(m)bEt (m) − rt+1b

F
t (m) where rFt+1(m) ≡ RF

t+1(m)/πt+1 and rt+1 ≡ Rt/πt+1. Using
the balance sheet equation (3.13), the net worth transition equation can be refor-
mulated as follow

nFt+1(m) =
(
rFt+1(m)− rt+1

)
bEt (m) + rt+1n

F
t (m). (3.14)

As shown by Gertler and Kiyotaki (2010), with the agency cost present between
banker m and depositor, the expected spread between rFt+1(m) and real deposit
rate rt+1 becomes strictly positive, i.e., Et

[
rFt+1(m)− rt+1

]
> 0. However, of course,

whether the net worth of banker m increases or decreases next period depends on
the realization of rFt+1(m).

Given the above net worth transition equation, risk-neutral banker m will max-
imize the net worth accumulation by maximizing the following objective function
with respect to bank lending, bEt (m),

V F
t (m) = Et

∞∑
i=0

βi(1− γFt+1)γFt+1,t+1+i

[(
rFt+1+i(m)− rt+1+i

)
bEt+i(m) + rt+1+in

F
t+i(m)

]
(3.15)

where γFt+1,t+1+i ≡
∏i

j=0 γ
F
t+1+j. Now, since the expected spread between risk-adjusted

bank lending rate and deposit rate is strictly positive, it is in the interest on banker
m to lend out infinite amount to an entrepreneur by accepting infinite amount of
deposits from the depositor.

In order to avoid the infinite risk-taking by the banker, Gertler and Karadi
(2011) and Gertler and Kiyotaki (2010) impose a moral hazard/costly enforcement
problem between the banker and depositor. Each period, the banker has a tech-
nology to divert fraction λ of his asset holding to the household and exit from the
banking business. However, by doing so, the banker is forced to file bankruptcy
and fraction (1− λ) of his asset will be seized by the depositors. Thus, in order for
the banker to continue business and depositors to safely deposit their funds to the
banker, the following incentive constraint must be met each period,
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V F
t (m) ≥ λbEt (m). (3.16)

In other words, the net present value of the banking business needs to always
exceed the reservation value retained by the banker.8

Now, assuming that the incentive constraint (3.16) to be binding each period
and by maximizing the objective function (3.15) subject to the constraint (3.16),
Gertler and Kiyotaki (2010) shows that the value function of the banker can be
expressed as follow

V F
t (m) = νtb

E
t (m) + ηtn

F
t (m) (3.17)

where

νt ≡ Et

[(
1− γFt+1

)
β
(
rFt+1(m)− rt+1

)
+ βγFt+1

bEt+1(m)

bEt (m)
νt+1

]
(3.18)

ηt ≡ Et

[(
1− γFt+1

)
+ βγFt+1

nFt+1(m)

nFt (m)
ηt+1

]
. (3.19)

Now, from incentive constraint (3.16) and the value function (3.17), it follows that

bEt (m)

nFt (m)
≤ ηt
λ− νt

≡ φt (3.20)

which states that the leverage ratio of banker m cannot exceed the (time-varying)
threshold φt. By the assumption that incentive constraint to bind every period, in
equilibrium, the asset and the net worth by banker m have a following relationship

bEt (m) = φtn
F
t (m). (3.21)

3.2.3 Aggregation

Gertler and Karadi (2011) and Gertler and Kiyotaki (2010) show that time-varying
threshold φt does not depend on banker-specific factors and is common across all
bankers. Consequently, from eq. (3.21), aggregate asset and net worth in banking
sector can be expressed as

bEt = φtn
F
t (3.22)

where bEt ≡
∫ 1

0
bEt (m)dm and nFt =

∫ 1

0
nFt (m)dm. Now, from individual banker’s net

worth transition (3.14) and taking into account entrance and exit of bankers, the
aggregate net worth transition equation of banking sector is given by

nFt+1 = γFt+1

[(
rFt+1 − rt+1

)
bEt + rt+1n

F
t

]
+ ξFnFt (3.23)

8To see how this constraint binds, consider the case where the banker increases the asset enor-
mously. Then, the reservation value by the banker (right-hand side of inequality (3.16)) will exceed
the net present value of the banking business (left-hand side of inequality (3.16)) that the banker
will decide to divert the assets to the household. As a steakholder, the depositors will not allow
this reckless behavior by the banker and ask the banker to keep his asset, bEt (m), low enough (or,
equivalently, by not supplying the deposits beyond the incentive constraint) so that the incentive
for the banker to remain in business is met.
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where rFt+1 stands for the average of realized risk-adjusted returns, rFt+1(m), across
all bankers. From the optimal debt contract specified in (3.8) and using the ag-
gregate condition in (3.9), rFt+1 is related to the borrowing rate, external finance
premium, and inflation rate as follow

rFt+1 =
RE
t

πt+1st
. (3.24)

As can be seen from the above equation, idiosyncratic factor pertaining to banker
m is averaged away and, thus, realization of risk-adjusted return of banking sector
(i.e., rFt+1) only depends on aggregate factors in the economy. Now, by using (3.22),
the aggregate net worth transition equation becomes

nFt+1 = γFt+1

[(
rFt+1 − rt+1

)
φt + rt+1

]
nFt + ξFnFt . (3.25)

3.3 Incorporation of the two Frictions within the DSGE model
To incorporate the two financial frictions into a stylized DSGE model, we use
twelve constraint and FOC equations, which consist of five and seven equations
derived in corporate and banking sectors, respectively.9 The five equations rep-
resenting the financial friction in the corporate sector are (i) the balance sheet
statement of corporate sector (3.2), (ii) the capital demand function (3.6), (iii) the
external financial premium (3.7), (iv) the realized gross return from capital invest-
ment (3.11), and (v) the aggregate net worth transition equation of corporate sector
(3.12). On the other hand, the seven equations expressing the financial friction in
the banking sector are (vi) the balance sheet statement of banking sector (3.13),
(vii) the dynamics of the weight on the lending volume for the value of the bank-
ing business, νt, (3.18), (viii) the dynamics of the weight on the bank net worth
for the value of the banking business, ηt, (3.19), (ix) the definition of the thresh-
old, φt, (3.20), (x) the banker’s leverage ratio constraint (3.22), (xi) the relationship
between the corporate nominal borrowing rate and the risk adjusted nominal lend-
ing rate of the banking sector (3.24), and (xii) the aggregate net worth transition
equation of the banking sector (3.25).

To complete our model, we employ the CEE (2005) type medium scale DSGE
model described in Appendix A4 with the equations above, as well as structural
shocks. We set the following eight structural shocks, each of them having a specific
economic interpretation; i.e., (1) TFP shock, (2) preference shock, (3) labor supply
shock, (4) investment specific technology shock, (5) government spending shock,
(6) monetary policy shock, (7) corporate net worth shock and (8) bank net worth
shock. Except for monetary policy shock, all of the structural shocks are assumed
to follow AR(1) stochastic processes. We devote the following two shocks out of
the eight shocks to identifying fundamental factors causing the financial crisis.

9We have twelve model (or endogenous) variables corresponding to the twelve estimated equa-
tions pertain to the financial frictions. These variables are (1) capital, kt, (2) the real price of capital,
qt, (3) asset of the corporate sector, bEt , (4) asset of the banking sector bFt , (5) the corporate net worth
nEt , (6) the bank net worth nFt , (7) external financial premium, st, (8) the gross return from capital
investment, rkt , (9) time varying weight of lending for the value of banking business, νt, (10) time
varying weight of bank net worth for the value of banking business, ηt, (11) the corporate nominal
borrowing rate, REt , and (12) the risk-adjusted lending rate of banking sector, RFt .
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Corporate net worth shock εEt is inserted into AR(1) process of the survival rate of
the corporate sector γEt which is a component of equation (3.12), while bank net
worth shock εFt is done into AR(1) process of the survival rate of the banking sector
γFt which is that of equation (3.25). The two shocks are given as

Corporate net worth shock : γ̂Et = ρE γ̂Et−1 + εEt ,

Bank net worth shock : γ̂Ft = ρF γ̂Ft−1 + εFt ,

where ρ is for the AR(1) coefficients for respective structural shocks. Both shocks
indicating stochastic survival rate for entrepreneurs and bankers at micro-level
can be interpreted as net worth shocks for corporate and banking sectors at aggre-
gate level, respectively. Notice that each stochastic disturbance εt is assumed to
follow time varying volatility using SV model as mentioned in Section 2.

4 Method of Estimation
In this study, a hybrid MCMC (it is also referred to as Metropolis-within-Gibbs) is
employed as a estimation method of data-rich DSGE model following Boivin and
Giannoni (2006), and Kryshko (2011). 10 The contribution of our study is to extend
the data-rich DSGE to including SV shocks from i.i.d. shocks.

The benefit of employing a hybrid MCMC is not only to implement sampling
of posterior of model variables St but also to implement sampling of posterior of
structural shocks εt. Using the sampling of structural shocks, we compose histor-
ical decompositions. On the other hand, the MH algorithm—which is a general
estimation method used for the regular DSGE model—has disadvantages for pol-
icy analysis because it cannot generate posterior structural shocks and induces the
impossibility of generating a credible interval of estimation in policy simulation.

The objects of estimation in the state space model (2.17), and (2.18) are struc-
tural parameters θ, parameters in measurement equations Γ(= {Λ, Ψ, R}), model
variables ST (= S1, S2, · · · , ST ), and stochastic volatilities HT (= h1, h2, · · ·hT ).
For convenience, let log σt denote ht, hereafter. Notice that to estimate θ, Γ, ST HT

is necessary and sufficient for estimating our model, because matrices G(θ), E(θ), Q(θ)
in the transition equation (2.18) is a function of structural parameters θ.

General speaking, Bayesian estimation of parameters θ, Γ,HT is implemented
as the following steps.

Step I. We set priors of paramters θ,Γ,HT , i.e. p(θ,Γ,HT ) where p(θ,Γ,HT ) =
p(θ|ΓHT )p(Γ|HT )p(HT ), since θ,Γ,HT are assumed to be independent.

10The algorithm of MCMC for estimating DSGE models was developed by Schorfheide (2000).
Our method extends Schorfheide (2000) to the hybrid MCMC. The algorithm of hybrid MCMC is
described in chapter six of Gamerman and Lopes (2006) etc. We also adopt speed-up algorithm of
sampling state variables by Jungbacker and Koopman (2008), but find that it drops the accuracy of
estimates of state variables, so we omit the algorithm from MCMC roution.
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Step II. Using Bayes theorem, posterior p(θ,Γ,HT |XT ) is derived from prior p(θ,Γ,HT )
and likelihood function p(XT |θ,Γ,HT ).

p(θ,Γ,HT |XT ) =
p(XT |θ,Γ,HT p(θ,Γ,HT )∫

p(XT |θ,Γ,HT )p(θ,Γ,HT )dθdΓdHT
.

Step III. We obtain representative values (mean, median, credible band etc.) of param-
eters θ,Γ,HT from posterir p(θ,Γ,HT |XT ) using numerical technique.

However, it is troublesome to sample directly joint posterior distribution p(θ,Γ,
HT |XT )of a state space model (2.17), (2.18) in step II. Instead, using Gibbs sam-
pling, we obtain the joint posterior p(θ,Γ,HT |XT ) from conditional posterior θ , Γ
and HT as below,

p(θ|Γ,HT ,XT ), p(Γ|θ,HT ,XT ), p(HT |θ,Γ,XT )

In addition, since parameter Γ is dependent on model variable St , we have to sep-
arate two conditional posterior p(ST |Γ, θ, HT , X

T
) and p(Γ|ST ,θ, HT , X

T
) from

above conditional posterior p(Γ|θ, HT , X
T

) and insert St into posterior. We also
adopt a forward-backward recursion for sampling from p(ST |Γ,θ, HT , X

T
) and

p(HT |Γ,θ, ST , X
T

) as a data augmentation method, Gibbs sampling for sampling
from p(Γ|ST ,θ, HT , X

T
), and MH algorithm for sampling from p(θ|Γ, HT , X

T
),

respectively. In this way, different algorithms are employed for different parame-
ters in a hybrid MCMC. In sum, we show six steps of hybrid MCMC for estimating
a data rich DSGE model as follow.11

Step 1. Specify initial values of parameters θ(0), Γ(0), and HT (0). And set iteration
index g = 1.

Step 2. Solve the DSGE model numerically at θ(g−1) based on Sims’ (2002) method
and obtain matrices G(θ(g−1)), E(θ(g−1)), and Q(θ(g−1)) in equation (2.18).

Step 3. Draw Γ(g) from p(Γ | θ(g−1),HT (g−1),XT ).

(3.1) Generate model variables S(g)
t and structural shocks ε(g)

t from p(ST , εT |
Γ(g−1),θ(g−1),HT (g−1),XT ) using simulation smoother by de Jong and Shep-
hard (1995).

(3.2) Generate parameters Γ(g) from p(Γ | ST (g),θ(g−1),HT (g−1),XT ) based on the
sampled draw S̄

T (g) using Gibbs sampling by Chib and Greenberg(1994).

Step 4. Draw HT (g−1) from p(HT | θ(g−1)
,Γ(g), εT,(g),XT ).

(4.1) Generate stochastic volatilityHT (g) from p(HT | Γ(g),θ(g−1), εT,(g), uT (g−1),Φ(g−1),XT ),
using a draw of εT,(g) at Step 3.1, and the forward-backward recursion by
Cater and Kohn (1994).

11Bayesian estimations using MCMC for state space models are described in detail in textbooks
such as Kim and Nelson (1999) and Bauwns et al. (1999).
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(4.2) Generate the indicators of the mixture approximation uT (g) using descrete
density proposed by Omori et al. (2007).

(4.3) Generate the coefficients Φ(g) of stochastic volatility process using Metropolis
step.

Step 5. Draw deep parameters θ(g) from p(θ | Γ(g),H t(g),XT ) using Metropolis step:

(5.1) Sample from proposal density p(θ|θ(g−1)) and, using the sampled draw θ(proposal),
calculate the acceptance probability q as follows.

q = min

[
p(θ(proposal) | Γ(g),H t(g),XT ) p(θ(g−1)|θ(proposal))

p(θ(g−1) | Γ(g),H t(g),XT ) p(θ(proposal)|θ(g−1))
, 1

]
.

(5.2) Accept θ(proposal) with probability q and reject it with probability 1 − q. Set
θ(g) = θ(proposal) when accepted and θ(g) = θ(g−1) when rejected.

Step 6. Set iteration index g = g + 1 and return to Step 2 up to g = G.

The algorithm of sampling stochastic volatilities HT in Step 4 is explained in
the Appendix A1. And a simulation smoother in Step 3.1 and of sampling parame-
ters Γ in Step 3.2 are in the appendix A2 and A3, respectively. 12

12Here, we supplement Steps 1 and 5. On setting of initial values of parameters θ(0) and Γ(0)in
Step 1, it is known that arbitrary initial values are eventually converged in MCMC. However, we
require a huge number of iterations in MCMC simulation to converge to target posterior distri-
butions in the case of a considerable number of parameters. Accordingly, following Boivin and
Giannoni (2006) we set initial values as below for converging effectively. First, the posterior mode
of structural parameters θ in a regular DSGE model without measurement errors is derived from
numerical calculation and set as initial values θ(0). Second, a implementing simulation smoother
of state variables St using θ(0), we get initial value S(0)

t . Finally, initial values Γ(0)of measurement
equations are obtained by OLS using S(0)

t andXT .
Next, on generating structural parametersθ from proposal density in Step 5.1, we adopt a random

walk MH algorithm following previous works. Proposal density θ(proposal) is represented as

θ(proposal) = θ(g−1) + ut, ut ∼ N(0, cΣ),

where,Σ is variance covariance matrix of random walk process, and c is the adjustment coefficient.
The matrix Σ is the Hessian (−l′′−1(θ̂) ) of log posterior distribution (l(θ) = ln p(θ|Γ,XT )) when
obtaining initial value θ(0). And the case of sampling in MH algorithm,

p(θ(g−1)|θ(proposal)) = p(θ(proposal)|θ(g−1))

is held in a stationary state of the target distribution, so that acceptance rate q is reduced to the
following equation.

q = min

[
f(θ(proposal))

f(θ(g−1))
, 1

]
,

In this equation, acceptance rate q is not dependent on proposal density p(θ|θ(g−1)). As a result,
it is the advantage of a random walk MH algorithm that we do not need to adopt a proposal den-
sity close to posterior density. However, when proposal value θ(proposal)departs from the previous
sample θ(g−1), acceptance rate q becomes small and efficiency of MCMC worsens. To avoid this,
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5 Preliminary Settings and Data Description

5.1 Specifications of Four Alternative Cases
This study considers four alternative cases depending on the number of observation
variables (11 vs. 40 observable variables) and specification of volatilities of struc-
tural shocks (constant vs. time-varying volatility) as summarized in Table 1. This
is because we would like to verify whether data rich information makes decompo-
sition between measurement errors and model variables from data more robust,
and whether relaxation of specifying the volatilities depicts rapid change of shocks
more detailed thanks to the data rich approach. The first case (referred to as Case
A) deals with one of standard DSGE models which uses 11 observable variables in
the measurement equation (2.11) and structural shocks with i.i.d. Normal distri-
bution in the transition equation (2.12). In Case A, each observable variable con-
nected with its specified model variable by one-to-one matching. The second case
(Case B) is extended to data-rich approach with i.i.d shocks, including 40 observ-
able variables which indicate more or less four observable variables corresponding
to one specified model variable. The third case (Case C) extends to SV shocks from
Case A. And the forth case (Case D) extends to data-rich approach with SV shocks
from Case B. Nishiyama et al. (2011) have already studied the comparison of a
standard DSGE approach (Case A) and a data rich approach (Case B). This study
focus on the remaining two cases (C and D) with SV shock, using Case A as the
reference model.

5.2 Calibrations and Priors of Parameters
We calibrate the subset of the structural parameters in the model that are not iden-
tifiable (i.e., the parameters that are only used to pin down the steady states) or
are difficult to identify from the observed data. Calibrated parameters with their
descriptions are reported in Table 2. We assume discount factor β = 0.995 so as
to make the steady state real interest rate to be 2% (annual rate). We assume the
profit margin of the retailers to be 10% in steady state and, thus, set elasticity of
substitution of intermediate goods as ε = 11. We have no reliable information re-
garding the new entry rate of entrepreneurs (i.e., ξE) and will simply set it equal to
the calibration for new banker’s entry rate by Gertler and Kiyotaki (2011). The rest
of the calibrated parameter values are borrowed from Smets and Wouters (2003),
Christensen and Dib (2008), and Gertler and Kiyotaki (2011).

Regarding the steady states, most of them are pinned down by equilibrium con-
ditions of the model, but some others need to be calibrated. For the steady state
value of external finance premium, we follow the calibration of Christensen and
Dib (2008). For the steady state corporate borrowing rate (real, quarterly rate), we
calculate the historical average of the yields of Moody’s Baa-rated corporate bonds
and set it as the steady state rate. In the same way, we calculate the historical aver-

the adjustment coefficient c should be small, but doing so narrows the range of sampling space of
θ(proposal). Roberts et al. (1997) and Neal and Roberts (2008) reported that the optimal acceptance
rate q of a random walk MH algorithm is around 25%. Accordingly, adjustment coefficient c of this
study is set so that the acceptance rate is close to around 25 %.
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age of the non-farm, non-financial business leverage ratio based on Flow of Funds
and set it as the steady state of corporate leverage ratio. Finally, the government
expenditure to output ratio in steady state is set to be 0.2 because of borrowed from
Gertler and Kiyotaki’s (2011) calibration.

Next, we turn to describe priors distribution of interest as a preamble for Bayesian
estimation. The settings of priors are reported in Table 3. We set ϕ = 0.05 for the
prior mean of this parameter, which controls the sensitivity of external finance pre-
mium with respect to corporate leverage ratio, following the calibration of BGG. For
AR(1) persistence parameters for structural shocks, we set prior mean equal to 0.5
for all of them. For standard errors of structural shocks, we set prior mean equal
to 1% for each standard error, except for monetary policy shock (where a change of
policy rate for more than 25 basis point is rare). By the same token, we set prior
mean equal to 1% for most of the measurement errors, except for the data related
with interest rates.

5.3 Data Description
For adopting data rich approach, relatively large and quarterly panel data set as
many as 40 observable variables is used as described in Data Appendix in de-
tail. The sample period of estimation is between 1985Q2 and 2012Q2, because
we avoid the effect on estimation result from the instability of monetary policy
regime changes especially around the end of the 1970’s and early 1980’s; i.e., pre
and post regimes by Volcker and Greenspan, (See Clarida et al. 2000, Lubik and
Schorfheide 2004, and Boivin 2005 ) and from structural change of the Great mod-
eration which began in mid-1980’s (See Bernanke 2004, Stock and Watson 2002,
Kim and Nelson 1999, and McConnell and Perez-Quiros 2000). And another reason
why the sample period is determined is the availability of financial data, in which
charge-off rates for banks are available only from 1985Q1.

In Cases A and C, we regard the following eleven series: (1) output, yt, (2) con-
sumption, ct, (3) investment, ikt , (4) inflation, πt, (5) real wage, wt, (6) labor input, lt,
(7) nominal interest rate, Rt, (8) nominal corporate borrowing rate, RE

t , (9) external
finance premium, st, (10) corporate leverage ratio, qtkt/nEt , and (11) bank leverage
ratio, bEt /nFt , as observable variables in the measurement equation (2.11). The
first seven series are generally used in a large literature estimating DSGE models
(see, for instance, Smets and Wouters, 2003 and 2007).13 Using the four remain-

13(1) Output is real GDP less net export. (2) Consumption and (3) investment are normalized re-
spectively to personal consumption expenditures and fixed private domestic investment. Following
Altig et al. (2003), Smets and Wouters (2003), and Boivin and Giannoni (2006), the nominal series
for consumption and investment are deflated with the GDP deflator. (6) The labor input corresponds
to hours worked per person. Average hours of nonfarm business sector are multiplied with civilian
employment to represent the limited coverage of the nonfarm business sector, compared to GDP, as
in Smets and Wouters (2003), and Boivin and Giannoni (2006). (5) The real wage is normalized with
the hourly compensation for the nonfarm business sector, divided by the GDP deflator. We express
these six series as percent deviations from steady states consistently with model concepts, taking
the natural logarithm, extracting the linear trend by an OLS regression, and multiplying the re-
sulting de-trended series by 100. (4) Inflation measures are obtained by taking the first difference
of the natural logarithm of the GDP deflator, and multiplied by 400 for expressing the annualized
percentages. (7) The nominal interest rate is the effective Federal funds rate. Both inflation and
the interest rate are de-trended via Hodrick-Prescott filter (penalty parameter is 1600), indicating
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ing financial time-series as observable variables is the feature of our DSGE model
compared with existing models. These four actual series are selected for matching
the model variables corresponding to the two financial frictions. (8) Entrepreneur’s
nominal borrowing rate, RE

t , is the yield on Moody’s Baa-rated corporate bonds,
which is de-trended via Hodrick-Prescott filter for the same reason of inflation and
the interest rate. To measure (9) the external financial premium, st, we employ the
charge-off rates for all banks credit and issuer loans, measured as an annualized
percentage of uncollectible loans. The charge-off rate is demeaned to be consistent
with our model variable. (10 and 11) The two leverage ratios, qtkt/nEt and bEt /nFt are
calculated as their total asset divided by their net worth, respectively. We take nat-
ural logarithm for both leverage ratios, and then either demean for entrepreneur’s
leverage ratio, or detrend banking sector leverage ratio by Hodrick-Prescott filter,
due to taking account of Basel Capital Accord Revision.

In Cases B and D which adopt the data rich approach indicating one model
variable corresponding to four actual series, we employ additional 29 series, which
consist of 18 series of key macroeconomics and 11 series of banking sector, with
existing 11 series in Cases A and C. We select 18 data indicators for six key model
variables used in a standard DSGE model such as (1) output, (2) consumption, (3)
investment, (4) inflation, (5) real wage and (6) labor input except nominal interest
rate as mentioned in Data Appendix, along the same line of Boivin and Giannoni
(2006). On the other hand, 11 series of the banking sector are selected along the
line concentrated on banking which is depart from previous work dealing with
the data rich framework. Three additional banking indicators: (i) the core capital
leverage ratio, (ii) the domestically chartered commercial banks’ leverage ratio and
(iii) the leverage ratio of brokers and dealers, are selected for data indicators corre-
sponding to the model variable such as banking sector leverage ratio. Notice that
as an observable variable of leverage ratio we use the inverse of the commonly-used
ratio, i.e., bank asset over bank equity. 14 As data indicators for external financial
premium, we select three kinds of charge-off rates of loans depending on different
institutions, which are transformed as percentage deviations from trends using the
same detrending methods as described above.

6 Empirical Results
In this section, we report results of our estimation and especially focus on the
estimates of several key structural parameters, those of SV shocks, and historical
decompositions of four principal model variables: (1) output, (2) investment, (3)
bank leverage and (4) borrowing rate playing a significant role in the recession
and the financial crisis of 2007-2008. Then, we discuss and remark the sources

time-varying targeting inflation rate.
14The core capital leverage ratio represents tier 1 (core) capital as a percent of average total

assets. Tier 1 capital consists largely of equity. We use the inverse of the core capital leverage ratio,
because of corresponding to the ratio of banks’ asset to banks’ net worth, before taking natural
logarithm and detrended by Hodrick Prescott filter. Following Adrian and Shin (2010), we add the
leverage ratio of brokers and dealers since investment banks are categorized as brokers and dealers
in Flow of Funds (FOF) and the financial shock is caused mainly by the deterioration of investment
banker’s balance sheet condition.
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of the recession in the light of the data rich approach. 15 Our estimation results
are constructed from 300,000 draws of the hybrid MCMC algorithm as posterior
distributions of interest above for every case. 16

6.1 Key Structural Parameters
The estimates of structural parameters of Cases A and B are summarized in Table
9, and those of Cases C and D are done in Table 10. Table 11 notifies the estimates
of parameters of the SV models concerning the eight structural shocks. Because
the New-Keynesian DSGE model with the two financial frictions is estimated, we
focus on interpretation of the seven key structural parameters, i.e., two financial
friction, two nominal rigidities and three monetary policy parameters. Table 4
collects these parameters of the four cases to be easily compared with one another.
The parenthesis in the table indicates the 90% credible interval of the posterior
distribution of the structural parameters.

First of all, we consider two estimated parameters involved in the financial
friction of the corporate sector; κ and ϕ. κ denotes the elasticity of the quadratic
adjustment cost of investment in eq.(A20) described in Appendix A4, while ϕ is
the elasticity of the external financial premium in eq.(3.7). According to Table 4,
the posterior mean of κ in Case B (the data-rich approach with constant-volatility-
shocks) is around 0.88, whereas those in the rest cases are between 0.56 and 0.63.
The large elasticity, κ, in Case B implies that the corporate net worth shock more
strongly amplifies fluctuation of business cycles via the channel of adjustment of
the capital asset price (Tobin’s marginal q). On the other hand, the posterior means
of ϕ are less than 0.03 in Cases A and B (models with constant-volatility-shocks),
whereas those on the counterpart cases with SV shocks are nearly 0.04. Because
the elasticity of the external financial premium, ϕ, which reflects the size of agency
cost of corporate sector, is the coefficient of the logarithm of corporate leverage
ratio for explaining the aggregated level of external financial premium st as shown
in eq.(3.7), the relatively large size of ϕ in Cases C and D incorporating the effect
of SV shocks into the DSGE models suggests that variation of leverage ratio in the
corporate sector is likely to be more influential in enlarging the external financial
premium and to lead a more severe decline of investment, compared with results
of Case A and B with structural shocks following i.i.d. normal. Notice that there
are no parameters concerning the financial friction in banking sector of our model
following Gertler and Kiyotaki (2010) and Gertler and Kradi (2011), so that we
cannot show the comparison among the cases in banking sector. Instead, structural
shock pertaining to banking net-worth will be compared among the cases in the
following subsection.

Next, nominal rigidities of price level and wage are considered. In our study,
these rigidities are governed by a Calvo type model explained in Appendix A4.

15We adopt Sims (2002) method in solving for our DSGE model and all estimation procedures are
implemented using GAUSS.

16300,000 iterations are implemented using the MH within Gibbs. We sample one draw out of
every 10 replicates, for reducing the impact of auto-correlations between draws of interest on their
target posterior distributions and store up total 30,000 samples. Then, we discard first 10,000
samples, and the remaining 20,000 samples are used for calculating moments of the posterior dis-
tributions.
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Calvo price θP implies the ratio of intermediate goods firms facing monopolistic
competition and reconciling to remain their price without optimally setting new
price. The value of θP is theoretically real number between 0 and 1. As can be seen
from Table4, the posterior mean of θP in Case B is nearly half size (0.37) against
the rest three cases where those are relatively high normal rigidity (around 0.8)
indicating that new price are set at one-time per every 5 quarter period. On the
other hand, Calvo wage θW (the ratio of workers facing monopolistic competition
and reconciling to remain their wage without optimally setting new wage) is nearly
0.43 in Case B and those in other cases are within 0.5 through 0.6. These values
imply that wage are reset with frequency around one-time per half year.

Finally, Table 4 also reports the three parameters of Taylor type monetary policy
rule, eq.(A24) described in Appendix A4. ρR denotes size of inertia of policy interest
rate, i.e., federal fund rate. And, µπ and µY are Taylor coefficients in response to
inflation gap and output gap, respectively. There are no big differences of the three
parameters among the four cases. That is, ρR is between 0.61 and 0.67, µπ is around
2.8 to 3.0, and µY is tiny such as 0.006 through 0.010. These results imply that
reactions for inflation gap are aggressively implemented, while those for output
gap are not so by the central banker. However, the volatilities of monetary policy
shocks are largely different among the four cases. We will see that time-varying
volatilities of monetary policy shocks rapidly increase in the period of the recession
in Section 6.2.

6.2 Structural Shocks and their Volatilities
Figure 1 shows the posterior mean and 90% credible interval of the eight struc-
tural shocks in Cases A and B which deal with models with constant-volatility-
shocks, whereas Figure 2 dose those in Cases C and D estimating models with
time-varying-volatility-shocks. In the panel (a) of each figure, shocks of model with
11 observable variables are drawn with deep blue solid line for posterior means and
light blue shade for the 90% interval, while panel (b) shows estimates of shocks of
the data-rich approach with deep red solid line and light red shade in the similar
way. In each panel, the line and shade of its counterpart are underlain because of
compared each other. And also Figure 3 depicts posterior means and 90% intervals
of time varying volatility in Cases C and D. From Figures 1 and 2, two points are
impressively observed. First, the fluctuation of each structural shock is different
over the four cases depending on the number of observable series and specification
of shocks, even though using the same DSGE model. This induces different inter-
pretation of economic analysis for business cycle regardless of adopting the same
models. Second, the structural shocks (red shade) estimated from the data-rich ap-
proach seem to fluctuate with bigger swing than those (blue shade) of the standard
approach. In particular, it is distinguished that red shade in data-rich approach
covers almost area of blue shade in Case C in Figure 2 dealing with models with
SV shocks.

Next, we focus on the two structural shocks pertaining to the financial frictions
in banking and corporate sectors. In Table 5, the timings of the peaks of the two
shocks are described for the four cases. At first, the banking net-worth shocks have
the exactly same peak at 2008Q3 for all cases. In this period, i.e., September and
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October 2008, several major financial institutions were either failed, acquired un-
der duress, or subject to government take over. These financial institutions include
Lehman Brothers, Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual,
Wachovia, Citi group, and AIG. On the other hand, the timings of the peak of corpo-
rate net-worth shock are not consistent and divided into two periods, i.e., 2009Q1
in Cases A and B, and 2009Q2 in Cases C and D. Remark that corporate net-worth
shocks have peak after banking sector shocks hit peak, whatever the case.

And we consider the accuracy of estimation for the eight shocks using average
range of 90% credible interval over the all sample period as seen from Table 6. If
we observe the 90% interval ranges are smaller, then it is thought that the shocks
are likely to be identified more precisely. Compared among the four cases, five
average intervals of shocks out of eights are smaller in Cases C and D than in
Cases A and B. These five shocks are (1) preference, (2) banking net-worth, (3) labor
supply, (4) government spending, (5) monetary policy. The intervals in the former
three shocks are around half in the two cases with time-varying-volatility-shocks
against the other two cases with constant ones. And those of government spending
shock shrink to one eighth to one tenth by adopting SV shocks. These suggest that
constant volatilities of shocks might be misspecified and that the shocks follow
time-varying volatilities. In particular, the volatilities are expected to change to
large values at the turning points of business cycles as seen later.

Figure 3 draws estimates of time-varying volatilities of shocks between Cases C
and D. Surprisingly, the seven shocks except government spending shocks are very
similar in both cases. In Figure 3, deep blue and deep red solid lines denote poste-
rior means of Cases C and D, respectively. As seen from this figure, the six shocks
except preference and labor supply shocks are very stable and level off between
1990Q1 and 2007Q3, while preference and labor supply shocks might play an im-
portant role of the boom around 2003 to 2005. After August 2007 when financial
crisis of 2007 to 2009 began with the seizure in the banking system precipitated
by BNP Paribas announcing that it was ceasing activity in three hedge funds that
specialized in US mortgage debt, the volatilities of both banking and corporate net-
worth, investment, and TFP rapidly increased. Although our DSGE model is not
thought perfectly to capture macroeconomic fluctuations in the period of the Great
Recession, the estimates show that the sizes of volatilities in this period look like
extraordinary.

And Table 7 indicates average 90 % intervals of SV over the entire sample period
in the two cases because of verifying whether the data rich approach contributes
improvement of estimates of SV of shocks. As seen from Table 7 as well as Figure 3,
there are no differences of means of interval ranges between Cases C and D except
government spending shocks. However, it might be too hasty to conclude that the
data rich method does not improve the accuracy of SV estimates. We would need
to validate the further evidences in this question.

Next, we turn to discuss the leverage effects of SV shocks. Table 11 summa-
rizes the estimation results of the parameters in the SV model defined in eq.(2.2)
to eq.(2.4) and used in Cases C and D. The leverage effect is represented by the sign
of the correlation coefficient ρσ of each shocks. If ρσ is negative, the shock has lever-
age effect which implies that the negative shock at the present period amplifies its
volatility at the next period, and vice versa. Table 8 sums up the sign of the corre-
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lation coefficient ρσ of each shocks in terms of 90% credible interval. The mark “-”
indicates negative of ρσ (leverage effect) at 90% credible degree of posterior prob-
ability, while the mark “+” does positive of ρσ (opposite leverage effect) in similar
way. The mark “0” implies that we do not judge the sign of ρσ and leverage effect of
each shock because zero is within 90% interval of ρσ. According to many financial
empirical studies, leverage effect are often observed in financial time series such
like stock price. Our question is whether banking and corporate net-worth shock
have the leverage effect which implies that decline of net-worth shock lead to ex-
tend its volatility or its uncertainty at next period. However, we cannot observe
leverage effects for these two shocks as Table 8. This result might be derived from
either the number of observation, specification of our DSGE model, or something
else. To answer this question we need to continue development of econometric
method further as well as selecting and accumulating data.

Finally, we remark the monetary policy in the period of the Great Recession,
although we adopt liner-type Taylor rule and estimate it for the sample period in-
cluding QE1 (round 1 of quantitative easing by FRB, between 2008Q4 and 2010Q2)
and QE2 (2010Q4 to 2011Q2). Monetary policy shocks in Figures 1 and 2 seem
to have two big negative spikes after 2007. The first negative spike is observed
at 2007Q4 when BNP Paribas announcement impacts on global financial market.
And the second one is observed at 2008Q3 immediately before an unconventional
monetary policy (QE1) was conducted by the FRB. In particular, the magnitudes of
these two negative shocks are distinguished in the cases of time-varying-volatility
as Figure 2. Figure 3 also captures rapidly appreciation of these volatilities of pol-
icy shocks in the period between 2007Q4 and 2008Q3. Figure 8 shows monetary
policy has opposite leverage effect over the entire sample periods even though FRB
took tremendous monetary easing policies in the recession. That is, tightening pol-
icy is likely to be conducted more boldly without hesitation, while easing policy
might be done more carefully, according to the results with 90 % credible degree of
posterior probability.

6.3 Historical Decompositions
To investigate the sources of the Great Recession, we focus on the historical de-
compositions of four observable variables; (1) real GDP as output gap, (2) gross
private domestic investment (fixed investment) as investment, (3) Moody’s bond
index (corporate Baa) as corporate borrowing rate, (4) commercial banks leverage
ratio as bank leverage ratio which are described in detail in Data Appendix. Each
of Figures 4 to 7 draws four decompositions of each observable variable based on
the four cases for the period between 2000Q1 and 2012Q2, and light blue shade
denotes the period of Great Recession (2007Q3 to 2009Q2). To facilitate visualiza-
tion and focus on contributions of two financial frictions, technology and monetary
policy shocks for the recession, we collect the remaining four miscellaneous shocks
as one bundle in these figures.

At first we consider real activities. Figures 4 and 5 show historical decompo-
sitions of real GDP and gross private domestic investment, respectively. Because
the decompositions of these real activities’ variables have similar properties, we
discuss them as a whole. Although the signs of contribution of each shock are the
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same in every case of the two variables at each period, we can see that the sizes of
the contribution of shocks are different depending on the cases. In Case A (stan-
dard DSGE model), TFP shock accounts for large portion of sources of the Great
Recession (light blue shade), while decline of bank net-worth impact on small part
of drops. And positive corporate net-worth increases and contributes upward these
variables at significant portion during the recession in this case. On the other
hand, the remaining three cases shows that positive effect of corporate net-worth
shock are small, and that bank net-worth shock accounts for bigger place of down-
turn of these real activities in the period. Even in the period of recovery of the
US economy, Case A shows the different picture with the other cases. The main
source of blocking recovery is derived from negative TFP shocks in Case A, whereas
TARP works and prominently improves bank’s balance sheet so that positive bank
net-worth shock contributes upward real activities in the three cases. In addition,
decompositions of these cases suggest deterioration of corporate’s balance sheet is
likely to be main source blocking recovery after the recession.

In Figure 6, Moody’s bond index (corporate Baa) is decomposed as corporate
borrowing rate. According to the figure, a sharp rise of the rate might be derived
from mainly negative bank net-worth shock as well as a fall of TFP shock, whereas
positive firm net-worth shock contributes the downward rate in the recession. And
then, firm net-worth shock turns to be remarkably negative, seriously deteriorates
its balance sheet and accounts for large portion of rise of the rate after the re-
cession. On the other hand, TARP might work well and make bank net-worth
shock change to positive, and this contributes the downward borrowing rate after
2010Q1. In particular, we can see these findings in Cases B, C and D.

Figure 7 depicts decomposition of commercial banks leverage ratio defined as
the inverse of the commonly-used ratio, i.e., bank asset over bank net-worth. As
can be seen from this figure, countercyclical of this inverse ratio is observed and
the contributions of shocks to the fluctuations are explained. Both financial shocks
in banking and corporate sectors with conflicting direction, i.e., negative banking
balance sheet shock and positive corporate balance sheet shock, contribute an in-
crease in the ratio at the almost same proportion in the recession. Soon after that,
an increase in bank equity by conducting TARP makes its balance sheet improve,
while negative firm net-worth shock makes firm balance sheet much worse, leading
to a sharp reduction of loan by bank. These both things bring the ratio downward,
since the numerator of the ratio consists of both loan and equity in banks and the
denominator is only its equity. These findings are observed from every case. How-
ever, the dynamics of countercyclical of this inverse ratio is not generated from
Gertler and Kiyotaki (2011). Recently, Adrian et al. (2012) try to explained coun-
tercyclical of this inverse ratio following two conflicting movements of banking loan
and bond financing of firms., i.e., loan declines and bond increases in the recession.
Our findings about both conflicting financial shocks in the recession are consist
with Adrian et al. (2012).

6.4 Observations and Interpretation
Overall, we can make three important observations based on our empirical results.

First, as for the timing of the financial shocks during the period of Great Reces-
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sion shown in Figure 1 and 2, we observed that the bank net worth shock occured
earlier than the corporate net worth shock. Putting it differently, two financial
shocks did not occur concurrently, but the corporate net worth shock occured just
shortly after the bank net worth shock. This timing pattern (not concurrent, but
proximate timing) may points to the possibility of endogenous relationshhip be-
tween the balance sheet conditions of the banking sector and the corporate sector.
For instance, in reality, it is possible for the corporate sector to hold financial sec-
tor’s equity as an asset and the devaluation of the financial sector’s asset may
affect the balance sheet condition of the corporate sector. Unfortunately, however,
the model in this paper does not allow the corporate sector to hold banking sector’s
equity as an asset and further assumes the two financial shocks to be independent
with each other.17 Thus, it is inappropriate to interpret the endogenous relation-
ship between two financial shocks in the context of the model assumed in this
paper. Yet, the timing of the two financial shocks during Great Recession is worth
noting.

Second, through the historical decomposition results shown in Figure 4 to Fig-
ure 7, we observed that the corporate net worth shock during Great Recession to be
relatively weak in Case A, compared to the those in Case B, C, and D. This results
may point to the possibility of underestimation of the importance of corporate net
worth shock when the model is estimated by a plain-vanilla Bayesian estimation
method – i.e., without data-rich estimation or stochastic volatility. Moreover, an ac-
curate estimation of corporate net worth shock during Great Recession is crucially
important in accounting for the economic recovery of the U.S. economy in recent
years. For instance, in Case A, a slow recovery of output is mainly accounted by
negative productivity shock, while in Case B, C, and D, it is mainly accounted by a
prolonged negative corporate net worth shock. A slow recovery of the U.S. economy
after Great Recession remain as an important puzzle and persuasive explanation
of this puzzle calls for an accurate estimation of the structural shocks. For accurate
estimation of the structural shocks (especially for corporate net worth shock), data-
rich estimation with stochastic volatility may be more reliable than a plain-vanilla
Bayesian estimation method.

Third, another important observation from the historical decomposition results
is the behavior of bank net worth shock. Bank net worth shock declines sharply
during Great Recession and is the main source of the sharp decline in output and
investment as shown in Figure 4 and 5. But then, right after Great Recession
period, bank net worth shock quickly reverses its direction and contributes posi-
tively to output and investment. Considering the timing of this reversal, it is quite
possible that the implementation of TARP is behind this reversal. In other words,
implementation of TARP may have successfully countered the negative bank net
worth shock. Interpreting further, considering the positive contribution of bank
net worth shock to ouput and investment right after Great Recession period, im-
plementation of TARP may be one of the major reasons in stopping the spell of
Great Recession and contributing to the recovery (albeit weak) of the U.S. economy
in recent years.

17In this paper, the corporate sector is assumed to hold the asset fully in the form of physical
capital.
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7 Conclusion
According to the NBER, the Great Recession, in which the financial crisis played
a significant role in the failure of key businesses, declines in consumer wealth es-
timated in trillions of US dollars, and a downturn in economic activity leading to
the 2008–2012 global recession and contributing to the European sovereign-debt
crisis, is reported to begin in December 2007 and end in June 2009. The purpose of
this study is to argue macroeconomic fluctuations and mutual relationship among
macroeconomic and financial endogenous variables and to identify what structural
exogenous shocks contribute in the Great Recession in the light of a DSGE model.
Because we obtain broad consensus that solvency and liquidity problems of the fi-
nancial institutions are chief among the fundamental factors causing the recession
itself, it is plausible to embed financial frictions in both banking and corporate sec-
tors of a New Keynesian DSGE model. To this end, we followed Nishiyama et al.
(2011) who have already studied the US economy using a New Keynesian DSGE
model with these two financial frictions in a Data Rich environment. In this model
with asymmetric information between borrowers and lenders, banks have two roles
generating two agency costs: one is the lenders of corporate sector and the other
is the borrowers from depositors. Further, the structural shocks in the model are
assumed to possess SV with leverage effect. Then, we estimated the model using
the Data-Rich estimation method and utilize up to 40 macroeconomic time series in
the estimation. Our study is the first attempt of combination of data rich approach
and time varying volatilities of structural disturbances.

We considered four alternative cases depending on the number of observation
variables (11 vs. 40 variables) and specification of volatilities of structural shocks
(constant volatility vs. time-varying-volatility). Compared with four cases, we sug-
gested the following three empirical evidences in the Great Recession; (1) nega-
tive bank net worth shock has gradually outspreaded before corporate net worth
shock has burst down, (2) the Data-Rich approach and structural shocks with SV
evaluated the contribution of corporate net worth shock to the substantial portion
of macroeconomic fluctuations after the Great Recession, in contrast to a stan-
dard DSGE model, and (3) Troubled Asset Relief Program (TARP) would work to
bail out financial institutions, whereas balance sheets in corporate sector could not
have stopped deteriorating yet.

Incorporating time-varying-volatilities of shocks into the DSGE model make
their credible bands narrower than half of constant volatilities, implying it is a re-
alistic assumption of dynamics of structural shocks. It is plausible that the tiny
volatilities (or the uncertainty) in ordinary times change to extraordinary magni-
tude at the turning points of business cycles. We also estimated that monetary pol-
icy shock has opposite leverage effect of SV which implies tightening policy makes
interest rate more volatile.

30



A Appendix

A.1 Sampling Stochastic Volatility with Leverage
Step 4 of MCMC procedure described in Section 4 employs the algorithm of Omori
et al. (2007) which is the extenstion of Kim et al. (1998) toward a SV model with
leverage effect. This subsection is based on Justiniano and Primiceri (2008) who
employed Kim et al. (1998) for drawing the stochastic volatilites.

Accoding to Omori et al. (2007), the key idea of MCMC algorithm of a SV model
with leverage effect is to obtain a draw from an approximate linear and Gaussian
state space form such as(

σ∗t
ht+1

)
=

(
ht+1

µ+ φ(ht − µ)

)
+

(
z∗t
νt

)
, (A.1)

{(
z∗t
νt

)
| di,t, uit = k, ρi, ωi

}
=

(
mk + vkζt

dt ρω (ak + bkvkζt) exp(mk/2) + ω
√

1− ρ2ζ∗t

)
,

(A.2)(
ζt
ζ∗t

)
∼ i.i.d.N(0, I2),

where σ∗i,t = log σi,t = hi,t + z∗i,t, hit = logσi,t, and z∗it = log (zit
2). And dit, and ηi,t are

denoted as

di,t = I(zi,t ≥ 0)− I(zi,t < 0),

ηi,t = (hi,t − µ)− φ(hi,t−1 − µ),

where, I(·) is an indicator function which indicates di,t = 1 when zi,t > 0, or
otherwise:di,t = −1.

Suppose that the MCMC algorithm has implemented iteration g, generating
samples Φ

(g)
i ( = (φi, ρi , ωi) ) and HT,(g). In iteration g + 1, the following four steps

are used to a set of new draws.
Step 1: Draw the structural shocks ε(g+1)

t .
In order to generate a new sample of stochastic volatilities, we need to obtain a

new sample of structural shocks. This can be done using simulation smoother de-
beloped by de Jong and Shephard (1995) whose algorithm is described in Appendix
A2. We obtain a new draw of structural shocks from eq.(A.12) of Appendix A2.

Step 2: Draw the stochastic volatilites HT (g+1)with leverage effect
With a draw of Shocks in hand, nonlinear measurent equations (2.2) in Section

2.1, which is represented as eq.(A.3) for each structural shock, can be easily con-
verted in linear one such as eq.(A.4) by squaring and taking logarithms of every
elements. This induces the following approximating state space repsentation (A.4)
and (A.5).

εi,t = σi,t zi,t, i=1,2,· · · , M, (A.3)

ε̃i,t = 2hi,t + z∗i,t, (A.4)
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hi,t = µ+ φ(hi,t−1 − µ) + νi,t, νi,t ∼ i.i.d. N(0, ω2
i ) (A.5)

where ε̃i,t = log[ ( εi,t )2 + c̄ ]; c̄ is the offset constant (set to 0.001); hit = logσi,t and
z∗it = log (zit

2). M is the number of structural shocks. Since the squared shocks ε2
i,t

is very small, an offset constant is used to make the estimation procedure more
robust. Eqs.(A.4) and (A.5) are linear, but non-Gaussian state space form, because
z∗it are distributed as a log χ2(1). In order to transform the system in a Gaussian
state space form, a mixture of normals approximation of the log χ2(1) distribution
is used, as decribed in Kim et al. (1998) and Omori et al. (2007). A draw of z∗i,t is
implemented from the mixture normal distribution given as

f(z∗i,t) =
K∑
k=1

qkfN(z∗i,t | ui,t = k), i = 1, · · · · · · ,M, (A.6)

where ui,t is the indicator variable selecting which member of the mixture of nor-
mals has to be used at period t for shock i. And qk is the probability of ui,k = k;
qk = Pr(ui,t = k), and fN(·) denotes the probability density function of normal dis-
tribution. Omori et al (2007) select a mixture of ten normal densities (K = 10) with
component probabilities qk, means mk, and variances v2

j , for k = 1, 2, · · · 10, chosen
to match a number of moment of the log χ2(1) distribution. The constant {qk,mk, v

2
k}

are reported as Table blow.

Table of Selection Probability Function (qk, mk, v
2
k, ak, bk )

K=10
k qk mk v2

k ak bk
1 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.22715 -0.85173 0.62699 1.08153 0.54076
6 0.18842 -1.97278 0.98583 1.13114 0.56557
7 0.12047 -3.46788 1.57469 1.21754 0.60877
8 0.05591 -5.55246 2.54498 1.37454 0.68728
9 0.01575 -8.68384 4.16591 1.68327 0.84163
10 0.00115 -14.65000 7.33342 2.50097 1.25049

Using generator of the mixture normal distribution above, the system has an
approximate linear and Gaussian state space form. Therefore, a new draw of the
stochastic volatilitesHT (g+1) can be obtained recursively with standard Gibbs sam-
pler for state space form using the algorithm of Carter and Kohn (1994).

Step 3: Draw the indicators of the mixture approximation uT (g+1)

In the case of SV with leverage effect, we need to modify the indicator ui,t for
the mixture normal described in Step 2, compared with Justiniano and Primiceri
(2008). We follow the algorithm proposed by Omori et al. (2007), and obtain a new
draw of indicators ui,t which is generated condtional on ε

(g+1)
i,t , HT,(g+1) by indepen-

dently sampling each from the discrete density defined by

π(ui,t = k | εi,t, hit, Φ) ∝ π(ui,t = k |σ∗i,t, dit, hit, Φ) ∝ π(uit = k | z∗i,t, ηi,t, di,t, Φ)
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∝ qk v
−1
k exp

{
−

(z∗i,t −mk)
2

2v2
k

−
[ηi,t − di,t ρi ωi exp (mk/2){ak + bk (z∗i,t −mk)}]2

ω2
i (1− ρ2

i )

}
(A.7)

Step 4: Draw the coefficients Φ
(g+1)
i ( = (φi, ρi , ωi) ) of stochastic volatility

processess.
Having generated a sample HT,(g+1), we sample the elements of vector Φ

(g+1)
i

from the density

p( Φi |σ∗i,t, di,t ui,t ) ∝ p(σ∗i,t | dit, ui,t Φi )p(Φi).

The density p(σ∗i,t | dit, ui,t Φi ) is found from the output of Kalman filter recursion
applied to the state space model (A.1) and (A.2). For the sampling we rely on the
Metropolis-Hasting algorithm with a proposal density based on random walk such
as

θ(proposal) = θ(g−1) + ut, ut ∼ N(0, cΣ),

where c is an adjustment constant.

A.2 Simulation Smoother of Model Variable
Step 3.1 of algorithm of data-rich DSGE described in Section 4 employs simula-
tion smoother (de Jong and Shephard, 1995) which generate sampling of model
variables St from conditional posterior distribution, p(ST |Γ(g−1),θ,XT ) . 18On the
other hand, Boivin and Giannoni (2006), and Kryshko (2011) employ smoothing
method proposed by Carter and Kohn (1994). But their method does not apply only
to sample positive definite matrix as variance covariance matrix of state variables
so that their method discontinue on the way of sampling in MCMC pointed out by
Chib (2001, p.3614). As a result, Kryshko (2011) transforms to ad hoc variance
covariance matrix of state variables. To avoid this problem, our algorithm employs
simulation smoother instead of Carter and Kohn’s (1994) algorithm. Accordingly,
our algorithm accomplishes generalization of estimating data-rich DSGE model.

To simplify representation of algorithm of simulation smoother, we rewrite state
space model of (2.17) and (2.18) described in Section 2.1 into (A.8), and (A.9) as
below.

X̃ t = Λ̃S̃t + νt, νt ∼ N(0, R), (A.8)

S̃t = G̃S̃t−1 + Ẽεt, εt ∼ N(0, Q(θ)), (A.9)
18Another simulation smoother has been invented by Durbin and Koopman (2002). The advan-

tage of their method is to make code easily because of using existing Kalman smoother and not
coding new algorithm, while simulation smoother of Carter and Kohn (1994) and de Jong and Shep-
hard (1995) need to made new code of their algorithm. However, since our model is medium-size
DSGE model and it requests long computing time for MCMC processing, we adopt more speeding
algorithm of de Jong and Shephard (1995), instead of Durbin and Koopman (2002).
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The following four steps are conducted to generate a new draw of model vari-
ables.

Step 1: Kalman filter for state space model is implemented.
Kalman filter is represented as

ηt = X̃ t − Λ̃S̃t|t, Ft = Λ̃P̃t|tΛ̃
′
+ R, Kt = G̃P̃t|tΛ̃

′
F−1
t ,

Lt = G̃−KtΛ̃, S̃t+1|t+1 = G̃S̃t|t + Ktηt, P̃t+1|t+1 = G̃P̃t|tL
′
t + ẼQ(θ)Ẽ′,

where ηt is forecasting errors, Kt is Kalman gain, P̃t is variance covariance matrix
of state variables S̃t. Filtering of S̃t|t, P̃t|t iterates forward for period t = 1, 2, · · · , T .
And for initial value S̃1|1, P̃1|1, we set X̃1 = Λ̃S̃1, and P̃1|1 = G̃P̃1|1G̃

′ + ẼQ(θ)Ẽ′,
where subscript t|t of S̃t|t denotes conditional expected value of S̃t up to information
on X1, · · · , X t, thus, E(S̃t|X1,X2, · · · ,X t).

Step 2: Generate values of rt−1, Nt−1by implementing simulation smoother.

This algorithm is iterated backward from period: t = T, · · · , 2, 1 using values
obtained from Kalman filter, as following equations (A.10), (A.11).

rt−1 = Λ̃
′
F−1
t ηt −W′

tC
−1
t dt + L′trt, (A.10)

Nt−1 = Λ̃
′
F−1
t Λ̃ + W′

tC
−1
t Wt + L′tNtLt, (A.11)

where Wt and Ct are obtained from the equations such as

Wt = Q(θ)Ẽ′NtLt,

Ct = Q(θ)−Q(θ)Ẽ′NtẼQ(θ),

and random variable dt is generated from N(0, Ct) . Initial value rT and NT are
set at rT = 0, and NT = O.

Step 3: Smoothing of structural shocks ε̂t|T , are implemented backward
iteration using the equation (A.12).

Subscript t|T of ε̂t|T denotes expected value conditional on total sample period
such as E(εt|X1,X2, · · · ,XT ).

ε̂t|T = Q(θ)Ẽ′rt + dt dt ∼ N(0, Ct), t = T, · · · , 2, 1 (A.12)

Step 4: Generate model variables S̃t by forward iteration of the equa-
tion (A.13).

S̃t+1|T = G̃S̃t + Eε̂t|T , t = 1, 2, · · · , T, (A.13)

where initial value S̃1|T is obtained from S̃1|T = S̃1|1 + P̃1|1r0.

The algorithm described above is procedure generating model variablesS̃t(t =
1, 2, · · · , T ) from conditional posterior distribution p(ST |Γ(g−1),θ,XT ) which is im-
plemented in Step 3.1 of Section 4.
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A.3 Sampling of Parameters Set Γ of Measurement Equation
(2.11)

In Step 3.2 of MCMC algorithm in Section 4, we sample parameters Γ = {Λ,R,Ψ}
of measurement equation obtained from (2.11) and (2.13) . To do so, (2.11) is trans-
formed by substituing (2.13) into it as

(I−ΨL)X t = (I−ΨL)ΛSt + νt, νt ∼ i.i.d.N(0, R),

where I denotes identity matrix. The sampling of parameters Γ = {Λ,R,Ψ} from
conditional posterior distribution p(Γ|ST (g),θ(g−1),XT ) given the unobserved model
variables STand deep parameters θ, is conducted following the approach by Chib
and Greenberg (1994) who proposed Bayesian estimation method of linear regres-
sion model with AR (1) errors such like (2.11) and (2.13).

For estimating above model, Chib and Greenberg (1994) divided it into two
linear regression models. First, by using notations, X∗k,t = Xk,t − ΨkkXk,t−1, and
S∗k,t = Sk,t − ΨkkSk,t−1 where subscript k is k-th indicator of data set X t, above
equation is represented as

X∗t = ΛS∗t + νt, νt ∼ i.i.d.N(0, R),

Second, by using notation ek,t = Xk,t −ΛkSt which means measurement errors, the
equation is also rewritten as

ek = Ψkkek,−1 + νk,

where ek = [ek,2, . . . , ek,T ]′, ek,−1 = [ek,1, . . . , ek,T−1]′. We sample parameter (Λ, R)
given parameter Ψ from the first equation, and parameter Ψ given (Λ, R) from the
second equation sequencially based on the following two-step algorithm.

Step 1. Sampling (Λk, Rkk) from conditional posterior distribution p(Λkk, Rkk |
Ψkk, S

T ,θ,XT ) for estimating equation

X∗t = ΛS∗t + νt, νt ∼ i.i.d.N(0, R).

The posterior density of (Λ, Rkk) given the unobserved state variables STand
deep parameters θ is represented as

p(Λk, Rkk|Ψkk,S
T ,XT ) ∝ p(XT |ST ,Λk, Rkk,Ψkk,θ) p(Λkk, Rkk),

where p(XT |ST ,Λk, Rkk,Ψkk,θ) is likelifood function and p(Λkk, Rkk) is prior den-
sity.

As shown by Chib and Greenberg (1994), the above likelifood function is pro-
portional to a Normal -Inverse-Gamma density as

p(XT |ST ,Λk, Rkk,Ψkk,θ) ∝ pNIG(Λk, Rkk | Λ̂k, (S
∗′S∗), s, T −N − 2)
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where

Λ̂k = (S∗′S∗)−1 S∗′X∗k

s = X∗′k

(
IT − S∗(S∗′S∗)−1S∗′

)
X∗k = X∗′k

(
X∗k − S∗Λ̂k

)
.

Since above prior p(Λkk, Rkk) is assumed to be Normal-Inverse-Gamma pNIG(Λk, Rkk|
Λk,0,Mk,0, s0, ν0), the resulting conditional posterior density is also Normal -Inverse-
Gamma as following.

p(Λk, Rkk|Ψkk,S
T ,XT ) ∝ pNIG(Λk, Rkk | Λ̂k, (S

∗′S∗), s, T −N − 2)

× pNIG(Λk, Rkk | Λk,0,Mk,0, s0, ν0)

∝ pNIG(Λk, Rkk | Λ̄k, M̄k, s̄, ν̄)

where

M̄k = Mk,0 +

(
S∗′S∗

)
Λ̄k = M̄−1

k

(
Mk,0 Λk,0 + (S∗′S′)Λ̂k

)
s̄ = s0 + s+ (λk,0 − Λ̂k)

′
[
M−1

k,0 + (S∗′S∗)−1

]−1

(λk,0 − Λ̂k)

ν̄ = ν0 + T

and Λk,0, Mk,0, s0, and ν0 are parameters of the prior density.
We sample factor loading Λk and the variance of measuremenent error Rkk se-

quencially from

Rkk|Ψkk,S
T ,θ,XT ∼ IG(s̄, ν̄)

Λk|Rkk,Ψkk,S
T ,θ,XT ∼ N(Λ̄k, Rkk, M̄

−1
k )

Step 2. Sampling Ψkk from conditional posterior distribution p(Ψkk|Λ, Rkk,S
T ,θ,XT )

for estimating equation of measurement errors

ek = Ψkkek,−1 + νk.

The conditional posterior density :p(Ψkk|Λ, Rkk,S
T ,θ,XT ) is given as

p(Ψkk|Λk, Rkk,S
T ,θ,XT ) ∝ p(XT

k |ST ,Λk, Rkk,Ψkk,θ) p(Ψkk),

where p(XT
k |ST ,Λk, Rkk,Ψkk,θ) is likelihood function and p(Ψkk) is prior density.

Then, above likelifood function is proportional to the normal density such as
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p(XT
k |ST , Rkk,Ψkk,θ) ∝ exp

[
− 1

2Rkk

(Ψkk − Ψ̂kk)
′e′k,−1ek,−1(Ψkk − Ψ̂kk)

]
.

And above prior density of coefficient of AR (1) errors Ψkk is also normal density
but truncated at less than unity because dynamic of errors keep to be stationary.
So, prior densty is assumed to be such as

p(Ψkk) ∝ exp

[
− 1

2σ2
Ψ,0

(Ψkk −Ψ0)2

]
× 1{|Ψkk|<1},

where 1{|Ψkk|<1} denotes indicator function which is unity if |Ψkk| < 1, otherwise
zero.

The conditional posterior density is proportional to a product of above two nor-
mal densities, and represented as

p(Ψkk|Rkk,S
T ,θ,XT ) ∝ exp

[
− 1

2Rkk

(Ψkk − Ψ̂kk)
′e′k,−1ek,−1(Ψkk − Ψ̂kk)

]
× exp

[
− 1

2σ2
Ψ,0

(Ψkk −Ψ0)2

]
× 1{|Ψkk|<1}.

Hence, we sample coefficient of AR (1) errors Ψkk from trancasted normal such
as

Ψkk|Rkk,S
T ,θ,XT ∼ N(Ψ̄kk, V̄Ψkk

)× 1{|Ψkk|<1},

where V̄Ψkk
=
[
(Rkk(e

′
k,−1ek,−1)−1)−1 + (σ2

Ψ,0)−1
]−1

,

Ψ̄kk = V̄Ψkk

[
(Rkk(e

′
k,−1ek,−1)−1)−1Ψ̂kk + (σ2

Ψ,0)−1Ψ0

]
.

A.4 The Remaining Framework of the DSGE model
In this section, the remaining structure of our DSGE model described in Section 3
is dealt with.

A.4.1 Household Sector

There is a continuum of members in the household where the total population
measures to one. Within the household, there are fractions of fE entrepreneurs,
fF financial intermediaries (or “bankers”), and 1−fE−fF workers. Entrepreneurs
engage in a business where they produce intermediate goods and transfer the net
worth back to the household when they exit from the business. Now, each financial
intermediary manages a bank where it accepts the deposits from the household
sector and lend to entrepreneurs. When financial intermediaries exit from their
business, they also transfer their net worth back to the household sector. Finally,
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remaining fraction of the members of the household become workers. Workers sup-
ply labor input to earn wage and they transfer their wage earnings to the household
each period. Within the household, each member shares the risk perfectly.

The representative household maximizes her expected discounted sum of utility
over time and their objective function is specified as follow;

Et

∞∑
i=0

βiχct+i

[
(ct+i − hCt+i−1)1−σc

1− σc
− χLt+i

(lt+i)
1+σL

1 + σL

]
(A.14)

where β is the discount rate, h is the habit persistence,σc is the inverse of intertem-
poral elasticity of substitution, ct is final goods consumption, Ct−1 represents the
external habit formation, σL is the inverse of Frisch labor supply elasticity and lt
is the supply of aggregate labor by workers. Now, there are two structural shocks
embedded in the function. χct represents an intertemporal preference shock, while
χLt represents labor disutility shock relative to consumption.

Next, turning to the budget constraint of the representative household, they
make a deposit, bt, at period t and earn real interest rate, Rt/πt+1, next period
where Rt is risk-free gross nominal interest rate at period t and πt+1 is gross in-
flation rate at period t + 1. In addition, the household pays lump sum tax of τt
to the government. Now, they receive a lump-sum transfer of wage incomes from
workers which is expressed as

∫ 1

0
wt(x)lt(x)dx, where wt(x) and lt(x) are real wage

and labor supply by individual worker x, respectively.19 Finally, the household
earns the combined dividend of Ξdiv

t from retailers, earns the net transfer of ΞE
t

from entrepreneurs, and the net transfer of ΞF
t from bankers each period. Thus,

the representative household’s budget constraint at period t can be expressed as,
in real terms, as follow, ,

ct + bt =
Rt−1

πt
bt−1 − τt + Ξdiv

t + ΞE
t + ΞF

t . (A.15)

Consumption and Deposit Decision The first-order conditions (hereafter, FOCs)
of the household with respect to ct and bt as follows;

ζHt = χct (ct − hct−1)−σ
c

(A.16)

ζHt = βEtζ
H
t+1

Rt

πt+1

. (A.17)

where ζHt is Lagrangian multiplier associated with the budget constraint. (A.16) is
the FOC of consumption which equates the marginal utility of consumption to the
shadow price of the final goods. (A.17) is the FOC of deposit decision.

Wage Setting Decision by Workers Following Erceg, Henderson, and Levin
(2000) (hereafter, EHL), each worker indexed by x ∈ [0, 1] supplies differentiated
labor input, lt(x), monopolistically and sells this service to the labor union who

19Here, the real wage set by worker x is defined as wt(x) ≡ Wt(x)/Pt, where Wt(x) stands for the
nominal wage set by worker x and Pt stands for the price index of final goods. The formulation of
Wt(x) and Pt will be described later in this section.
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is perfectly competitive.20 Each worker sets his nominal wage according to Calvo
style sticky price setting where fraction θw of the entire workers cannot freely ad-
just the wages at their discretion. For fraction θw of workers, the partial indexa-
tion of the nominal wage is assumed.21 Due to the perfect risk-sharing assumed
in the model, each worker maximizes the objective function (A.14) by choosing the
amount of individual labor supply, lt(x), while taking the amount of consumption,
ct, as given. Under this setting, (1−θw) fraction of workers maximize their objective
function by setting the nominal wage, W̃t, such that

Et

∞∑
i=0

βi(θw)i

[
W̃t

Pt+i

(
Pt−1+i

Pt−1

)ιw
χct+i (ct+i − hct+i−1)−σ

c

− (1 + ψw)χct+iχ
L
t+i (lt+i(x))σ

L

]
lt+i(x) = 0.

(A.18)
The law of motion of the aggregate wage index can be shown to be as follow,

W
−1/ψw

t = θw

[
Wt−1

(
Wt−1

Wt−2

)ιw]−1/ψw

+ (1− θw)W̃
−1/ψw

t . (A.19)

Finally, the real wage index in the economy is defined as wt ≡ Wt/Pt.

A.4.2 Capital Production Sector

Capital producers are identical, perfectly competitive, and risk neutral. They pur-
chase ikt units of final goods from the retailer, convert them to ikt units of capital
goods, and combine them with existing capital stock, (1 − δ)kt, to produce new
capital stock, kt+1. Capital producers will, then, sell off new capital stock to en-
trepreneurs in a perfectly competitive manner. Capital producers have linear pro-
duction technology in converting final goods to capital goods. In addition, they will
incur quadratic investment adjustment cost when they change the production ca-
pacity of capital goods from previous period. Each capital producer maximizes the
expected discounted cash flow with respect to ikt . 22 The FOC is given by

qt =
1

Akt

[
1 + κ

(
ikt
ikt−1

− 1

)
ikt
ikt−1

+
κ

2

(
ikt
ikt−1

− 1

)2
]
− β κ

Akt+1

(
ikt+1

ikt
− 1

)(
ikt+1

ikt

)2

.

(A.20)
20The labor union transforms labor services to an aggregate labor input, lt using the Dixit

and Stiglitz type aggregator function. The factor demand function for lt(x) is given by lt(x) =
(Wt(x)/Wt)

−(1+ψw)/ψw lt where ψw is the wage markup, Wt(x) is the nominal wage set by worker x

and Wt is the aggregate nominal wage index which is given as Wt =
[∫ 1

0
Wt(x)−1/ψwdx

]−ψw

.
21The lagged inflation indexation is specified as Wt(x) = (Pt−1/Pt−2)ι

w

Wt−1(x) where ιw controls
the degree of nominal wage indexation to past inflation rate.

22The profit function for each capital producer at period t can be expressed as follows,

Et

∞∑
i=0

βi

qt+iikt+i − 1

Akt+i

ikt+i +
κ

2

(
ikt+i
ikt+i−1

− 1

)2

ikt+i


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where Akt is the investment-specific technology shock common across all capital
producers and κ is the investment adjustment cost parameter. Finally, aggregate
capital accumulation equation is given by

kt+1 = ikt + (1− δ)kt. (A.21)

A.4.3 Retailing Sector

Retailers z ∈ [0, 1] purchase intermediate goods from the entrepreneur at perfectly
competitive price and resale them monopolistically in the retail market.23 We as-
sume Calvo type sticky price setting for the retailer where, for any given period t,
fraction θp of the entire retailers cannot freely revise their prices. Further, θp frac-
tion of the retailers who did not receive a ‘signal of price change’ will partially index
their nominal prices to lagged inflation rate of price index.24 Under this setting,
for (1− θp) fraction of the retailers who received a ‘price changing signal’ at period
t, they maximize their expected discounted sum of profits by setting the nominal
price, p̃t, such that

Et

∞∑
i=0

βi(θp)i

[
p̃t
Pt+i

(
Pt−1+i

Pt−1

)ιp
−
(

ε

ε− 1

)
pmct+i

]
yt+i(z) = 0. (A.22)

From the definition of aggregate price index, the law of motion of Pt can be shown
to be as follow,

(Pt)
1−ε = θp

[
Pt−1

(
Pt−1

Pt−2

)ιp]1−ε

+ (1− θp)p̃1−ε
t . (A.23)

A.4.4 The Rest of the Economy

In closing the model, we describe the rest of the model structure here. The central
bank is assumed to follow a standard Taylor-type monetary policy rule,

R̂t = ρRR̂t−1 + (1− ρR)
[
µππ̂t + µyŶt

]
+ εRt (A.24)

where ρR controls the magnitude of interest smoothing, µπ is Taylor coefficient in
response to inflation gap, µy is Taylor coefficient in response to output gap, and εRt
is i.i.d. monetary policy shock.

The government budget constraint is simply specified as

gt = τt. (A.25)
23The demand function for retail goods sold by retailer z is given by yt(z) = (Pt(z)/Pt)

−εYt, where
Yt is aggregated final goods, pt(z) is nominal price of retail goods yt(z), Pt is aggregate price index
of final goods, and ε is the price elasticity of retail goods. Specifically, aggregated final goods, Yt,

and the aggregate price index, Pt, are given as follows; Yt ≡
[∫ 1

0
yt(z)

(ε−1)/εdz
]ε/(ε−1)

and Pt ≡[∫ 1

0
pt(z)

(ε−1)/εdz
]ε/(ε−1)

.
24The lagged inflation indexation is specified as pt(z) = (Pt−1/Pt−2)ι

p

pt−1(z) where ιp controls for
the magnitude of price indexation to past inflation rate.
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The government expenditure, gt, is financed solely by lump-sum tax, τt. In our
model, we simply assume that the government expenditure to follow stochastic
AR(1) process.

Finally, the market clearing condition for final goods is given as follow,

Yt = ct + ikt + gt. (A.26)

A.4.5 Structural Shocks in the Model

There are eight structural shocks in the model, each of them having a specific eco-
nomic interpretation as below. Except for monetary policy shock, all of the struc-
tural shocks are assumed to follow AR(1) stochastic processes where ρ is for the
AR(1) coefficients for respective structural shocks.

TFP shock : Ât = ρAÂt−1 + εAt
Preference shock : χ̂ct = ρcχ̂ct−1 + εct

Labor supply shock : χ̂Lt = ρLχ̂Lt−1 + εLt

Investment specific technology shock : ÂKt = ρKÂKt−1 + εKt
Government spending shock : ĝt = ρGĝt−1 + εGt

Monetary policy shock : εRt
Corporate net worth shock : γ̂Et = ρE γ̂Et−1 + εEt

Bank net worth shock : γ̂Ft = ρF γ̂Ft−1 + εFt

Notice that each stochastic disturbance εt including monetary policy shock is as-
sumed to follow time varying volatility using SV model as mentioned in Section
2.
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Data Appendix

No. Variables Code Series description Unit of data Source
Case A and Case D: The standard one-to-one matchning estimation method
1 R 6 Interest rate: Federal Funds Effective Rate % per annum FRB
2 Y1 5 Real gross domestic product (excluding net export) Billion of chained 2000 BEA
3 C1 5∗ Gross personal consumption expenditures Billion dollars BEA
4 I1 5∗ Gross private domestic investment - Fixed investment Billion dollars BEA
5 π1 8 Price deflator: Gross domestic product 2005Q1 = 100 BEA
6 w1 2 Real Wage (Smets and Wouters) 1992Q3 = 0 SW (2007)
7 L1 1 Hours Worked (Smets and Wouters) 1992Q3 = 0 SW (2007)
8 RE1 6 Moody’s bond indices - corporate Baa % per annum Bloomberg
9 LevF1 7 Commercial banks leverage ratio Total asset/net worth ratio FRB
10 LevE1 3 Nonfarm nonfin corp business leverage ratio Total asset/net worth ratio FRB
11 s1 1 Charge-off rates for all banks credit and issuer loans % per annum FRB
Case B and Case D: The data-rich estimation method
12 Y2 4 Industrial production index: final products Index 2007 = 100 FRB
13 Y3 4 Industrial production index: total index Index 2007 = 100 FRB
14 Y4 4 Industrial production index: products Index 2007 = 100 FRB
15 C2 5∗ PCE excluding food and energy Billions of dollars BEA
16 C3 5 Real PCE, quality indexes; nonduable goods Index 2005 = 100 BEA
17 C4 5 Real PCE, quality indexes; services Index 2005 = 100 BEA
18 I2 5 Real gross private domestic investment Billions of Chained 2005 BEA
19 I3 5∗ Gross private domestic investment: fixed nonresidential Billions of dollars BEA
20 I4 5 Manufactures’ new orders: nondefence capital goods Millions of dollars DOC
21 π2 8 Core CPI excluding food and energy Index 2005 = 100 BEA
22 π3 8 Price index - PCE excluding food and energy Index 2005 = 100 BEA
23 π4 8 Price index - PCE - Service Index 2005 = 100 BEA
24 w2 4∗ Average hourly earnings: manufacturing Dollars BLS
25 w3 4∗ Average hourly earnings: construction Dollars BLS
26 w4 4∗ Average hourly earnings: service Dollars BLS
27 L2 4 Civillian Labor Force: Employed Total Thous. BLS
28 L3 4 Employees, nonfarm: total private Thous. BLS
29 L4 4 Employees, nonfarm: goods-producing Thous. BLS
30 RE2 6 Bond yield: Moody’s Baa industrial % per annum Bloomberg
31 RE3 6 Bond yield: Moody’s A corporate % per annum Bloomberg
32 RE4 6 Bond yield: Moody’s A industrial % per annum Bloomberg
33 LevF2 9 Core capital leverage ratio PCA all insured institutions Core capital/total asset FDIC
34 LevF3 7 Domestically chartered commercial banks leverage ratio Total asset/net worth FRB
35 LevF4 7 Brokers and dealers leverage ratio Total asset/net worth FOF
36 LevE2 3 Nonfarm nonfinancial non-corporate leverage ratio Total asset/net worth FOF
37 LevE3 3 Nonfarm corporate leverage ratio Total asset/net worth FRB
38 s2 1 Charge-off rate on all loans and leases all commercial banks % per annum FRB
39 s3 1 Charge-off rate on all loans all commercial banks % per annum FRB
40 s4 1 Charge-off rate on all loans banks 1st to 100th largest by assets % per annum FRB

Note: The format is: series number; transformation code; series description; unit of data and data source.
The transformation codes are: 1 - demeaned; 2 - linear detrended; 3 - logarithm and demeaned; 4 -
logarithm, linear detrend, and multiplied by 100; 5 - log per capita, linear detrended and multiplied by
100; 6 - detrended via HP filter; 7 - logarithm, detrended via HP filter, and multiplied by 100; 8 - first
difference logarithm, detrended via HP filter, and multiplied by 400; 9- the reciprocal number, logarithm,
detrended via HP filter, and multiplied 100. A ∗ indicate a series that is deflated with the GDP deflator.
“PCE” and “SW (2007)” in this table denote personal consumption expenditure and Smets and Wouters
(2007), respectively.
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Table 1: Specifications of Four Alternative Cases
Case A Case B Case C Case D

Number of Observation 11 40 11 40
Model Variable to Obs. 1 to 1 1 to 4 1 to 1 1 to 4

Structural Shock i.i.d. Normal i.i.d. Normal SV with Leverage SV with Leverage
Note: Item Number of Observation in the first column denotes the number of data indicators used for esti-
mating the model of each case. Item Model Variable to Obs denote the ratio what number of observations
per one model variable are adopted. In the case of a standard DSGE model, we adopt one to one matching
between model variables and obsevations. In data rich approach, one to many matching are adopted between
model variables and obsevations. Item Structural Shock denotes specification of stochastic process of shocks.
SV is abbreviation of stochastic volatility.

Table 2: Calibrated Parameters and Key Steady States
Calibrated Param. Description Value Source

β Discount factor 0.995 Our setting
δ Depreciation rate 0.025 Christensen and Dib (2008)
α Capital share 0.33 Gertler and Kiyotaki (2010)
γEss Survival rate of entrepreneur

in steady state
0.972 Christensen and Dib (2008)

γFss Survival rate of banker in
steady state

0.972 Gertler and Kiyotaki (2010)

λ Bank’s participation
constraint parameter

0.383 Gertler and Kiyotaki (2010)

ψw Wage markup 0.05 Smets and Wouters (2003)
ε Elasticity Substitution of

intermediate goods
11 Our setting

ξE New entrepreneur entry rate 0.003 Our setting
ξF New banker entry rate 0.003 Gertler and Kiyotaki (2010)

Key Steady State Description Value
mcss Steady state marginal cost ε−1

ε -
Sss Steady state external financial

premium
1.0075 Christensen and Dib (2008)

rrEss Steady state corp. borrowing
rate (real, QPR)

1.0152 From data (1980Q1-2010Q2)

rrFss Steady state bank lending rate
(real, QPR, ex-premium)

rrEss/Sss -

rrss Steady state real interest 1/β -
νss Steady state Nu (1−γF

ss)β(rr
F
ss−rrss)

(1/β−γF
ss)

-

ηss Steady state Eta 1−γF
ss

1−βγF
ss

-
LevFss Steady state leverage ratio of

banker

ηss
λ−νss -

Kss/N
E
ss Steady state leverage ratio of

entrepreneur
1.919 From data (1980Q1-2010Q2)

Kss/Yss Steady state capital/output
ratio

αmcss
rrEss−(1−δ) -

Iss/Yss Steady state
investment/output ratio

δKss/Yss -

Gss/Yss Steady state government
expenditure/output ratio

0.2 Gertler and Kiyotaki (2010)

Css/Yss Steady state
consumption/output ratio

1− Iss/Yss −Gss/Yss -
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Table 3: Prior Settings of Structural Parameters
Structural Parameters

Parameter Description Density Prior Mean Prior SE
κ Investment adjustment cost Gamma 1.000 0.500
h Habit formation Beta 0.500 0.250
σC IES of consumption Gamma 1.500 0.500
σL Inverse Frisch elasticity of labor supply Gamma 1.500 0.500
ϕ Elasticity of premium to leverage ratio Inv. Gamma 0.050 4.000
ιP Price indexation Beta 0.500 0.100
ιW Wage indexation Beta 0.500 0.250
θP Calvo parameter for goods pricing Beta 0.500 0.250
θW Calvo parameter for wage setting Beta 0.500 0.250
ρR Moneatary policy persist. param. Beta 0.500 0.250
µπ Taylor coefficient for inflation Gamma 1.500 0.500
µY Taylor coefficient for output gap Gamma 0.500 0.250

Persistence Parameters for Structural Shocks
Parameter Description Density Prior Mean Prior SE

ρA Persistent parameter for TFP shock Beta 0.500 0.250
ρC Persistent parameter for preference shock Beta 0.500 0.250
ρK Persistent parameter for investment tech. shock Beta 0.500 0.250
ρE Persistent parameter for entrepreneur net worth shock Beta 0.500 0.250
ρF Persistent parameter for banking sector net worth shock Beta 0.500 0.250
ρG Persistent parameter for government expenditure shock Beta 0.500 0.250
ρL Persistent parameter for labor supply shock Beta 0.500 0.250

Standard Errors for Structural Shocks
Parameter Description Density Prior Mean Prior SE

eA SE of TFP shock Inv. Gamma 0.707 4.000
eC SE of preference shock Inv. Gamma 0.707 4.000
eE SE of entrepreneur net worth shock Inv. Gamma 0.707 4.000
eF SE of banking sector net worth shock Inv. Gamma 0.707 4.000
eG SE of government expenditure shock Inv. Gamma 0.707 4.000
eK SE of investment specific technology shock Inv. Gamma 1.000 4.000
eL SE of labor supply shock Inv. Gamma 0.707 4.000
eR SE or monetary policy shock Inv. Gamma 0.224 4.000
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Table 4: Estimates of Key Structural Parameters
Parameters Case A Case B Case C Case D

Parameters for Financial Friction in Corporate Section
κ 0.614 0.877 0.627 0.562

[0.547, 0.689] [0.818, 0.938] [0.526, 0.762] [0.470, 0.661]
ϕ 0.027 0.025 0.042 0.041

[0.024, 0.030] [0.023, 0.026] [0.036, 0.048] [0.036, 0.046]
Parameters for Nominal Rigidities

θP 0.854 0.374 0.778 0.760
[0.811, 0.895] [0.305, 0.440] [0.701, 0.859] [0.697, 0.822]

θW 0.589 0.428 0.525 0.516
[0.531, 0.649] [0.351, 0.500] [0.450, 0.598] [0.452, 0.580]

Parameters for Monetary Policy Rule
ρR 0.670 0.643 0.613 0.632

[0.581, 0.758] [0.582, 0.707] [0.528, 0.690] [0.590, 0.675]
µπ 2.805 2.820 2.984 2.986

[2.767, 2.842] [2.790, 2.848] [2.974, 2.995] [2.977, 2.995]
µY 0.006 0.010 0.009 0.008

[0.000, 0.014] [0.000, 0.020] [0.000, 0.020] [0.000, 0.018]

Note: The parenthesis in the table indicates 90% credible interval of structural parameters. 300,000 itera-
tions are implemented using algorithm of MH within Gibbs described in Section 4. We sample one draw out of
every 10 replicates and discard first 10,000 samples. The remaining 20,000 samples are used for calculating
moments of the posterior distributions.

Table 5: Timings of Peaks of the Financial Shocks
Structural Shock

Case A Case B Case C Case D
Corp. Net Worth 2009Q1 2009Q1 2009Q2 2009Q2
Bank Net Worth 2008Q3 2008Q3 2008Q3 2008Q3

Stochastic Volatilities
Case A Case B Case C Case D

Corp. Net Worth - - 2009Q2 2009Q2
Bank Net Worth - - 2009Q3 2009Q3
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Table 6: Average Ranges of 90% Credible Interval of Structural Shocks over the entire sample peiods
Structural Shocks Case A Case B Case C Case D

TFP 0.635 0.353 0.462 0.539
Preference 1.593 1.633 0.897 0.824

Corp. Net Worth 0.141 0.148 0.226 0.216
Bank Net Worth 1.902 1.433 0.805 0.907

Government Expenditure 2.207 2.018 0.201 0.322
Investment 0.983 0.236 1.133 1.107

Labor Supply 2.516 3.133 1.686 1.430
Monetary Policy 0.121 0.178 0.125 0.126

Note: This table reports the average of the difference between the upper and the lower bounds of 90% credible
interval of the structural shock over the entire sample periods (1985Q2-2012Q2), depicted in Figures 1 and
2.

Table 7: Average Ranges of 90% Credible Interval of Stochastic Volatilities in the entire sample peiods
Structural Shocks Case C Case D

TFP 0.385 0.384
Preference 0.994 0.857

Corp. Net Worth 0.222 0.219
Bank Net Worth 0.837 0.908

Government Expenditure 0.202 0.769
Investment 0.621 0.592

Labor Supply 1.403 1.378
Monetary Policy 0.086 0.095

Note: This table reports the average value in the entire sample periods (1985Q2-2012Q2) of the difference
between the upper bound and the lower bound of 90% credible interval on the stochastic volatiliy for the
structural shock depicted in Figure 3.

Table 8: Leverage Effect of Structural Shocks: Correlation between the Sign of Shock and its Volatility
Structural Shocks Case C Case D

TFP 0 0
Preference + +

Corp. Net Worth 0 0
Bank Net Worth 0 0

Government Expenditure 0 0
Investment 0 0

Labor Supply 0 0
Monetary Policy + +

Note: The mark “-” indicates negative of ρσ (leverage effect) at 90% credible degree of posterior probability,
while the mark “+” does positive of ρσ (opposite leverage effect) in similar way. The mark “0” implies that we
do not judge the sign of ρσ and leverage effect of each shock because zero is within 90% credible interval of
ρσ.
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Table 9: Posterior Mean: Case A and Case B

Case A Case B
Key Strucutral Parameters

Parameter Mean SD 90% CI Mean SD 90% CI
κ 0.614 0.043 [ 0.547 0.689 ] 0.877 0.038 [ 0.818 0.938 ]
h 0.464 0.045 [ 0.396 0.537 ] 0.597 0.040 [ 0.535 0.661 ]
σC 1.628 0.036 [ 1.578 1.688 ] 1.404 0.032 [ 1.356 1.451 ]
σL 0.939 0.071 [ 0.819 1.052 ] 0.417 0.072 [ 0.323 0.524 ]
ϕ 0.027 0.002 [ 0.024 0.030 ] 0.025 0.001 [ 0.023 0.026 ]
ιP 0.521 0.027 [ 0.478 0.566 ] 0.358 0.017 [ 0.330 0.386 ]
ιW 0.422 0.009 [ 0.408 0.437 ] 0.450 0.007 [ 0.440 0.459 ]
θP 0.854 0.026 [ 0.811 0.895 ] 0.374 0.041 [ 0.305 0.440 ]
θW 0.589 0.037 [ 0.531 0.649 ] 0.428 0.048 [ 0.351 0.500 ]
ρR 0.670 0.055 [ 0.581 0.758 ] 0.643 0.038 [ 0.582 0.707 ]
µπ 2.805 0.025 [ 2.767 2.842 ] 2.820 0.018 [ 2.790 2.848 ]
µY 0.006 0.005 [ 0.000 0.014 ] 0.010 0.007 [ 0.000 0.020 ]

Persisitence Parameters for Strucutral Shocks
Parameter Mean SD 90% CI Mean SD 90% CI

ρA 0.975 0.007 [ 0.964 0.986 ] 0.975 0.005 [ 0.966 0.983 ]
ρC 0.636 0.093 [ 0.504 0.788 ] 0.088 0.053 [ 0.004 0.166 ]
ρK 0.391 0.044 [ 0.323 0.462 ] 0.998 0.001 [ 0.996 0.999 ]
ρE 0.907 0.022 [ 0.873 0.944 ] 0.976 0.012 [ 0.959 0.996 ]
ρF 0.031 0.024 [ 0.000 0.064 ] 0.016 0.011 [ 0.000 0.031 ]
ρG 0.798 0.047 [ 0.733 0.864 ] 0.671 0.012 [ 0.652 0.686 ]
ρL 0.933 0.041 [ 0.876 0.995] 0.967 0.009 [ 0.953 0.982 ]

Standard Errors for Structural Shocks
Parameter Mean SD 90% CI Mean SD 90% CI

eA 0.564 0.043 [ 0.492 0.629 ] 0.398 0.030 [ 0.347 0.447 ]
eC 1.475 0.161 [ 1.242 1.716 ] 1.729 0.189 [ 1.441 1.986 ]
eK 0.238 0.016 [ 0.212 0.265 ] 0.286 0.020 [ 0.254 0.318 ]
eE 0.787 0.072 [ 0.689 0.918 ] 1.423 0.042 [ 1.358 1.491]
eF 0.757 0.057 [ 0.690 0.843 ] 0.890 0.058 [ 0.811 0.979 ]
eG 0.520 0.050 [ 0.439 0.603 ] 0.895 0.119 [ 0.751 1.102 ]
eL 0.881 0.110 [ 0.722 1.060 ] 1.383 0.040 [ 1.325 1.448 ]
eR 0.228 0.016 [ 0.201 0.255 ] 0.245 0.019 [ 0.215 0.274 ]

Note: 300,000 iterations are implemented using MH within Gibbs described in Section 4. We sample one
draw out of every 10 replicates and discard first 10,000 samples. The remaining 20,000 samples are used for
calculating moments of the posterior distributions. Items SD and 90% CI denote the standard deviations and
90% credible intervals of the posterior distributions of the structural parameters, respectively.
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Table 10: Posterior Mean: Case C and Case D

Case C Case D
Key Strucutral Parameters

Parameter Mean SD 90% CI Mean SD 90% CI
κ 0.627 0.072 [ 0.526 0.762 ] 0.562 0.058 [ 0.470 0.661 ]
h 0.210 0.037 [ 0.149 0.271 ] 0.221 0.038 [ 0.161 0.282 ]
σC 1.588 0.012 [ 1.568 1.608 ] 1.605 0.017 [ 1.574 1.627 ]
σL 0.577 0.019 [ 0.548 0.610 ] 0.597 0.017 [ 0.569 0.626 ]
ϕ 0.042 0.003 [ 0.036 0.048 ] 0.041 0.003 [ 0.036 0.046 ]
ιP 0.513 0.010 [ 0.496 0.529 ] 0.503 0.009 [ 0.490 0.520 ]
ιW 0.494 0.001 [ 0.492 0.496 ] 0.489 0.001 [ 0.487 0.491 ]
θP 0.778 0.050 [ 0.701 0.859 ] 0.760 0.038 [ 0.697 0.822 ]
θW 0.525 0.045 [ 0.450 0.598 ] 0.516 0.039 [ 0.452 0.580 ]
ρR 0.613 0.049 [ 0.528 0.690 ] 0.632 0.026 [ 0.590 0.675 ]
µπ 2.984 0.007 [ 2.974 2.995 ] 2.986 0.006 [ 2.977 2.995 ]
µY 0.009 0.008 [ 0.000 0.020 ] 0.008 0.007 [ 0.000 0.018 ]

Persisitence Parameters for Strucutral Shocks
Parameter Mean SD 90% CI Mean SD 90% CI

ρA 0.956 0.017 [ 0.930 0.982 ] 0.956 0.014 [ 0.933 0.979 ]
ρC 0.908 0.028 [0.862 0.953 ] 0.909 0.025 [ 0.868 0.952 ]
ρK 0.823 0.061 [ 0.726 0.922 ] 0.776 0.056 [ 0.682 0.864 ]
ρE 0.854 0.136 [ 0.606 0.983 ] 0.918 0.036 [ 0.867 0.971 ]
ρF 0.156 0.025 [ 0.126 0.211 ] 0.167 0.012 [ 0.151 0.191 ]
ρG 0.661 0.016 [ 0.630 0.683 ] 0.619 0.005 [ 0.612 0.627 ]
ρL 0.974 0.014 [ 0.953 0.997 ] 0.982 0.012 [ 0.965 0.998 ]

Note: 300,000 iterations are implemented using MH within Gibbs described in Section 4. We sample one
draw out of every 10 replicates and discard first 10,000 samples. The remaining 20,000 samples are used for
calculating moments of the posterior distributions. Items SD and 90% CI denote the standard deviations and
90% credible intervals of the posterior distributions of the structural parameters, respectively.
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Table 11: Posterior Mean of Parameters of SVs: Case C and Case D

Case C Case D
Parameter Mean SD 90% CI Mean SD 90% CI

Parameters of Stochasitc Volatilities for TFP Shock
σA 0.345 0.108 [ 0.186 0.500 ] 0.338 0.120 [ 0.158 0.500 ]
ρσA 0.227 0.490 [ -0.507 0.990 ] 0.347 0.390 [ -0.186 0.989 ]
φA 0.540 0.192 [ 0.240 0.865 ] 0.509 0.184 [ 0.213 0.810 ]
µA 0.518 0.031 [ 0.465 0.567] 0.429 0.049 [ 0.349 0.501 ]

Parameters of Stochasitc Volatilities for Preference Shock
σC 0.488 0.012 [ 0.472 0.500 ] 0.476 0.023 [ 0.447 0.500 ]
ρσC 0.426 0.168 [ 0.160 0.714 ] 0.481 0.141 [ 0.226 0.696 ]
φC 0.927 0.077 [ 0.842 0.990 ] 0.958 0.037 [ 0.919 0.990 ]
µC 0.623 0.038 [ 0.573 0.692] 0.933 0.055 [ 0.844 1.026 ]

Parameters of Stochasitc Volatilities for Corporate Net Worh Shock
σE 0.477 0.026 [ 0.452 0.500 ] 0.412 0.073 [ 0.303 0.500 ]
ρσE 0.349 0.220 [ -0.019 0.724 ] 0.280 0.329 [ -0.217 0.869 ]
φE 0.741 0.147 [ 0.538 0.990 ] 0.758 0.186 [ 0.493 0.990 ]
µE 0.166 0.011 [ 0.151 0.185 ] 0.194 0.013 [ 0.173 0.212 ]

Parameters of Stochasitc Volatilities for Bank Net Worth Shock
σF 0.230 0.052 [ 0.147 0.315] 0.445 0.041 [ 0.395 0.500 ]
ρσF 0.130 0.231 [ -0.264 0.483 ] 0.218 0.199 [ -0.132 0.498 ]
φF 0.933 0.059 [ 0.872 0.990 ] 0.894 0.066 [ 0.804 0.990 ]
µF 0.862 0.049 [ 0.789 0.942 ] 0.893 0.050 [ 0.783 0.959 ]

Parameters of Stochasitc Volatilities for Government Expenditure Shock
σG 0.200 0.055 [ 0.112 0.286 ] 0.440 0.048 [ 0.373 0.500 ]
ρσG 0.358 0.388 [-0.294 0.896 ] 0.044 0.367 [ -0.536 0.670 ]
φG 0.512 0.250 [ 0.110 0.904 ] 0.517 0.246 [ 0.071 0.891 ]
µG 0.497 0.049 [ 0.401 0.557 ] 0.570 0.031 [ 0.519 0.627 ]

Parameters of Stochasitc Volatilities for Investment Specific Technology Shock
σK 0.441 0.049 [ 0.371 0.500] 0.452 0.063 [ 0.335 0.500 ]
ρσK 0.020 0.261 [ -0.361 0.493 ] 0.128 0.246 [ -0.215 0.540 ]
φK 0.181 0.199 [ 0.000 0.453 ] 0.219 0.214 [ 0.000 0.548 ]
µK 0.343 0.032 [ 0.298 0.393 ] 0.406 0.049 [ 0.324 0.476 ]

Parameters of Stochasitc Volatilities for Labor Supply Shock
σL 0.462 0.032 [ 0.412 0.500] 0.482 0.016 [ 0.458 0.500 ]
ρσL 0.238 0.190 [ -0.066 0.554 ] 0.232 0.178 [ -0.071 0.517 ]
φL 0.685 0.265 [ 0.242 0.990 ] 0.903 0.084 [ 0.813 0.990 ]
µL 0.962 0.079 [ 0.821 1.085 ] 1.461 0.078 [ 1.351 1.580 ]

Parameters of Stochasitc Volatilities for Monetary Policy Shock
σR 0.456 0.038 [ 0.408 0.500 ] 0.464 0.034 [ 0.407 0.500 ]
ρσR 0.476 0.214 [ 0.114 0.825 ] 0.479 0.211 [ 0.122 0.797 ]
φR 0.703 0.128 [ 0.496 0.929 ] 0.727 0.122 [ 0.540 0.941 ]
µR 0.101 0.006 [ 0.092 0.112 ] 0.112 0.013 [ 0.092 0.131 ]

Note: 300,000 iterations are implemented using MH within Gibbs described in Section 4. We sample one
draw out of every 10 replicates and discard first 10,000 samples. The remaining 20,000 samples are used for
calculating moments of the posterior distributions. Items SD and 90% CI denote the standard deviations and
90% credible intervals of the posterior distributions of the structural parameters, respectively.
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(a)  Case A 

 

(b) Case B 

 

Figure 1: Structural Shocks with i.i.d. Normal in Cases A and B 

Note: Deep blue line and blue shade are posterior mean and 90% credible interval of structural shocks in Case A, 

respectively. And deep red line and red shade are posterior mean and 90% credible interval of structural shocks in 

Case B. 
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(a) Case C 

 

(b) Case D 

 

Figure 2: Structural Shocks with SV in Cases C and D 

Note: Deep blue line and blue shade are posterior mean and 90% credible interval of structural shocks in Case C, 

respectively. And deep red line and red shade are posterior mean and 90% credible interval of structural shocks in 

Case D. 
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(a) Case C 

 

 

(b) Case D 

 

Figure 3: Stochastic Volatilities of Structural Shocks in Cases C and D 

Note: Deep blue line and blue shade are posterior mean and 90% credible interval of structural shocks in 

Case C, respectively. And deep red line and red shade are posterior mean and 90% credible interval of 

structural shocks in Case D. 
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(a) Case A                                         (b) Case B 

     

 

(c) Case C                                       (d) Case D 

       

 

Figure 4:  Historical Decomposition of Real GDP 

Note: Case A; 11 observable variables and structural shocks with i.i.d.  Case B: 41 observable variables and 

structural shocks with i.i.d.  Case C: 11 observable variables and structural shocks with SV.  Case D: 40 

observable variables and structural shocks with SV. 

56



(a) Case A                                         (b) Case B 

       

 

(c) Case C                                       (d) Case D  

       

Figure 5:  Historical Decomposition of Gross Private Domestic Investment 

Note: Case A; 11 observable variables and structural shocks with i.i.d.  Case B: 41 observable variables and 

structural shocks with i.i.d.  Case C: 11 observable variables and structural shocks with SV.  Case D: 40 

observable variables and structural shocks with SV. 
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(a) Case A                                         (b) Case B       

     

 

(c) Case C                                       (d) Case D 

      

 

Figure 6:  Historical Decomposition of Moody’s Bond Index (Corporate Baa) 

Note: Case A; 11 observable variables and structural shocks with i.i.d.  Case B: 41 observable variables and 

structural shocks with i.i.d.  Case C: 11 observable variables and structural shocks with SV.  Case D: 40 

observable variables and structural shocks with SV. 
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(a) Case A                                         (b) Case B 

     

 

(c) Case C                                       (d) Case D 

     

 

Figure 7:  Historical Decomposition of Commercial Bank Leverage Ratio 

Note: Case A; 11 observable variables and structural shocks with i.i.d.  Case B: 41 observable variables and 

structural shocks with i.i.d.  Case C: 11 observable variables and structural shocks with SV.  Case D: 40 

observable variables and structural shocks with SV. 
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