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Abstract 

 

The conventional index number approach to the analysis of total factor productivity cannot 

distinguish between a shift of production function (technical progress) and a movement along a 

production function (technical efficiency). This paper attempts to separate technical efficiency from 

the productivity measurement using the econometric approach based on the stochastic frontier 

production models. This study will be limited to the models that take firms’ heterogeneity into account 

because most of the available panel data consist of a large cross-section and relatively short time 

series. To the extent that firms’ production is characterized by heterogeneous production conditions, 

estimation techniques that do not account for unobserved heterogeneity lead to biased efficiency 

estimates. The sources of total factor productivity growth are decomposed into technical progress, the 

changes in technical efficiency, the changes in allocative efficiency, and the scale effects by using the 

estimated parameters in the stochastic-frontier production models.  
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I. Introduction 

Productivity is an important indicator that represents the growth of each economic agent. By 

utilizing data on productivity by country or industry as the OECD database or EU KLEMS, the 

productivities of several countries are compared and large-scale researches are actively conducted in 

order to consistently discuss productivity measures and computing methodologies. Japan’s RIETI has 

developed the Japan Industrial Productivity Database (JIP Database) and is carrying out researches on 

productivity and other activities that could improve statistical data by initiating projects that promote 

the productivity of several industries or firms. Korea also, with the Korea Productivity Center as the 

central figure, has been building up a Korea Industrial Productivity Database (KIP Database). Until 

today, productivity analysis by industry has been predominant. However, many researchers analyzing 

productivity point out that the existing approaches are quite limited because they do not reflect the 

characteristics of a firm, which is the standard unit that makes actual decisions and implements 

economic activities. Existing approaches are limited to either establishment-level analysis or 

comparative analysis on the industry unit. It is necessary, therefore, to analyze productivity using the 

firm-level micro data. 

In researches on firms, what has been actively researched recently, together with researches on 

productivity, is the analysis on technical efficiency of a firm. Inefficiency occurs from a firm’s 

external and internal factors. A firm should begin by striving to identify such internal factors of 

inefficiency in order to eliminate these factors and thereby enhance its competitiveness and achieve 

long-run growth. This is why it is necessary to analyze the efficiency of Korean firms and researches 

on the determinants that promote efficiency.  

The objectives of this paper are to discuss empirical and theoretical issues related to identifying 

and estimating the sources of firms’ productivity growth and technical efficiency in terms of 
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econometric approaches. By its construction, the index number analysis approach, which is the 

mainstay methodology of productivity analysis, cannot distinguish between a production function 

shift, which means technical progress, and a movement along a production function, which means 

changes in technical efficiency. The econometric approach is a flexible technique not only for 

identifying the sources of productivity growth but also for considering the technical efficiency of 

firms by explicitly specifying the underlying production (or cost or profit) structure. Therefore, this 

paper attempts to separate technical efficiency from the productivity measurement using the 

econometric approach, especially the stochastic frontier production models. By using stochastic 

frontier models, technical efficiency can be directly estimated, and the estimated parameters of the 

underlying structure are used to derive an index of total factor productivity growth. 

In the following Section II, we describe the Kumbhakar (2000) method and adopted stochastic 

frontier models for the decomposition of TFP. Then Section III presents the results of an empirical 

analysis including econometric results with the summary description of database. Finally, we 

summarize conclusions in Section IV. 

 

II. The Stochastic Frontier Production Models and Decomposition 

of TFP 

Kumbhakar (2000) addresses the estimation and decomposition of TFP change using micro panel 

data in a parametric framework. The Solow (1957) measure of productivity change, and thus the index 

number analysis approach, is widely used for measuring TFP, but this approach is nothing but the 

index of technical change when the constant returns to scale (CRS) production technology and perfect 

efficiency are assumed. If efficiency change is omitted from the analysis, its omission will lead to an 
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overstatement of the unexplained residual. Kumbhakar (2000) focuses on the parametric econometric 

modeling of production systems and the estimation of TFP changes from the empirical production, 

cost, and profit functions. Furthermore, TFP change is decomposed into the technical-change, scale 

economies, and technical- and allocative-inefficiency components. The contributions of the technical- 

and allocative-inefficiency effects are separately identified and estimated.  

Starting with the deterministic production frontier,  

( , ; ) exp( ), 1, 2,..., , 1, 2,...,it it ity f x t u i N t Tβ= − = =                       (1) 

where ity is the output for firm i  at time t , ( , ; )itf x t β  the deterministic stochastic production 

frontier with the technology parameter vector to be estimated, itx  an input vector, t  a time trend 

serving as a proxy for technical change, and 0itu ≥  the technical inefficiency. Totally differentiating 

the logarithm y  in equation (1) with respect to time1, 

ln ( , )

j j
j

d f x t duy
dt dt

duTP x
dt

ε

= −

= + −∑
                                       (2) 

where 
ln ( , )

lnj
j

f x t
x

ε ∂
=

∂
. A conventional Divisia index of productivity (TFP ) change is defined 

as the difference between the rate of change in the output and the rate of change in the input quantity 

index, and so 

j j
j

TFP y S x= −∑                                        (3) 

                                       

1 For simplicity, the “ it ” subscripts will be omitted from this point onward. 
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where jS  denotes the observed expenditure share of input j . By inserting equation (3) in 

equation (2), the growth of TFP  can be represented as 

ln ( , )

( )

( 1) ( )

j j j j
j j

j j j
j

j j j j j
j j

d f x t du duy TP x TFP S x
dt dt dt

duTFP TP S x
dt
duTP RTS x S x
dt

ε

ε

λ λ

= − = + − = +

∴ = − + −

= − + − + −

∑ ∑

∑

∑ ∑

                     (4) 

where j
j

RTS ε=∑  denotes the returns to scale and / /j j k j
k

RTSλ ε ε ε= =∑ . Thus, in 

equation (4), TFP growth can be decomposed into technical change (TC), technical-efficiency 

change (TE), scale effects (SE), and allocative-efficiency change (AE). 

Many literatures show that recent domestic researches attempt to analyze productivity by 

applying Kumbhakar (2000). However, despite the fact that care should be taken in measuring 

technical efficiency, since the characteristics of Kumbhakar (2000)’s methodology are such that the 

results of productivity analyses are affected depending on how the method of measuring the estimated 

value of changes in technical efficiency is designed, this fact has not been sufficiently taken into 

account. The limitations of such literatures are summarized as follows. First, as mentioned previously, 

the stochastic frontier models that are used in the existing literatures are very limited. Table 1 shows 

that all, except Lee and Pyo(2007), estimated efficiency by employing Battese and Coelli(1992). This 

is only a part of stochastic frontier models that are already known. The model itself has existing 

limitations. Existing models have continued to be improved and more rational models have continued 

to be developed, but these have seldom been reflected in domestic researches. Second, it is necessary 

to establish and accurately use stochastic frontier models that are suitable to the given research 
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objectives and to the characteristics of data being used. The frequently used Battese and Coelli (1992) 

model, for instance, has the advantages of estimating the changes of time-varying efficiency being 

taken into account. However, it is limited in that efficiency of all sample firms demonstrates the same 

time-varying pattern. By using the cross-section data models in the analysis using panel data, it 

sometimes commits error because it cannot utilize the advantages that panel data have. 

 

 



7 

 

Table 1 Empirical Studies on Korea’s TFP Decomposition Using Kumbhakar (2000) 

Study Industry Period Cross-section Observati
ons 

Production
Technology

Stochastic Frontier
Model 

Dependent 
Variable 

Time-varying
Component Results 

Kim and Han (2001) Manufacturing 1980-1994 508 
Listed Companies 6,203 Translog 

Function 
Battese and Coelli 

(1992) Value-added ○ 

 Productivity growth was driven 
mainly by technical progress 
 Changes in technical efficiency 
had a significant positive effect 
 Allocative efficiency had a 
negative effect. 

Kang and Park(2004) Total Industry 1995-2002 2223 
Firms 17,784 Translog 

Function 
Battese and Coelli 

(1992) Sales ○ 

 Since financial crisis, 
restructuring mainly depended on 
an increase in the total factor 
productivity by reducing 
employment and selling assets 
without significant increase in 
TFP.  

Han(2005) Manufacturing 1986-2000 358 
Listed Companies 5,370 Translog 

Function 
Battese and Coelli 

(1992) Sales ○ 

 The Contribution of technical 
progress was higher than that of 
technical efficiency improvement 
in the TFP growth. 
 The industries with 
higher(lower) rate of technical 
change experienced the 
lower(higher) rate of technical 
efficiency change.  
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Lee and Pyo(2007) Total Industry 1984-1997 32 
Industries 448 Translog 

Function 
Lee 

(2006) Gross Output ○ 

 Productivity growth was driven 
mainly by changes in technical 
efficiency in 1980s. 
 Productivity growth was driven 
mainly by technical progress in 
1990s. 

Pai(2007) IT 
Manufacturing 1992-2004 Establishments 21,681 Translog 

Function 
Battese and Coelli 

(1992) Value-added ○ 

 The productivity growth of IT 
manufacturing was driven 
mainly by technical progress. 
 Poor technical and allocative 
efficiency hindered the 
productivity growth. 

Kang and Lee(2008) Port-Logistics 
Industry 1990-2003 10 

Industries 140 Translog 
Function 

Battese and Coelli 
(1992) Value-added ○ 

 The main component of TFP 
growth is not efficiency change 
but technical progress. 

 



9 

 

As previously stated, many stochastic frontier models have been developed for the estimation of 

technical efficiency, and it is important to choose the most appropriate model or the one that is most 

suitable for the purpose of analyzing the available data. This study was limited to the consideration of 

the models that take into account firms’ heterogeneity because the used data consist of a large cross-

section and relatively short time series. Also due to the short time series, the models that consider the 

time-varying pattern of technical efficiency were excluded in this analysis even though such models 

are currently the state-of-the-art models. All the models are based on the specification given in 

equation (5).  

0 , 1, 2,..., , 1, 2,...,it it ity u v i N t Tα= + − + = =itx' β                       (5) 

This model postulates that the error term it itv u− , is made up of both the statistical-noise term 

itv , a two-sided error term representing the usual statistical noise found in any relationship, and of the 

one-sided error term 0itu ≥  representing technical inefficiency. The frontier is 0 itvα + +itx 'β , 

which is stochastic because it includes itv .  

The differences among the alternative models are related to the assumptions imposed on the 

stochastic components. Table 2 summarizes the five models that are used in this paper. The first model 

is a fixed-effects model following Schmidt and Sickles (1984). This model can be defined as below.  

0,it i it i iy v uα α α= + + = −itx' β                        (6) 

max( ) [ max( )]
, max( ) 0

it i it i i

it i i i i

y v
a v u u

α α α
α α

= + + + −
= + + − = − ≥

it

it

x' β
x' β

                      (7) 

The most efficient firm’s iu  in the sample is 0, and the estimated efficiency in this model is not 

an absolute but a relative value. The fixed-effects specifications are estimated as “within” estimators 
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without any additional distributional assumption regarding iα  since they are treated as firm constants.  

Model 2 is the Pitt and Lee (1981) model specified in line with the Mundlak (1978) formulation. 

Pitt and Lee (1981) introduced the maximum-likelihood estimator in equation (5) by making some 

assumptions. They take distributional assumptions on two error terms, 2~ . . (0, )it vv i i d N σ  and 

2~ . . (0, )i uu i i d N σ+ , and ,i itu v  and ix  are independent of each other. Basically, the approach of 

Mundlak (1978) involves modeling the correlation of unobserved heterogeneity with the regressors in 

an additional equation, under the assumption that the unobserved environmental-production factors 

are correlated with the group means of the explanatory variables. To explicitly account for this 

correlation, the following auxiliary regression can be introduced (Mundlak, 1978): 

2

1

1, , ~ (0, )
iT

i i i i it i
ii

X X X N
T δα γ δ δ σ

=

= + = ∑                       (8) 

where itX  is the vector of the explanatory variables and γ  a vector of the parameters to be 

estimated. The model 2 specification can avoid the heterogeneity bias and at the same time gives 

reasonable estimates of inefficiency. Moreover, other time-invariant explanatory variables can also be 

included in the model.  

Model 3 is a pooled-frontier model in which the firm-specific effect is assumed to be zero. Thus, 

the sample is considered a series of cross-sectional subsamples pooled together. This model is based 

on the original production frontier model proposed by Aigner et al. (1977). Unlike models 1 and 2, 

model 3 can estimate time-varying efficiency. 

Model 4 is the “true” fixed-effects model, which contains iα , representing the additional firm-

specific effects and thus, the unobservable heterogeneity of firms. Strictly speaking, the application of 

fixed effects to the stochastic-frontier model, primarily that of Schmidt and Sickles (1984), is a 
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reinterpretation of the linear-regression model with fixed effects, not of the frontier models. Following 

Greene (2005), the “true” fixed-effects model is specified as 

'it i it ity v uα= + + −itx β                                (9) 

This model is estimated by maximum likelihood. Unlike the usual fixed-effects specification, in 

which the fixed effects are interpreted as inefficiency, the fixed effects in Greene’s model represent 

the unobserved heterogeneity.  

Finally, model 5 is the “true” random effects model following Greene (2005) and modified by 

the Mundlak (1978) specification. As with the fixed-effects model, the random-effects model, 

especially that of Pitt and Lee (1981), can be improved into 

2

'

~ (0, )
it i it it

i

y v u

N α

α

α σ

= + + −itx β

                             
(10) 

This model not only includes a firm-level source of heterogeneity ( iα ), which is potentially 

correlated with the explanatory variables but also allows for a time-varying inefficiency term. The 

Mundlak (1978) adjustment is also applied to model 2, as given in equation (8). The improved 

random-effects model can estimate time-varying efficiency. 
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Table 2 Econometric Specification: Stochastic-Frontier Models 

 

 

Model 1 

[FE] 

Model 2 

[RE (MLE) with 

Mundlak’s Formulation] 

Model 3 

[Pooled (ALS)] 

Model 4 

[“True” FE] 

Model 5 

[“True” RE with 

Mundlak’s Formulation] 

Firm-specific 

Component iα  
Fixed 

1

2

1

~ (0, )

i

i i i
T

i it
ii

i

X

X X
T

N δ

α γ δ

δ σ
=

= +

= ∑  None Fixed 
1

2

1

~ (0, )

i

i i i
T

i it
ii

i

X

X X
T

N δ

α γ δ

δ σ
=

= +

= ∑  

Random Error 

itε  

2. . (0, )i i d εσ  
2

2

~ (0, )

~ (0, )

it it it

it u

it v

u v

u N

v N

ε

σ

σ

+

= +

 2

2

~ (0, )

~ (0, )

it it it

it u

it v

u v

u N

v N

ε

σ

σ

+

= +

 2

2

~ (0, )

~ (0, )

it it it

it u

it v

u v

u N

v N

ε

σ

σ

+

= +

 2

2

~ (0, )

~ (0, )

it it it

it u

it v

u v

u N

v N

ε

σ

σ

+

= +

 

Inefficiency ˆ ˆmax{ }i iα α−  [ | ]i i itE u u v+  [ | ]it it itE u u v+  [ | ]it it itE u u v+  [ | ]it i itE u δ ε+  
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III. Empirical Results 

3.1 Data and Descriptive Statistics 

This study uses data from Survey of Business Structure and Activities, which consists of unified 

firm-level micro panel data including even information on management activities for policymaking by 

the government and for firms’ business strategy establishment, as well as basic information. The 

purpose of conducting Survey of Business Structure and Activities2 is to provide basic data for the 

firm of various economic policies for businesses by examining the actual conditions of firms’ 

management strategies and the changes in their industrial structure, through a comprehensive survey 

of diverse economic activities, such as the diversification, globalization, and affiliation of the 

country’s business firms. The first survey was conducted in 2006, and the same survey will be 

conducted every year. The database for three consecutive years (2005-2007) has been built. 

For analysis purposes, the industrial sectors to be used are summarized in Table 3. Since each 

industrial sector has a different set of characteristics, estimating the same production structure in all 

the sectors seems unreasonable. Therefore, it is assumed that all firms can be classified into four 

sectors. In this case, the firms within the same sector have common production parameters to be 

estimated, and the production structure between the sectors is different. 

Table 3 Sectoral Classification 
Code  Sector 

1 
Manufacturing 

ICT(Computer, Manufacture of Communication 
Equipment) 

2 Other Manufacturing/Mining/ Electricity, Gas and 
Water Supply 

3 
Service 

Producer Service 
4 Non-producer Service 

 

Table 4 shows the descriptive statistics of the variables that were used for the estimation of the 

stochastic-frontier production functions.  

                                       
2 Report on Business Structure and Activities (2007). 



14 

 

Table 4 Variable Definition and Descriptive Statistics 

 Variabl
es 

Observ
ations Mean Standard 

Deviation 

Min
imu
m 

Maximum 

Fraction 
of 

Variance 
due to 

the 
“Betwee

n” 
Variatio

n 3 
Gross 
Output Y  29,808 143,477.8 1,395,764.0 0.6 117,000,000.0 0.987 

Capital K 29,808 44,908.4 430,460.8 0.8 29,000,000.0 0.993 
Labor L 29,808 284.5 1,392.3 3.0 85,813.0 0.992 

Materials M  29,808 108,490.8 964,666.6 0.9 72,000,000.0 0.985 

(Note: Unit: Gross Output, Capital, Materials: Million won, Labor: Person) 

 

The standard deviation indicates a high degree of heterogeneity among the firms in the sample. 

The last column of the table presents the fraction of the variance of each variable due to the variation 

between the different firms. The figures indicate that all the variables under consideration show a 

significant variation between the firms rather than within the firms. Therefore, it can be concluded 

that this dataset is more similar to cross-sectional data rather than time series. This finding justifies the 

use of models involving heterogeneity. 

 
3.2 Testing for the Separability of the Production Function 

Prior to analysis for the estimation of technical efficiency, it is necessary to define the functional 

form for the production function. In the real production process, output is produced using the inputs of 

capital, labor, and intermediate materials. The value-added function, however, consists of the 

aggregate indices of heterogeneous inputs: capital and labor. This means that the value-added function 

should not be affected by the change in the intermediate inputs. To use the value-added function for 

analysis purposes, it has to be assumed that the value-added function, which is the function of only 

                                       
3  “Within” variation and “between” variation are defined as 2( )iij

i j
x x−∑∑  and 

2 2( ) ( )i j ii
i j i

x x n x x− = −∑∑ ∑ , respectively. Here, x  represents each variable.  
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capital and labor, is independent of the input of intermediate materials. This assumption is referred to 

as the separability of the real value-added function from the gross output. If the result of the 

separability test does not accept this assumption, then the studies on the value-added function are 

incorrect, and gross output as a measure of output is the proper concept. 

The translog gross output production function with three inputs can be specified as follows: 

0
1ln ln ln ln
2

, , ,

it j ijt jl lit jit it
j j l

y x x x v

j l L K M

α α β= + + +

=

∑ ∑∑
                        (11) 

where the subscripts i  and t  are the individual firms ( 1,2,...,i N= ) and the time 

( 1,2,...,t T= ), respectively; ity  the output; and ijtx  the input factors; and where the subscripts j  

and l  are the labor ( L ), capital ( K ), and intermediate materials ( M ). itv  is the typical statistical 

error term with 2(0, )vN σ . 

Following Pyo and Ha (2007), if  0km lmβ β= =  in equation (11), then the translog gross output 

production function can be expressed as equation (12). Thus, the separability assumption can be 

accepted by the data. 

log (log , log ) (log )Q Y K L G M= +                               (12) 

The test statistics for the fixed- and random-effects models are summarized in Table 5. Since all 

the test statistics are sufficiently beyond the critical values at the 1% significant level, the hypothesis 

of separability is rejected. Therefore, based on these results, it may be inferred that the value-added 

function-based productivity analysis may be incorrect and that it is more appropriate to use gross 

output as an output measure. 
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Table 5 Test Statistics of the Separability Test 
 LR Test Wald Test

Fixed-Effects Model 3170.94 1068.82 
Random-Effects Model - 3907.29 

 

3.3 Estimation of the Technical Efficiency and Comparison of the Alternative 

Models4 

The translog stochastic-frontier function that was used in the estimation can be specified as 

equation (13). The function consists of one output, three inputs, and two error terms. Since the period 

that the data pertain to is very short (three years), the time variable is not considered in the analysis.  

0
1ln ln ln ln
2

, , ,

it j ijt jl lit jit it it
j j l

y x x x v u

j l L K M

α α β= + + + −

=

∑ ∑∑
                    (13) 

where the subscripts i  and t  are the individual firms ( 1, 2,...,i N= ) and the time 

( 1,2,...,t T= ), respectively; ity  the output; and ijtx  the input factors; and where the subscripts j  

and l  are the labor ( L ), capital ( K ), and intermediate materials ( M ). The statistical-noise term iv  

is a two-sided error term that follows 2(0, )vN σ  and that represents the usual statistical noise found 

in any relationship, and 0iu ≥  is a one-sided error term representing technical inefficiency. In this 

paper, it is assumed that itv  is independent of itu , and if necessary, it is also assumed that itu  

follows 2(0, )uN σ + . In the first two models (1 and 2), the firm’s inefficiency is assumed to be 

constant over time, thus captured by the firm-specific effects. In models 3, 4, and 5, on the other hand, 

the firm’s inefficiency can vary over time. In these models, the skewed stochastic-error term is 

interpreted as inefficiency. In all the models, except for the fixed-effects model, it is assumed that the 

                                       
4 The estimation results of the production function’s parameters can be obtained by email on request from the author. 
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firm’s technical efficiency is not correlated with the explanatory variables.  

At first, a Hausman test of the null hypothesis that the firm-specific effects are uncorrelated with 

the explanatory variables was conducted in the fixed-effects model. The test statistic yielded 

2 (9) 553.50χ =  and the null hypothesis was rejected. Therefore, the specifications that do not allow 

for these correlations may produce biased and inconsistent results. Thus, the random-effects models, 

which assume no correlation between the firm-specific effects and the explanatory variables, can be 

said to be too restrictive and to provide inferior estimates. On the other hand, the fixed-effects model 

can be expected to produce unbiased and consistent estimates of the stochastic-production-function 

parameters.  

If the inefficiency is believed to be persistent, the models with time-invariant inefficiency, such 

as models 1 and 2, may be more relevant. In the case, however, of the panel data with large cross-

sections and short time series, the incidental-parameter problem may occur, and therefore, model 2 

can be said to be more suitable than model 1. The heterogeneity bias is expected to be relatively low 

in models 2 and 5, which directly control the correlation between the individual effects and the 

explanatory variables although they are random-effects models. A test of the null hypothesis that the 

Mundlak terms are jointly equal to zero is rejected for both models with the Mundlak (1978) 

adjustment. The values of the likelihood ratio statistic for each industrial sector are 129.0, 919.0, 

550.4, and 64.1 for the random effects with the Mundlak (1978) adjustment. Thus, for models 2 and 5, 

the Mundlak (1978) adjustment is useful in obtaining consistent results. In fact, the estimators of 

model 2 are almost identical to the fixed-effects estimators of model 1 (the “within” estimators), and 

are thus unbiased. If the time-varying pattern of inefficiency is assumed, models 3, 4, and 5 are more 

reasonable. Since model 3 does not consider the characteristics of the panel data, it is inferior to the 

other models. As shown above, the results of the Hausman test are rejected, and the fixed-effects 

model is more relevant than the random-effects model. It can be concluded intuitionally, however, that 

model 5 is the best model for the examination of efficiency using the panel data employed in this 

analysis because the possibility of the incidental-parameter problem is intrinsic to model 4, and model 
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5 combined with the Mundlak (1978) adjustment takes care of the fact that technical inefficiency is 

correlated with the explanatory variables. In sum, model 5 can be said to be the best model for the 

examination of efficiency using the panel data employed in this analysis, for the following three 

reasons: (1) this model can consider the time-varying pattern of efficiency; (2) heterogeneity can be 

taken into account; and (3) the estimated parameters are unbiased and consistent.  

Table 6 provides a summary of the weighted averages of the estimated efficiency measures using 

different models for each industrial sector. The efficiency scores are taken to be equal to the 

inefficiency scores (1 exp( )itu− − ) obtained from the regression model. The share of each firm’s sales 

to a sector is used as the weight. An examination of the result will reveal that each model has a 

different estimated-efficiency score. The estimated-efficiency score using the Schmidt and Sickles 

(1984) method shows very unrealistic values compared with the other models’ results. This seems to 

be due to the features of the Schmidt and Sickles (1984) model. Since in this model, relative technical 

efficiency is estimated rather than absolute technical efficiency, the wider the gap is, the smaller the 

efficiency that is estimated. Especially, a problem arises when the maximum efficiency is an outlier. 

Based on the results obtained from all the models, except for model 1, the Schmidt and Sickles (1984) 

method, the estimated technical efficiency ranges from 77% to 86%. Moreover, the results indicate 

that the introduction of the Mundlak (1978) adjustment, in which the correlation between the 

explanatory variables and firm-specific heterogeneity is accounted for in the models, can decrease the 

heterogeneity bias. In fact, compared to the other models, model 5, which considers the heterogeneity 

bias and firm-specific heterogeneity, shows the highest estimates of technical efficiency, and among 

the sectors, the estimate of the producer service sector is the highest.  
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Table 6 Average Efficiency Scores by Technique: 2005-2007 

 Observation 
Model 1 

[FE] 

Model 2 

[RE (MLE) 

with 

Mundlak’s 

Formulation]

Model 3 

[Pooled 

(ALS)] 

Model 4 

[“True” FE] 

Model 5 

[“True” RE 

with 

Mundlak’s 

Formulation] 

ICT 3744 0.365 0.847 0.865 0.847 0.887 

nonICT 16074 0.388 0.819 0.855 0.818 0.855 

ProdServ 4080 0.072 0.608 0.665 0.653 0.919 

Serv 5847 0.289 0.734 0.732 0.717 0.743 

Total 29745 0.301 0.767 0.798 0.774 0.859 

2005       

ICT 1248 0.363 0.841 0.861 0.847 0.896 

nonICT 5358 0.388 0.818 0.847 0.810 0.844 

ProdServ 1360 0.071 0.605 0.650 0.642 0.915 

Serv 1949 0.288 0.733 0.735 0.722 0.742 

Total 9915 0.302 0.766 0.792 0.770 0.854 

2006       

ICT 1248 0.368 0.847 0.865 0.846 0.882 

nonICT 5358 0.388 0.820 0.856 0.819 0.855 

ProdServ 1360 0.073 0.613 0.672 0.660 0.919 

Serv 1949 0.289 0.735 0.731 0.716 0.740 

Total 9915 0.303 0.770 0.801 0.772 0.858 

2007       

ICT 1248 0.369 0.851 0.869 0.848 0.883 

nonICT 5358 0.389 0.820 0.861 0.823 0.864 

ProdServ 1360 0.072 0.606 0.671 0.656 0.921 

Serv 1949 0.289 0.734 0.730 0.713 0.746 

Total 9915 0.299 0.766 0.801 0.775 0.863 

       
 

Table 7 contains the Spearman rank correlation coefficients, computed at the firm level, from the 

five different estimation techniques. These coefficients show how close the rankings of the firms are 

to one another, using the full sample of firms. For the models with time-varying efficiency, the 

efficiency score is computed as the firm’s average efficiency score over the sample period. The result 

shows that the use of different models leads to different rankings of estimated efficiency. Therefore, it 

can be concluded that it is important to choose the most appropriate model or that which is most 

suitable for analysis purposes and considering the available data.  
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Table 7 Spearman Rank Coefficients 

 

Model 1 

[FE] 

Model 2 

[RE (MLE) with 

Mundlak’s 

Formulation] 

Model 3 

[Pooled (ALS)] 

Model 4 

[“True” FE] 

Model 5 

[“True” RE with 

Mundlak’s 

Formulation] 

Model 1 1     
Model 2 0.482 1    
Model 3 0.470 0.856 1   
Model 4 0.326 0.332 0.675 1  
Model 5 -0.069 0.290 0.440 0.178 1 

 

3.4 Decomposition of the Productivity Change Using the Stochastic-Frontier 

Production Model 

In the previous section, several stochastic-production-frontier models were compared considering 

the firms’ heterogeneity. Among these models, model 5, the “true” random-effects model with the 

Mundlak (1978) adjustment, will be used in the analysis in this section, which will attempt to 

decompose productivity as model 5 is considered the most suitable model as far as the available data 

and the purpose of analysis are concerned. The functional form of production to be used is the same as 

that in the previous section. The translog stochastic-frontier function used in the estimation can be 

specified as equation (13). Since the period that the data pertain to is very short (three years), the time 

variable was not considered in the analysis. Therefore, among the effects, technical change (TC) is 

assumed to be zero. 

0
1ln ln ln ln
2

, , ,

it j ijt jl lit jit it it
j j l

y x x x v u

j l L K M

α α β= + + + −

=

∑ ∑∑
      

Table 8 shows the average output elasticity of each industrial sector for the period 2005-2007. 

The estimate of returns to scale ( RTS ), which combines the output elasticity of the capital ( Kε ), of 

labor ( Lε ), and of the intermediate outputs ( Mε ), shows an increasing return to scale (IRS) when it is 

greater than 1, a constant return to scale (CRS) when it is equal to 1, and a decreasing return to scale 
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(DRS) when it is less than 1. The estimate of RTS for the ICT sector exhibits IRS, with a magnitude 

of 1.253. This result is similar to that obtained by Pai (2007). On the other hand, the other sectors 

exhibit DRS, with 0.92, 0.866, and 0.982 magnitudes, respectively. 

The main findings of the present study are summarized in Table 9. Table 9 presents the changes 

in technical efficiency (TE), scale effects (SC), allocative efficiency (AE), and total factor 

productivity growth(TFP ) of each sector for 2005-2007. It is shown that the contributions of each 

factor to productivity growth differ according to the industrial sector. First, the estimate of TFP 

growth in the producer service sector is negative, and the other sectors’ TFP growth is positive. 

Second, in the case of the changes in technical efficiency, all the sectors, except for the ICT sector, 

show positive growth. A poor contribution of technical efficiency to productivity growth in the ICT 

sector was also shown in the study conducted by Pai (2007). Third, the changes in allocative 

efficiency contribute positively to the productivity growth in all the sectors. Lastly, in the ICT sector, 

the scale effect helps improve the firm’s productivity, but in the other sectors, it does not.  

Table 8 Output Elasticities of the Input Factors 
 Observation Capital Labor Materials RTS  

ICT 3,744 0.143 0.093 1.017 1.253 

nonICT 16,074 0.042 0.061 0.823 0.926 

ProdServ 4,080 0.105 0.066 0.695 0.866 

Serv 5,847 0.034 0.060 0.888 0.982 

total 29,745 0.077 0.069 0.848 0.994 

 

Table 9 The Rate of Changes in Technical Efficiency (TE), 
Scale Component (SC), Allocative Efficiency (AE), and Total Factor Productivity Growth 

(TFP ) 
  TFP TE AE SC 

ICT 0.025 -0.006 0.022 0.009 

nonICT 0.006 0.010 0.013 -0.017 

ProdServ -0.026 0.003 0.022 -0.052 

Serv 0.001 0.004 0.013 -0.015 

total 0.002 0.004 0.017 -0.019 
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IV. Concluding Remarks 

In this paper, we attempt to discuss empirical and theoretical issues related to identifying and 

estimating the sources of firms’ productivity growth and technical efficiency using micro level panel 

datasets in Korea for the period of 2005-2007. In econometric approach, prior to analysis for the 

estimation of technical efficiency, it is necessary to define the functional form for the production 

function. Based on the test statistics for the fixed- and random-effects models, the hypothesis of 

separability is rejected. Therefore, it may be inferred that the value-added function-based productivity 

analysis may be incorrect and that it is more appropriate to use gross output as an output measure. 

Many stochastic frontier models have been compared for the estimation of technical efficiency, and it 

is important to choose the most appropriate model or the one that is most suitable for the purpose of 

analyzing the available data. In this analysis, the true random effects model with Mundlak’s 

adjustment can be said to be the best model for the examination of efficiency using the panel data 

employed in this study, for the following three reasons: (1) this model can consider the time-varying 

pattern of efficiency; (2) heterogeneity can be taken into account; and (3) the estimated parameters are 

unbiased and consistent. The estimated technical efficiency ranges from 77% to 86%. Moreover, the 

results indicate that the introduction of the Mundlak (1978) adjustment, in which the correlation 

between the explanatory variables and firm-specific heterogeneity is accounted for in the models, can 

decrease the heterogeneity bias. In fact, compared to the other models, the true random effects model 

with Mundlak’s adjustment, which considers the heterogeneity bias and firm-specific heterogeneity, 

shows the highest estimates of technical efficiency, and among the sectors, the estimate of the 

producer service sector is the highest.  

Next, it is shown that the contributions of each factor to productivity growth differ according to 

the industrial sector. First, the estimate of TFP growth in the producer service sector is negative, and 

the other sectors’ TFP growth is positive. Second, in the case of the changes in technical efficiency, all 

the sectors, except for the ICT sector, show positive growth. A poor contribution of technical 
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efficiency to productivity growth in the ICT sector was also shown in the study conducted by Pai 

(2007). Third, the changes in allocative efficiency contribute positively to the productivity growth in 

all the sectors. Lastly, in the ICT sector, the scale effect helps improve the firm’s productivity, but in 

the other sectors, it does not.  

There are many methodologies and approaches that analyze the productivity and efficiency of 

firms, but to derive significant results, it is very important to choose a methodology that fits the 

purpose of the analysis and the data to be used in it. Since the results can be greatly affected by the 

choice of classification criteria and models when analyzing the factors that determine productivity and 

efficiency, needless to say, care should be taken in choosing such classification criteria and models. 
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