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Many important economic decisions are dynamic

I Consumers:
I Buy today or wait (learning)
I Experience goods (experimentation)
I stockpiling from sales

I Firms:
I Entry and exit
I Investment
I Product introductions

I Note that many of these involve discrete decisions.



Traditional continuous choice with a single agent

I Consumers chooses consumption and savings:

max
ct

E

[ ∞∑
τ=t

βτ−tU(ct)
∣∣Ωt

]
s.t.ct ≤ rtqt+yt ; qt+1 = rtqt+yt−ct

I Where qt is savings, rt is savings payoff, yt is income, Ωt is
information.

I The Bellman equation is:

V (Ωt) = max
ct

U(ct) + βE [V (Ωt+1)|Ωt ]

I Use derivative based arguments to get rid of V and derive
the Euler equation:

U ′(ct) = βE [U ′(ct+1)|Ωt ]



Dynamic Discrete Choice
Rust (1987, Econometrica)

I Consider Harold Zurcher, chief mechanic for the public bus
system in Madison, WI

I Zurcher decides when to overhaul engines.
I After overhaul, engines are like new.
I This is an “optimal stopping problem”.



Zurcher’s problem

I State variable: Number of miles on the bus, s (follows
Markov process)

I Infinite, discrete time. Discount rate: β.
I Choice variable: Whether or not to overhaul, i ∈ {0, 1}.
I Cost function C(s, i , θ) + εi :

I Overhaul: C(s, 1, θ) = θ0
I No overhaul: C(s, 0, θ) = theta1 + theta2s

I Stationary problem. The Bellman equation is:

V (s, ε) = max
i∈{0,1}

C(s, i , θ) + εi + βE
[
V (s′, ε′)|s, i , ε

]



Simplification

I We want to solve for the value function but ε makes the
problem very hard.

Assumption of Conditional Independence
p(s′, ε′|s, ε, i) = p1(ε′|s′)p2(s′|s, i)

I ε has no dynamic content. s and i are sufficient to predict
future states.

I In practice, we assume ε is iid. ε ∼ EV .
I Study:

EV (s) =

∫
ε
EV (s, ε)



Empirical approach

I Bellman equation:

EV (s) = ln

(∑
i

exp
(
C(s, i , γ) + βE

[
EV (s′)|s, i

]))

I Probabilities of i follows logit form:

P(i |s) =
exp (C(s, i , θ) + βE [EV (s′)|s, i])∑

k∈{0,1} exp (C(s, k , θ) + βE [EV (s′)|s, k ])

I If we knew EV , we could estimate θ. If we knew θ, we
could solve for EV .



Algorithm
The Nested Fixed Point Algorithm

1. Discretize EV . Estimate discrete transition matrix p(s′|s, i).
2. Pick γ.
3. Pick values for EV .
4. Solve

EV ′ = ln

(∑
i

exp
(
C(s, i , γ) + βE

[
EV (s′)|s, i

]))

5. If d(EV ′, EV ) > cutoff, go to 3.
6. Construct likelihood:

L(γ) =
J∑

j=1

exp
(
C(sj , ij , γ) + βE

[
EV (s′)|sj , ij

])∑
k∈{0,1} exp

(
C(sj , k , γ) + βE

[
EV (s′)|sj , k

])
7. Pick γ to raise L(γ). Go to 2.



Issues
I Exogenous persistent heterogeneity.

I Use EM algorithm,
I Heckman and Singer (Econometrica, 1984), Cameron and

Trivedi (Textbook, Sec. 10.3.7)
I Endogenous heterogeneity (learning)

I Can be solved with simulation
I Ackerberg (IER, 2003), Crawford and Shum (Econometrica,

2005)
I Large state spaces

I Randomization
I Rust (Econometrica, 1997), Hotz and Miller (ReStud 1993),

Imai, Jain and Ching (2008 SSRN).
I Conditional choice probabilities

I Hotz and Miller (ReStud 1993), Aguirregabiria and Mira
(Econometrica, 2002)

I Applications to games
I Bajari, Benkard and Levin (2007, Econometrica),

Aguirregabiria and Mira (2007, Econometrica), Pakes,
Ostrovsky and Berry (2007, RAND)



Bajari, Benkard and Levin, 2007

Estimating dynamic games introduces two important problems:
1. Enormous state spaces

I Benkard (ReStud, 2004) takes a month to solve once!
2. Multiple equilibria

I Multiple solutions to fixed point algorithms means we
cannot construct a likelihood function.

BBL addresses both of these problems.



Basic idea

I Estimate in reduced form choices and state transitions as a
function of state variables.

I Use simulation to calculate value function at any given
state resulting from possible choices.

I Estimate structural parameters in payoff function taking
value function as given.



Model

I J firms, discrete, infinite time
I state space st ∈ RL

I actions i ∈ I (ctns or discrete)
I private shock nujt ∼ G(·|st)

I flow profit πj(ijt , st , νjt).
I Before realizing νjt :

V (st) = E

[ ∞∑
τ=t

βτ−tπj(iτ , sτ , νjτ
∣∣st)

]

where st+1 ∼ P(st+1|it , st)



Model II

I Markov Perfect Equilibrium
I Denote strategies as σ(s, νj)

I Bellman equation conditioning on strategies:

Vj(s, σ) = E
[
πj(σ(s, νj), s, νj) +

∫
Vj(s′, σ)dP(s′|σ(s, νj), s)

∣∣s]



First stage of estimation

I Assume data is generated by a single MPE so we can
estimate σ(s, νi) from observed data.

I Estimate σ(s, νj), P(s′|it , st).
I Now we can calculate the value of being at any given state

s by simulation up to a set of parameters.
I Rather than solve for exact value function from equilibrium

conditions, we are using observed choices and state
transitions to approximately obtain value function.



Calculate value function

1. Draw νjt for all firms for T periods into the future
2. Calculate choices in period t from σ(s, νjt).
3. Calculate st+1 from P(s′|it , st).
4. Go to 2.
5. Repeat ns times (go to 1).
6. Calculate:

V̂j(st , σ) =
1
ns

ns∑
k=1

T∑
τ=t

βτ−tπj(ikt , sk
t , νk

jt , θ)

It will be handy if πj(it , st , νjt , θ) = πj(it , st , νjt)θ



Second stage
Method 1

I For each firm in each period, calculate optimal choice from
model.

I For continuous choices, find:

i∗s.t.
dV̂j(st , σ(i∗))

dijt
= 0.

I For discrete choices, find:

i∗s.t.V̂j(st , σ(i∗)) ≥ V̂j(st , σ(i))∀i

I Let ξ = i∗(θ)− idata.
I Form moments m = z ′ξ, objective function obj = m′wm.

I May be very computationally costly in practice



Second stage
Method 2

I Determine an alternative strategy σ′(s, νjt).
I For instance, add random normal terms to parameters in σ.

I Use revealed preference to derive moment inequalities.

gj(s, σ, σ′, θ) = Vj(s, σj , σ−j , θ)− Vj(s, σ′j , σ−j , θ)

I Form objective function:

obj =
∑

s∈data

(
min

{
g(s, σ, σ′, θ), 0

})2

I Pick θ to minimize this function.



Example: Rust 1987

I Estimate choice probabilities using logit model:

σ(sjt , νjt) = 1 if α0 + α1sjt + νjt > 1

I νj ∼ EV

⇒ P(ijt |sjt) =
exp(α0 + α1sjt)

1 + exp(α0 + α1sjt)

I Estimate state transitions:

sjt+1 = γ0 + γ1sjt + ujt

I Now compute value of state sjt+1 up to parameters θ.



Rust Example: Computing V
I Draw ujt ,εjt for T periods into the future, for each state

observed in the data ns times.
I Simulate future realizations of sjt , ijt . Compute:

x1
jt =

1
ns

ns∑
k=1

T∑
τ=t

βτ−t1{ikjt = 1}

x2
jt =

1
ns

ns∑
k=1

T∑
τ=t

βτ−t1{ikjt = 0}

x3
jt =

1
ns

ns∑
k=1

T∑
τ=t

βτ−tsk
jt

I Value function is:

V (sjt , σ, θ) =
[
x1

jt x2
jt x3

jt

]
θ



Rust Example: Estimate θ

I Add random numbers to α0, α1 to create σ′(sjt , νjt).
I Compute V (sjt , σ

′, θ)

I Value of observed strategy minus value of alternative
strategy:

g(sjt , σ, σ′, θ) =
[
x1

jt − x1′
jt x2

jt − x2′
jt x3

jt − x3′
jt

]
θ

I Objective function:

obj =
∑

sjt∈data

(
min

{
g(sjt , σ, σ′, θ), 0

})2

I In practice, this also includes a summation over many
alternative strategies.



Applications

I Typically, these models are followed by simulations of
market equilibrium under alternative policy regimes in the
spirit of Ericson and Pakes (ReStud 1995) and Pakes and
McGuire (RAND, 1994).

I Ryan (2008): Entry and investment by US cement
producing plants

I Stahl (2009): Consolidation of US local television industry
after deregulation.

I Snider (2009): Predatory pricing by US airlines.



Outstanding issues

I If there is any persistent unobserved heterogeneity, the
first stage results is not right for any individual agent.

I Analog to conditional independence assumption
I Many papers do not sufficiently concern themselves with

obtaining causal parameters in the first stage.
I Just regressing choice variables on state variables does not

mean we have estimated a causal effect.


