Structural Econometrics in Industrial Organization

Dynamics

Marc Rysman

Boston University

February 16, 2009

Many important economic decisions are dynamic

- Consumers:
- Buy today or wait (learning)
- Experience goods (experimentation)
- stockpiling from sales
- Firms:
- Entry and exit
- Investment
- Product introductions
- Note that many of these involve discrete decisions.

Traditional continuous choice with a single agent

- Consumers chooses consumption and savings:
$\max _{c_{t}} E\left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} U\left(c_{t}\right) \mid \Omega_{t}\right]$ s.t. $c_{t} \leq r_{t} q_{t}+y_{t} ; \quad q_{t+1}=r_{t} q_{t}+y_{t}-c_{t}$
- Where q_{t} is savings, r_{t} is savings payoff, y_{t} is income, Ω_{t} is information.
- The Bellman equation is:

$$
V\left(\Omega_{t}\right)=\max _{c_{t}} U\left(c_{t}\right)+\beta E\left[V\left(\Omega_{t+1}\right) \mid \Omega_{t}\right]
$$

- Use derivative based arguments to get rid of V and derive the Euler equation:

$$
U^{\prime}\left(c_{t}\right)=\beta E\left[U^{\prime}\left(c_{t+1}\right) \mid \Omega_{t}\right]
$$

Dynamic Discrete Choice
 Rust (1987, Econometrica)

- Consider Harold Zurcher, chief mechanic for the public bus system in Madison, WI
- Zurcher decides when to overhaul engines.
- After overhaul, engines are like new.
- This is an "optimal stopping problem".

Zurcher's problem

- State variable: Number of miles on the bus, s (follows Markov process)
- Infinite, discrete time. Discount rate: β.
- Choice variable: Whether or not to overhaul, $i \in\{0,1\}$.
- Cost function $C(s, i, \theta)+\epsilon_{i}$:
- Overhaul: $C(s, 1, \theta)=\theta_{0}$
- No overhaul: $C(s, 0, \theta)=$ theta $_{1}+$ theta $_{2} s$
- Stationary problem. The Bellman equation is:

$$
V(s, \epsilon)=\max _{i \in\{0,1\}} C(s, i, \theta)+\epsilon_{i}+\beta E\left[V\left(s^{\prime}, \epsilon^{\prime}\right) \mid s, i, \epsilon\right]
$$

Simplification

- We want to solve for the value function but ϵ makes the problem very hard.
Assumption of Conditional Independence $p\left(s^{\prime}, \epsilon^{\prime} \mid \boldsymbol{s}, \epsilon, i\right)=p^{1}\left(\epsilon^{\prime} \mid s^{\prime}\right) p^{2}\left(s^{\prime} \mid s, i\right)$
- ϵ has no dynamic content. s and i are sufficient to predict future states.
- In practice, we assume ϵ is iid. $\quad \epsilon \sim E V$.
- Study:

$$
E V(s)=\int_{\epsilon} E V(s, \epsilon)
$$

Empirical approach

- Bellman equation:

$$
E V(s)=\ln \left(\sum_{i} \exp \left(C(s, i, \gamma)+\beta E\left[E V\left(s^{\prime}\right) \mid s, i\right]\right)\right)
$$

- Probabilities of i follows logit form:

$$
P(i \mid s)=\frac{\exp \left(C(s, i, \theta)+\beta E\left[E V\left(s^{\prime}\right) \mid s, i\right]\right)}{\sum_{k \in\{0,1\}} \exp \left(C(s, k, \theta)+\beta E\left[E V\left(s^{\prime}\right) \mid s, k\right]\right)}
$$

- If we knew $E V$, we could estimate θ. If we knew θ, we could solve for $E V$.

Algorithm

The Nested Fixed Point Algorithm

1. Discretize $E V$. Estimate discrete transition matrix $p\left(s^{\prime} \mid s, i\right)$.
2. Pick γ.
3. Pick values for $E V$.
4. Solve

$$
E V^{\prime}=\ln \left(\sum_{i} \exp \left(C(s, i, \gamma)+\beta E\left[E V\left(s^{\prime}\right) \mid s, i\right]\right)\right)
$$

5. If $d\left(E V^{\prime}, E V\right)>$ cutoff, go to 3 .
6. Construct likelihood:

$$
L(\gamma)=\sum_{j=1}^{J} \frac{\exp \left(C\left(s_{j}, i_{j}, \gamma\right)+\beta E\left[E V\left(s^{\prime}\right) \mid s_{j}, i_{j}\right]\right)}{\sum_{k \in\{0,1\}} \exp \left(C\left(s_{j}, k, \gamma\right)+\beta E\left[E V\left(s^{\prime}\right) \mid s_{j}, k\right]\right)}
$$

7. Pick γ to raise $L(\gamma)$. Go to 2 .

Issues

- Exogenous persistent heterogeneity.
- Use EM algorithm,
- Heckman and Singer (Econometrica, 1984), Cameron and Trivedi (Textbook, Sec. 10.3.7)
- Endogenous heterogeneity (learning)
- Can be solved with simulation
- Ackerberg (IER, 2003), Crawford and Shum (Econometrica, 2005)
- Large state spaces
- Randomization
- Rust (Econometrica, 1997), Hotz and Miller (ReStud 1993), Imai, Jain and Ching (2008 SSRN).
- Conditional choice probabilities
- Hotz and Miller (ReStud 1993), Aguirregabiria and Mira (Econometrica, 2002)
- Applications to games
- Bajari, Benkard and Levin (2007, Econometrica), Aguirregabiria and Mira (2007, Econometrica), Pakes, Ostrovsky and Berry (2007, RAND)

Bajari, Benkard and Levin, 2007

Estimating dynamic games introduces two important problems:

1. Enormous state spaces

- Benkard (ReStud, 2004) takes a month to solve once!

2. Multiple equilibria

- Multiple solutions to fixed point algorithms means we cannot construct a likelihood function.
BBL addresses both of these problems.

Basic idea

- Estimate in reduced form choices and state transitions as a function of state variables.
- Use simulation to calculate value function at any given state resulting from possible choices.
- Estimate structural parameters in payoff function taking value function as given.

Model

- J firms, discrete, infinite time
- state space $s_{t} \in \mathbb{R}^{L}$
- actions $i \in \mathbb{I}$ (ctns or discrete)
- private shock $n u_{j t} \sim G\left(\cdot \mid s_{t}\right)$
- flow profit $\pi_{j}\left(j_{j t}, s_{t}, \nu_{j t}\right)$.
- Before realizing $\nu_{j t}$:

$$
\begin{gathered}
V\left(s_{t}\right)=E\left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} \pi_{j}\left(i_{\tau}, s_{\tau}, \nu_{j \tau} \mid s_{t}\right)\right] \\
\text { where } \quad s_{t+1} \sim P\left(s_{t+1} \mid i_{t}, s_{t}\right)
\end{gathered}
$$

Model II

- Markov Perfect Equilibrium
- Denote strategies as $\sigma\left(s, \nu_{j}\right)$
- Bellman equation conditioning on strategies:

$$
V_{j}(s, \sigma)=E\left[\pi_{j}\left(\sigma\left(s, \nu_{j}\right), s, \nu_{j}\right)+\int V_{j}\left(s^{\prime}, \sigma\right) d P\left(s^{\prime} \mid \sigma\left(s, \nu_{j}\right), s\right) \mid s\right]
$$

First stage of estimation

- Assume data is generated by a single MPE so we can estimate $\sigma\left(s, \nu_{i}\right)$ from observed data.
- Estimate $\sigma\left(s, \nu_{j}\right), P\left(s^{\prime} \mid i_{t}, s_{t}\right)$.
- Now we can calculate the value of being at any given state s by simulation up to a set of parameters.
- Rather than solve for exact value function from equilibrium conditions, we are using observed choices and state transitions to approximately obtain value function.

Calculate value function

1. Draw $\nu_{j t}$ for all firms for T periods into the future
2. Calculate choices in period t from $\sigma\left(s, \nu_{j t}\right)$.
3. Calculate s_{t+1} from $P\left(s^{\prime} \mid i_{t}, s_{t}\right)$.
4. Go to 2.
5. Repeat ns times (go to 1).
6. Calculate:

$$
\widehat{V}_{j}\left(s_{t}, \sigma\right)=\frac{1}{n s} \sum_{k=1}^{n s} \sum_{\tau=t}^{T} \beta^{\tau-t} \pi_{j}\left(i_{t}^{k}, s_{t}^{k}, \nu_{j t}^{k}, \theta\right)
$$

It will be handy if $\pi_{j}\left(i_{t}, s_{t}, \nu_{j t}, \theta\right)=\pi_{j}\left(i_{t}, s_{t}, \nu_{j t}\right) \theta$

Second stage

- For each firm in each period, calculate optimal choice from model.
- For continuous choices, find:

$$
i^{*} \text { s.t. } \frac{d \widehat{V}_{j}\left(s_{t}, \sigma\left(i^{*}\right)\right)}{d i_{j t}}=0
$$

- For discrete choices, find:

$$
i^{*} \text { s.t. } \widehat{V}_{j}\left(s_{t}, \sigma\left(i^{*}\right)\right) \geq \widehat{V}_{j}\left(s_{t}, \sigma(i)\right) \forall i
$$

- Let $\xi=i^{*}(\theta)-i^{\text {data }}$.
- Form moments $m=z^{\prime} \xi$, objective function obj $=m^{\prime} w m$.
- May be very computationally costly in practice

Second stage

Method 2

- Determine an alternative strategy $\sigma^{\prime}\left(s, \nu_{j t}\right)$.
- For instance, add random normal terms to parameters in σ.
- Use revealed preference to derive moment inequalities.

$$
g_{j}\left(s, \sigma, \sigma^{\prime}, \theta\right)=V_{j}\left(s, \sigma_{j}, \sigma_{-j}, \theta\right)-V_{j}\left(s, \sigma_{j}^{\prime}, \sigma_{-j}, \theta\right)
$$

- Form objective function:

$$
\text { ob j }=\sum_{s \in \text { data }}\left(\min \left\{g\left(s, \sigma, \sigma^{\prime}, \theta\right), 0\right\}\right)^{2}
$$

- Pick θ to minimize this function.

Example: Rust 1987

- Estimate choice probabilities using logit model:

$$
\sigma\left(s_{j t}, \nu_{j t}\right)=1 \quad \text { if } \quad \alpha_{0}+\alpha_{1} s_{j t}+\nu_{j t}>1
$$

- $\nu_{j} \sim E V$

$$
\Rightarrow P\left(i_{j t} \mid s_{j t}\right)=\frac{\exp \left(\alpha_{0}+\alpha_{1} s_{j t}\right)}{1+\exp \left(\alpha_{0}+\alpha_{1} s_{j t}\right)}
$$

- Estimate state transitions:

$$
s_{j t+1}=\gamma_{0}+\gamma_{1} s_{j t}+u_{j t}
$$

- Now compute value of state $s_{j t+1}$ up to parameters θ.

Rust Example: Computing V

- Draw $u_{j t}, \epsilon_{j t}$ for T periods into the future, for each state observed in the data $n s$ times.
- Simulate future realizations of $s_{j t}, i_{j t}$. Compute:

$$
\begin{gathered}
x_{j t}^{1}=\frac{1}{n s} \sum_{k=1}^{n s} \sum_{\tau=t}^{T} \beta^{\tau-t} 1\left\{i_{j t}^{k}=1\right\} \\
x_{j t}^{2}=\frac{1}{n s} \sum_{k=1}^{n s} \sum_{\tau=t}^{T} \beta^{\tau-t} 1\left\{i_{j t}^{k}=0\right\} \\
x_{j t}^{3}=\frac{1}{n s} \sum_{k=1}^{n s} \sum_{\tau=t}^{T} \beta^{\tau-t} s_{j t}^{k}
\end{gathered}
$$

- Value function is:

$$
V\left(s_{j t}, \sigma, \theta\right)=\left[\begin{array}{lll}
x_{j t}^{1} & x_{j t}^{2} & x_{j t}^{3}
\end{array}\right] \theta
$$

Rust Example: Estimate θ

- Add random numbers to α_{0}, α_{1} to create $\sigma^{\prime}\left(s_{j t}, \nu_{j t}\right)$.
- Compute $V\left(s_{j t}, \sigma^{\prime}, \theta\right)$
- Value of observed strategy minus value of alternative strategy:

$$
g\left(s_{j t}, \sigma, \sigma^{\prime}, \theta\right)=\left[x_{j t}^{1}-x_{j t}^{1 \prime} \quad x_{j t}^{2}-x_{j t}^{2 \prime} \quad x_{j t}^{3}-x_{j t}^{3 \prime}\right] \theta
$$

- Objective function:

$$
\text { o.bj }=\sum_{s_{j t} \in \text { data }}\left(\min \left\{g\left(s_{j t}, \sigma, \sigma^{\prime}, \theta\right), 0\right\}\right)^{2}
$$

- In practice, this also includes a summation over many alternative strategies.

Applications

- Typically, these models are followed by simulations of market equilibrium under alternative policy regimes in the spirit of Ericson and Pakes (ReStud 1995) and Pakes and McGuire (RAND, 1994).
- Ryan (2008): Entry and investment by US cement producing plants
- Stahl (2009): Consolidation of US local television industry after deregulation.
- Snider (2009): Predatory pricing by US airlines.

Outstanding issues

- If there is any persistent unobserved heterogeneity, the first stage results is not right for any individual agent.
- Analog to conditional independence assumption
- Many papers do not sufficiently concern themselves with obtaining causal parameters in the first stage.
- Just regressing choice variables on state variables does not mean we have estimated a causal effect.

