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1. Introduction

Following longstanding and well-known studies of the unit root problem, it has been common

practice to test for a unit root in time series analysis. In conjunction with testing for a unit

root, the null hypothesis of stationarity has often been investigated in practical analysis, and

one of the widely applied stationarity tests is the one in Kwiatkowski et al. (1992; hereafter,

referred to as KPSS (1992)), also known as the KPSS test.

Although the KPSS test is asymptotically free from nuisance parameter and hence we

can asymptotically control the size of the test, it is also known that the test suffers from

considerable size distortion in finite samples when the series tested is strongly serially cor-

related. See, for example, Caner and Killian (2001) and Müller (2005). In order to mitigate

the size distortion problem, Rothman (1997) considers the use of size-adjusted critical val-

ues, but the KPSS test with size-adjusted critical values loses its power, as pointed out by

Rothman (1997) and Caner and Killian (2001). Since one of the reasons for size distortion

is the bias in the log-run variance estimator, Sul, Phillips and Choi (2005, SPC hereafter)

propose a modified KPSS test by estimating the long-run variance using the prewhiten-

ing method proposed by Andrews and Monahan (1992) with the data-dependent boundary

rule. Carrion-i-Silvestre and Sansó (2006) investigate the finite sample properties of several

stationarity tests and conclude that the SPC test with first order autoregressive (AR(1))

prewhitening is preferable to others in terms of size control. However, their simulations

also show that the SPC test with AR(1) prewhitening suffers from size distortion when the

data generating process (DGP) is an AR(2) process. Harris, Leybourne and McCabe (2007)

focus on the local-to-unity model and propose the GLS-type transformation of data before

constructing the test statistic. The size of their test is close to the nominal one when the

pre-specified localizing parameter is close to the true one but the test is undersized when

the true process is moderately serially correlated, as is shown by Aznar and Ayuda (2008).

Since the size distortion problem is not specific to the KPSS test but a general problem

for other stationarity tests, several methods for reducing the size distortion of stationarity

tests have been proposed in the literature. For example, Cheung and Chinn (1997) and Kuo
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and Mikkola (1999) use size-adjusted critical values for Leybourne and McCabe (1994, 1999)

tests and Saikkonen and Luukkonen (1993a, b) tests, respectively, but these methods, as in

the case of the KPSS test, are unable to correct the loss in the power of the tests. Lanne and

Saikkonen (2003) and Kurozumi (2009) propose to modify Leybourne and McCabe (1994,

1999) tests; note that though the sizes of these tests are closer to those of the original tests,

they still suffer from size distortion in some cases. Aznar and Ayuda (2008) develop a new

test for stationarity using a local-to-unity model but this test is undersized for a process

with moderate serial correlation because their test is not designed for the null of stationarity.

Unfortunately, all of the above methods seem to have a problem with controlling the size of

stationarity tests.

In this paper, we propose a new KPSS-type test for (trend) stationarity with less size

distortion. We extend the boundary rule proposed by SPC (2005) to the autoregressive

spectral density estimator; the long-run variance is estimated based on the AR approxima-

tion. Although it is known that the long-run variance estimator based on the least squares

method results in the inconsistency of the test as pointed out by Leybourne and McCabe

(1994), we show that this problem can be avoided by applying the boundary rule of SPC

(2005). This autoregressive spectral density estimator works relatively well but we still have

another problem—the numerator of the KPSS test statistic has a downward bias, and as

such, the KPSS test statistic corrected by the new long-run variance estimator becomes

undersized. In order to correct the size of the test, we derive the finite sample bias of the

numerator of the test statistic and propose the bias-corrected version of the KPSS test. It

is shown that the empirical size of our modified test can be well controlled as compared to

the other tests.

The paper is organized as follows. Section 2 introduces a model and briefly reviews the

KPSS test and the SPC boundary rule. We consider the application of the boundary rule

to the long-run variance estimator in Section 3. We also derive the finite sample bias of the

numerator of the KPSS test statistic and propose the bias corrected test statistic. Section 4

investigates the finite sample properties of our test. Section 5 gives the concluding remarks.
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2. Model and Review of KPSS Test

Let us consider the following model:

yt = d′tβ + xt for t = 1, 2, · · · , T, (1)

where dt is deterministic and xt is a stochastic component. As in the literature, we consider

two cases: dt = 1 (constant case) and dt = [1, t]′ (trend case). The integrated order of yt is

determined by the behavior of xt. We consider the following assumption in this paper.

Assumption 1. (a) Under the null hypothesis, xt is covariance stationary with 1-summable

autocovariances; the spectral density function of xt, given by f(λ), is bounded and does not

equal zero for −∞ < λ <∞; the functional central limit theorem (FCLT) can be applied to

the partial sum process of xt.

(b) Under the alternative hypothesis, Δxt satisfies condition (a) where Δ = 1 − L with L

being the lag operator.

According to Assumption 1, yt is covariance stationary (trend stationary) under the null

hypothesis while it is a unit root process under the alternative.

KPSS (1992) propose to test for the null of (trend) stationarity against the alternative

of a unit root. The KPSS test statistic is defined as

KPSS =
1

T 2

∑T
t=1

(∑t
s=1 x̂s

)2
ω̂

, (2)

where x̂t is the regression residual of yt on dt and ω̂ is a consistent estimator of the long-run

variance ω defined by ω = limT→∞ Var(T−1/2
∑T

t=1 xt). KPSS (1992) originally proposed to

estimate ω by the nonparametric method using the Bartlett kernel, but other kernels such

as the quadratic spectral kennel are also applicable.

By applying the FCLT to the partial sum process of x̂t, it is shown that T−1/2
∑[Tr]

t=1 x̂t

weakly converges to
√
ωV1(r) for the constant case and to

√
ωV2(r) for the trend case where

[a] denotes the largest integer less than a, V1(r) = B(r) − rB(1) and V2(r) = B(r) +(
2r − 3r2

)
B(1) +

(−6r + 6r2
) ∫ 1

0 B(s) ds with B(r) being a standard Brownian motion.
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Using these results, it is shown that KPSS d−→ ∫ 1
0 {Vi(r)}2 dr under the null hypothesis

with i = 1 for the constant case and i = 2 for the trend case where d−→ signifies convergence

in distribution.

As is seen from the limiting null distribution, the KPSS test is free from nuisance pa-

rameter and we can asymptotically control the size of the test. However, as explained in the

introduction section, it suffers from considerable size distortion in finite samples. In order

to mitigate size distortion, SPC (2005) propose to estimate the long-run variance using the

prewhitening method with a boundary rule. According to SPC (2005), we first estimate an

AR(p) model for x̂t as x̂t = ρ̂1x̂t−1 + · · · + ρ̂px̂t−p + êt and then define the new long-run

variance estimator as

ω̃ =
ω̂e

(1 − ρ̃)2
where ρ̃ = min

(
ρ̂1 + · · · + ρ̂p, 1 − 1√

T

)
and ω̂e is the long-run variance estimator based on êt. SPC (2005) show that the KPSS

test statistic (2) corrected by ω̃ has the same limiting distribution under the null hypothesis

while it diverges to infinity at rate T under the alternative.

In practice, it is often the case that the prewhitening method is implemented with an

AR(1) approximation. Moreover, Carrion-i-Silvestre and Sansó (2006) show that the size of

the SPC test with AR(1) prewhitening is close to the nominal one when the true DGP is

an AR(1) process while it tends to be greater than the nominal size when the true DGP is

an AR(2) process.

3. Bias Corrected KPSS Test

3.1. Estimation of the long-run variance

The boundary rule exploited by SPC (2005) is a clever tool to estimate the long-run variance

with less bias. We apply this rule to the autoregressive spectral density estimator. As shown

by Perron and Ng (1996), unit root tests corrected by the autoregressive spectral density

estimator perform well and we expect that this would be the case for stationarity tests.
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In order to see the AR expression of xt, we first express xt as an infinite order moving

average (MA(∞)) process under the null hypothesis. Under Assumption 1(a), the original

process xt can be expressed, using the Wold representation and Theorem 3.8.4 of Brillinger

(1981), as

xt = ψ(L)εt =
∞∑

j=0

ψjεt−j , where
∞∑

j=0

j|ψj | <∞, (3)

ψ(L) =
∑∞

j=0 ψjL
j is a lag polynomial with ψ0 = 1 and εt is a sequence of white noise with

E[ε2t ] = σ2
ε . Further, from Theorem 3.8.2 of Brillinger (1981), the lag polynomial ψ(L) is

invertible and hence we have

φ(L)xt = εt, where φ(L) = 1 −
∞∑

j=1

φjL
j and

∞∑
j=1

j|φj | <∞. (4)

Similarly, we can also see that xt is expressed as φ∗(L)(1 − L)xt = εt under the alternative

because Δxt satisfies Assumption 1(a) under the alternative. By defining φ(L) = φ∗(L)(1−
L) under the alternative, we can see that the original process xt has an AR(∞) representation

given by φ(L)xt = εt under both the null and the alternative hypotheses and thus the testing

problem is given by

H0 : φ(1) > 0 vs. H1 : φ(1) = 0.

From (4), the long-run variance of xt is given by σ2
ε/φ

2(1) and the natural estimator is

obtained by approximating the AR(∞) representation by the AR(p) model where p diverges

to infinity at an appropriate rate as T → ∞. However, as pointed out by Leybourne and

McCabe (1994), the long-run variance estimator based on the least squares estimation of

the AR(p) model results in the inconsistency of the test.

In order to avoid this problem, we make use of the boundary rule by SPC (2005). We

first fit the AR(p) model to x̂t,

x̂t = φ̂1x̂t−1 + · · · + φ̂px̂t−p + ε̂t

and then estimate the long-run variance based on the autoregressive spectral density esti-
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mator as follows:

ω̃AR =
σ̂2

ε

(1 − φ̃)2
where σ̂2

ε =
1
T

T∑
t=1

ε̂2t and φ̃ = min

⎛⎝ p∑
j=1

φ̂j , 1 − c√
T

⎞⎠
with c being some constant. We propose to test for the null of (trend) stationarity using the

KPSS test statistic (2) with ω̂ replaced by ω̃AR. We call this test the modified KPSS test.

Note that under the null hypothesis, φ̃ equals
∑p

j=1 φ̂j for large T ; hence ω̃AR converges

in probability to ω. For details, see Berk (1974). We can see that the modified KPSS test

statistic has the same limiting distribution as the original one. On the other hand, as in SPC

(2005), σ̂2
ε still converges in probability to σ2

ε under the alternative while (1 − φ̃)2 is shown

to be of order 1/T . As a result, ω̃AR diverges to infinity at rate T . Since the numerator

of the KPSS test statistic diverges to infinity at rate T 2, we can see that the KPSS test

statistic corrected by ω̃AR diverges to infinity at rate T under the alternative, and as such,

the modified test is consistent.

3.2. Bias correction of the test statistic

As expected from the case of unit root tests by Perron and Ng (1996), the autoregressive

spectral density estimator performs quite well in our preliminary simulation. However, once

the long-run variance is well estimated, we encounter another problem—the numerator of

the test statistic (2) is biased downward in finite samples. As we will see in the next section,

the modified KPSS test tends to under-reject the null hypothesis because of this downward

bias, and hence, it loses power considerably under the alternative.

In order to control the size of the test, we derive the bias in the numerator of the test

statistic under the null hypothesis and consider the bias-corrected version of the modified

KPSS test statistic. To calculate the bias, we first express xt in (3) by the Beveridge-Nelson

decomposition as

xt = ψ(1)εt + vt−1 − vt, where vt =
∞∑

j=0

ψ̃jεt−j with ψ̃j =
∞∑

i=j+1

ψi. (5)
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Since x̂t is obtained by regressing yt on dt, we can see that

x̂t = xt − d′t

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtxt

= ψ(1)εt + vt−1 − vt − d′t

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dt(ψ(1)εt + vt−1 − vt)

= ψ(1)ε̂t − Δ̂vt

where ε̂t and Δ̂vt are the regression residuals of εt and Δvt on dt, respectively (note that

Δ̂vt is different from Δv̂t). Using this expression, the numerator of the KPSS test statistic

(2) is decomposed into three terms:

1
T 2

T∑
t=1

(
t∑

s=1

x̂s

)2

=
ψ2(1)
T 2

T∑
t=1

(
t∑

s=1

ε̂s

)2

+
1
T 2

T∑
t=1

(
t∑

s=1

Δ̂vs

)2

− 2ψ(1)
T 2

T∑
t=1

(
t∑

s=1

ε̂s

)(
t∑

s=1

Δ̂vs

)
.

=
ψ2(1)
T 2

T∑
t=1

(
t∑

s=1

ε̂s

)2

+R1 −R2, say. (6)

It can be shown that the first term on the right hand side of (6) is the leading term while

the second and third terms are op(1). From the simulation result in KPSS (1992), the

finite sample distribution of the first term on the right hand side of (6), except for a scalar

term ψ2(1), is well approximated by the limiting distribution and thus we expect that the

downward bias in the numerator comes from R1 and R2. Therefore, we define the finite

sample bias in the numerator as the expectation of R1 −R2 up to the O(T−1) terms. This

is denoted by bT :

E[R1 −R2] = bT + o

(
1
T

)
.

The following theorem gives the expression of the bias term bT .

Theorem 1. Let γ0 = E[v2
t ] and φ(L) be the lag polynomial given in (4). Under Assumption

1(a), the bias term bT in the numerator of the KPSS test statistic is expressed as

bT =
b0
T

(
γ0 + σ2

ε

φ′(1)
φ3(1)

)
7



where φ′(1) = dφ(z)/dz|z=1 and b0 = 5/3 for the constant case and b0 = 19/15 for the trend

case.

The direction of the bias is not necessarily obvious because γ0 > 0 while φ′(1)/φ3(1)

is negative when xt is positively serially correlated. However, as is shown in the following

corollary, the bias turns out to be negative when xt is an AR(1) process with positive serial

correlation.

Corollary 1. Assume that xt is an AR(1) process given by xt = φ1xt−1 + εt. Then, when

|φ1| < 1, the bias term bT in the numerator of the KPSS test statistic is expressed as

bT = −b0
T

σ2
εφ1

(1 − φ1)2(1 − φ2
1)

where b0 is the same as in Theorem 1.

This corollary is easily obtained by noting that

γ0 =
σ2

εφ
2
1

(1 − φ1)2(1 − φ2
1)

for the AR(1) case and we omit the poof.

From corollary 1 we can see that the bias for an AR(1) process is always negative when

φ1 > 0 and that the bias takes large negative values as φ1 approaches 1. This explains

why the modified KPSS test tends to be undersized when the process is strongly serially

correlated. As we will see in the next section, the downward bias in the test statistic is

serious when the process is strongly serially correlated and hence the power of the test

can be below the significance level in some cases. We thus need to correct the bias in the

numerator of the test statistic.

In practice, we need to estimate the bias based on the AR(p) approximation. Although

we can easily estimate bT for the AR(1) case because it is explicitly expressed as a function

of the AR coefficient as given in Corollary 1, we have to estimate γ0 in general. Since γ0

cannot be expressed in the closed form using the AR coefficients for a general AR(p) model,

we need to estimate it recursively like solving the Yule-Walker equations.
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We first note that the bias bT includes the reciprocal of φ(1) and the least squares

estimator of this term might take large values because of the estimation error in the AR

coefficients. As a result, the estimator of the bias might take explosively large negative

values through the φ′(1)/φ3(1) term. In order to avoid the explosive behavior of the bias

term, we estimate it based on the least squares method with the same inequality constraint

as the boundary rule. That is, we estimate the AR(p) model by minimizing the sum of

squared residuals with the inequality constraint given by
∑p

j=1 φj ≤ 1− c/
√
T . We can see

that the constrained estimator is consistent as long as the boundary rule is satisfied while

it is not explosive even under the alternative because of the constraint.

In order to explain how to estimate γ0, let us assume that φ(L) be the lag polynomial

of order p, so that xt = φ1xt−1 + · · ·+ φpxt−p + εt. By inserting the MA(∞) expression (3)

into both sides, we have

∞∑
i=0

ψiεt−i = φ1

∞∑
i=0

ψiεt−i−1 + · · · + φp

∞∑
i=0

ψiεt−i−p + εt.

By comparing the coefficients associated with εt−i for i = 0, 1, 2, · · · , we can observe the

following relations between {ψi} and {φi}: ψ0 = 1, ψ1 = φ1ψ0, ψ2 = φ1ψ1 +φ2ψ0, · · · . That

is,

ψi =
i∑

k=1

φkψi−k for i = 1, · · · , p− 1 (7)

ψi =
p∑

k=1

φkψi−k for i ≥ p. (8)

Using relation (7) and the constrained estimators of φ1, · · · , φp, we can get the estimators

ψ̂1, · · · , ψ̂p−1. In addition, we also obtain the estimators of ψ̃0, · · · , ψ̃p−1 using the following

relation:

ψ̃i =
∞∑

k=i+1

ψk =
∞∑

k=0

ψk − ψ0 − · · · − ψi =
1

φ(1)
− ψ0 − · · · − ψi,

for i = 0, · · · , p− 1, since ψ(1) = 1/φ(1).

We next make use of the relation among the autocovariances of vt. By summing (8) over
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i ≥ j + 1 with j ≥ p, we have
∞∑

i=j+1

ψi = φ1

∞∑
i=j

ψi + φ2

∞∑
i=j−1

ψi + · · · + φp

∞∑
i=j−p+1

ψi,

or equivalently,

ψ̃j = φ1ψ̃j−1 + φ2ψ̃j−2 + · · · + φpψ̃j−p for j ≥ p, (9)

since ψ̃j =
∑∞

i=j+1 ψi. Multiplying both sides of (9) with ψ̃j−k and summing over j ≥ p, we

get
∞∑

j=p

ψ̃jψ̃j−k = φ1

∞∑
j=p

ψ̃j−1ψ̃j−k + φ2

∞∑
j=p

ψ̃j−2ψ̃j−k + · · · + φp

∞∑
j=p

ψ̃j−pψ̃j−k. (10)

Noting that γk = E[vtvt−k] = σ2
ε

∑∞
j=0 ψ̃j+kψ̃j for k = 0, 1, 2, · · · because, as given in (5),

vt =
∑∞

j=0 ψ̃jεt−j , we can see that (10) can be expressed as

γk = φ1γk−1 + · · · + φk−1γ1 + φkγ0 + φk+1γ1 + · · · + φpγp−k + ak (11)

for k = 0, 1, · · · , p where

ak = σ2
ε

⎛⎝p−k−1∑
j=0

ψ̃j+kψ̃j − φ1

p−k−1∑
j=0

ψ̃j+k−1ψ̃j − · · · − φk−1

p−k−1∑
j=0

ψ̃j+1ψ̃j − φk

p−k−1∑
j=0

ψ̃2
j

−φk+1

p−k−2∑
j=0

ψ̃jψ̃j+1 − · · · − φp−1ψ̃0ψ̃p−k−1

⎞⎠ .

Since we have already obtained the estimators of φ1, · · · , φp and ψ̃0, · · · , ψ̃p−1, we can also

calculate ak for k = 0, · · · , p. Since (11) for k = 0, · · · , p can be seen as p+ 1 simultaneous

equations with respect to γ0, · · · , γp, we can get the estimator of γ0 by solving a set of these

equations.

Once we get the estimator of γ0, we can construct b̂T , the estimator of bT . Finally, we

construct the bias corrected version of the KPSS test statistic

KPSSBC =
1

T 2

∑T
t=1

(∑t
s=1 x̂s

)2 − b̂T

ω̃AR
.

Note that the bias corrected KPSS test statistic has the same limiting distribution as the

original KPSS test statistic under the null hypothesis, and as such, we can use the critical

values in the table given by KPSS (1992).
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4. Simulation Study

In this section, we investigate the finite sample properties of the bias corrected version of

the modified KPSS test statistic through Monte Carlo simulations. The DGP we considered

is given as follows:

yt = d′tβ + xt, xt = φ1xt−1 + φ2xt−2 + εt

where εt ∼ i.i.d.N(0, 1) and β = 0 throughout the simulations because the test statistic

is invariant to the true values of β. For the AR(1) case, we set φ1 to be from 0.5 to 1.0

in increments of 0.01 and take φ2 = 0. On the other hand, for the AR(2) case, we take

φ2 = 0.3 or −0.3 and set φ1 such that φ1 + φ2 ranges from 0.5 to 1.0. The significance level

is 0.05 and the number of replications is 5,000.

To obtain the estimate of the long-run variance, ω̃AR, we need to determine the lag

length in practice. For both of the AR(1) and AR(2) cases we choose the lag length using

the Bayesian information criterion (BIC)4. In addition, in order to apply the boundary rule,

we have to preset the value of c; however, the localizing parameter c is not necessarily

interesting in practical analysis. The boundary value, 1 − c/
√
T , is of greater importance

in finite samples because we truncate the long-run parameter φ1 + · · ·+φp at the boundary

value. For example in the AR(1) case, if we set the boundary value as 0.9, we expect that

the size of the test would be close to the significance level when φ1 is less than 0.9. On the

other hand, when φ1 is greater than 0.9, the null hypothesis would tend to be rejected. In

our simulations, we choose c such that 1 − c/
√
T equals 0.85, 0.9 and 0.95 for T = 50, 100

and 300; further, the boundary value of 0.98 is considered for T = 100, 300 and 500.

The above boundary value is also used to obtain the bias term b̂T . We used the GAUSS-

CML routine to estimate the model by the least squares method with the inequality con-

straint given by φ1 + · · · + φp ≤ 1 − c/
√
T .

Figure 1 provides the rejection frequencies of the tests for the constant AR(1) case where

the horizontal axis corresponds to φ1. In each figure, “BIC” denotes the rejection frequencies
4We also used the Akaike information criterion to choose the lag length. The results are similar to those

of the BIC.
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Figure 1: The finite sample performance; constant case (AR(1) model)
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Figure 1: (continued)
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Figure 2: The finite sample performance; constant case (AR(2) with φ = 0.3 model)
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Figure 2: (continued)
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Figure 3: The finite sample performance; constant case (AR(2) with φ = −0.3 model)
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Figure 3: (continued)

17



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(i-a) T = 50, boundary= 0.85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(ii-a) T = 50, boundary= 0.90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(i-a) T = 100, boundary= 0.85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(ii-a) T = 100, boundary= 0.90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(i-a) T = 300, boundary= 0.85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.95 0.9 0.8 0.7 0.6 0.5

BIC
no correction

SPC

(ii-a) T = 300, boundary= 0.90

Figure 4: The finite sample performance; trend case (AR(1) model)
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Figure 4: (continued)
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Figure 5: The finite sample performance; trend case (AR(2) with φ = 0.3 model)
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Figure 5: (continued)
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Figure 6: The finite sample performance; trend case (AR(2) with φ = −0.3 model)
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Figure 6: (continued)
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of the bias corrected version of the modified KPSS test while “SPC” is the SPC test with

AR(1) prewhitening, to which the above boundary rule is applied. To see the effect of the

bias correction, we also show the result of the modified KPSS test in Subsection 3.1 with

the true lag length, which is denoted as “no correction”. From Figure 1, we can see that

the bias correction term bT effectively reduces the downward bias of the modified KPSS test

statistic when the boundary value is 0.85, 0.9 and 0.95. For the boundary value of 0.98,

our method overly corrects the modified KPSS test statistic when T = 100; however, as the

sample size increases, the size of our test gets closer to the nominal size when the AR(1)

parameter is less than the boundary value.

Figures 2 and 3 give the rejection frequencies of the tests for the constant AR(2) case.

In this case, the horizontal axis corresponds to φ1 + φ2. Figure 2 shows that the SPC test

with the AR(1) prewhitening suffers from size distortion when φ2 = 0.3 even if the process is

not strongly serially correlated, while the modified KPSS test tends to under-reject the null

hypothesis. Again, the size of the bias corrected version of the modified KPSS test is much

closer to the nominal one than the other tests except when T is small and the boundary

values are large. On the other hand, the SPC test tends to under-reject the null hypothesis

when φ2 = −0.3, and as such, it loses power considerably.

Figures 4 to 6 give the results for the trend case. The relative performance of the tests

is preserved compared to the constant case but it becomes more difficult to control the size

of the tests for the trend case. When the sample size is small and the boundary is close to

one, our method tends to correct the downward bias too much, so that our test also suffers

from size distortion in some cases. However, this over-rejection is mitigated as the sample

size increases.

5. Concluding Remarks

In this paper, we proposed a new KPSS-type test for stationarity with less size distortion.

The distinctive features of our test are summarized in the following: First, we parametrically

estimate the long-run variance imposing the boundary condition. Second, we correct the
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downward bias in the numerator of the KPSS test statistic. The simulation study showed

that our method can mitigate the size distortion problem effectively. Our method could

be extended to the panel stationarity test proposed by Hadri (2000) and it is our future

research.

It is worth noting that we can control the empirical size only up to the boundary value

and that the rejection frequencies of the test tend to be greater than the significance level

when the long-run parameter is above the boundary value. This may be a natural result in

view of Theorem 2 of Müller (2008), who pointed out (Discussion 4.3, Müller (2008)) that

“Consistent stationarity tests should be thought of as testing jointly the I(0) property ...

and additional restrictions on the behavior of the process.” The boundary rule in this paper

is one such restriction.

25



Appendix

Proof of Theorem 1: In the following, we will show that

E [R1] =
1
T
b0γ0 + o

(
1
T

)
(12)

E [R2] =
1
T

b0σ
2
εφ

′(1)
φ3(1)

, (13)

where b0 = 5/3 for the constant case and it is 19/15 for the trend case.

Let us first consider the trend case. Since Δ̂vt is the regression residual of Δvt on dt, we

can expand R1 as

R1 =
1
T 2

T∑
t=1

⎧⎨⎩
t∑

s=1

Δvs −
t∑

s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

⎫⎬⎭
2

=
1
T 2

T∑
t=1

(
t∑

s=1

Δvs

)2

− 2
T 2

(
T∑

t=1

t∑
s=1

Δvs

t∑
s=1

d′s

)(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

+
1
T 2

T∑
t=1

Δvtd
′
t

(
T∑

t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

= R11 −R12 +R13, say.

Since
∑t

s=1 Δvs = vt − v0, the expectation of R11 becomes

E[R11] =
1
T 2

T∑
t=1

E
[
v2
t − 2v0vt + v2

0

]
=

2
T
γ0 − 2

T 2

T∑
t=1

γt =
2
T
γ0 +O

(
1
T 2

)
(14)

because |∑T
t=1 γt| ≤

∑∞
t=0 |γt| <∞.

In order to evaluate R12, we express E[R12] as

E[R12] =
2
T 2
tr

⎧⎨⎩
(

T∑
t=1

dtd
′
t

)−1

E

[(
T∑

t=1

dtΔvt

)(
T∑

t=1

t∑
s=1

Δvs

t∑
s=1

d′s

)]⎫⎬⎭ . (15)
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We evaluate each element of the expectation on the right hand side of (15). The (1,1)

element becomes

E[the (1,1) element] = E

[
(vT − v0)

T∑
t=1

(vt − v0)t

]

=
T∑

t=1

tγT−t − γT

T∑
t=1

t−
T∑

t=1

tγt + γ0

T∑
t=1

t

=
T 2

2
γ0 + o(T 2) (16)

because γt is absolutely summable and γT = o(1). In exactly the same way, we can see that

E[the (1,2) element] = E

[
(vT − v0)

T∑
t=1

(vt − v0)
t∑

s=1

s

]

=
T∑

t=1

γT−t

t∑
s=1

s− γT

T∑
t=1

t∑
s=1

s−
T∑

t=1

γt

t∑
s=1

s+ γ0

T∑
t=1

t∑
s=1

s

=
T 3

6
γ0 + o(T 3), (17)

E[the (2,1) element] = E

[{
(T + 1)vT −

T∑
t=1

vt − v0

}
T∑

t=1

(vt − v0)t

]

= (T + 1)
T∑

t=1

tγT−t − (T + 1)γT

T∑
t=1

t− E

[
T∑

t=1

vt

T∑
t=1

tvt

]

+
T∑

t=1

γt

T∑
t=1

t−
T∑

t=1

tγt + γ0

T∑
t=1

t = o(T 3) (18)

because |E[
∑T

t=1 vt
∑T

t=1 tvt]| ≤
√
E[(

∑
t vt)2]E[(

∑
t tvt)2] ≤

√
O(T )O(T 3) by the Cauchy-

Schwarz inequality, and

E[the (2,2) element] = E

[{
(T + 1)vT −

T∑
t=1

vt − v0

}
T∑

t=1

(vt − v0)
t∑

s=1

s

]

= (T + 1)
T∑

t=1

γT−t

t∑
s=1

s− (T + 1)γT

T∑
t=1

t∑
s=1

s− E

[
T∑

t=1

vt

T∑
t=1

vt

t∑
s=1

s

]

+
T∑

t=1

γt

t∑
s=1

s−
T∑

t=1

γt

t∑
s=1

s+ γ0

T∑
t=1

t∑
s=1

s = o(T 4). (19)

27



Since direct calculation yields

(
T∑

t=1

dtd
′
t

)−1

=

⎡⎢⎣
2(2T + 1)
T (T − 1)

− 6
T (T − 1)

− 6
T (T − 1)

12
T (T 2 − 1)

⎤⎥⎦ , (20)

we have, using (15)–(19),

E[R12] =
2
T
γ0 + o

(
1
T

)
. (21)

The expectation of R13 is obtained in a similar manner. We first express E[R13] as

E[R13] =
1
T 2
tr

⎧⎨⎩
(

T∑
t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑

t=1

dtd
′
t

)−1

E

[
T∑

t=1

dtΔvt

T∑
t=1

Δvtd
′
t

]⎫⎬⎭ .

Since it is shown that(
T∑

t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑

t=1

dtd
′
t

)−1

=

⎡⎢⎢⎣
(17T 2 − 10T + 2)(T + 1)

15T (T − 1)
−11T 2 − 5T + 6

10T (T − 1)

−11T 2 − 5T + 6
10T (T − 1)

6(T 2 + 1)
5(T 2 − 1)T

⎤⎥⎥⎦ , (22)

E

[
T∑

t=1

dtΔvt

T∑
t=1

Δvtd
′
t

]
=
[

2γ0 + o(1) Tγ0 + o(T )
Tγ0 + o(T ) T 2γ0 +O(T )

]
,

we have

E[R13] =
19

15T
γ0 + o

(
1
T

)
. (23)

Hence, we obtain (12) from (14), (21) and (23).

The evaluation of the expectation of R2 proceeds in the same way but is more compli-
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cated. We first expand R2, except for the scalar, 2ψ(1)/T 2, as
T∑

t=1

(
t∑

s=1

ε̂s

)(
t∑

s=1

Δ̂vs

)

=
T∑

t=1

⎧⎨⎩
t∑

s=1

εs −
t∑

s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtεt

⎫⎬⎭⎧⎨⎩
t∑

s=1

Δvs −
t∑

s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

⎫⎬⎭
=

T∑
t=1

t∑
s=1

εs

t∑
s=1

Δvs −
T∑

t=1

t∑
s=1

Δvs

t∑
s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtεt

−
T∑

t=1

t∑
s=1

εs

t∑
s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

+
T∑

t=1

εtd
′
t

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

(
T∑

t=1

dtd
′
t

)−1 T∑
t=1

dtΔvt

= R21 −R22 −R23 +R24, say.

We evaluate each term. The expectation of R21 becomes

E[R21] =
T∑

t=1

E

[
t∑

s=1

εs(vt − v0)

]
= σ2

ε

T∑
t=1

t∑
s=1

ψ̃t−s = σ2
εT

T−1∑
t=0

(
1 − t

T

)
ψ̃t. (24)

In order to evaluate the expectations of R22, R23 and R24, we use the following lemma.

Lemma 1. Let ft and gt be deterministic sequences for t = 1, · · · , T . Then,

E

[(
T∑

t=1

ftεt

)(
T∑

t=1

gtvt

)]
= σ2

ε

T−1∑
t=0

(
T−t∑
s=1

fsgs+t

)
ψ̃t, (25)

T∑
t=1

ft

t∑
s=1

εs =
T∑

t=1

(
T∑

s=t

fs

)
εt. (26)

We omit the proof of Lemma 1 because it is directly obtained by noting that E[εt−svt] =

σ2
ε ψ̃s for s ≥ 0 and E[εt+svt] = 0 for s > 0.

For E[R22], note that

E[R22] = tr

⎧⎨⎩
(

T∑
t=1

dtd
′
t

)−1

E

[
T∑

t=1

dtεt

T∑
t=1

t∑
s=1

Δvs

t∑
s=1

d′s

]⎫⎬⎭ . (27)
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Each element of the expectation on the right hand side of (27) is evaluated as

E[the (1,1) element] = E

[
T∑

t=1

εt

T∑
t=1

tvt

]
= σ2

ε

T−1∑
t=0

T 2 − t2

2
ψ̃t +O(T ),

E[the (2,1) element] = E

[
T∑

t=1

tεt

T∑
t=1

tvt

]
= σ2

ε

T−1∑
t=0

(
T 3

3
− tT 2

2
+
t3

6

)
ψ̃t +O(T 2),

E[the (1,2) element] = E

[
T∑

t=1

εt

T∑
t=1

vt

t∑
s=1

s

]
= σ2

ε

T−1∑
t=0

T 3 − t3

6
ψ̃t +O(T 2),

E[the (2,2) element] = E

[
T∑

t=1

tεt

T∑
t=1

vt

t∑
s=1

s

]
= σ2

ε

T−1∑
t=0

(
T 4

8
+
t4

24
− tT 3

6

)
ψ̃t +O(T 3),

where we used (25) with ft = 1 and gt = t for the (1,1) element, ft = t and gt = t for the

(2,1) element, ft = 1 and gt = t(t+1)/2 for the (1,2) element, and ft = t and gt = t(t+1)/2

for the (2,2) element. Then, using (20) it is shown that

E[R22] = σ2
εT

T−1∑
t=0

1
2

(
1 − 4t2

T 2
+

2t
T

+
t4

T 4

)
ψ̃t +O(1). (28)

For R23, we note that

T∑
t=1

t∑
s=1

εs

t∑
s=1

d′s =

[
T∑

t=1

t

t∑
s=1

εs,

T∑
t=1

t∑
s=1

s

t∑
s=1

εs

]

=

[
T∑

t=1

(
T 2 − t2

2
+O(T )

)
εt,

T∑
t=1

(
T 3 − t3

6
+O(T 2)

)
εt

]

where the last expression is obtained by using (26). Hence, using (25), it is shown that

E

[(
T∑

t=1

dtΔvt

)(
T∑

t=1

t∑
s=1

εs

t∑
s=1

d′s

)]

= σ2
εE

[ ∑T−1
t=0

T 2−(T−t)2

2 ψ̃t +O(T )
∑T−1

t=0
T 3−(T−t)3

6 ψ̃t +O(T 2)∑T−1
t=0

(
−T 3

3 + tT 2 − t3

6

)
ψ̃t +O(T 2)

∑T−1
t=0

(
−T 4

8 + 1
24 t

4 + tT 3

2 − t2T 2

4

)
ψ̃t +O(T 3)

]

Using this result and (20), we have

E[R23] = σ2
εT

T−1∑
t=0

1
2

(
1 − 4t2

T 2
+

2t
T

+
t4

T 4

)
ψ̃t +O(1). (29)
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Exactly in the same way, for R24, we have,

E

[(
T∑

t=1

dtΔvt

)(
T∑

t=1

εtd
′
t

)]
= σ2

ε

[ ∑T−1
t=0 ψ̃t

∑T−1
t=1 (T − t)ψ̃t∑T−1

t=0 tψ̃t +O(1)
∑T−1

t=0
T 2−t2

2 ψ̃t +O(T )

]
.

Then, using (22), it is shown that

E[R24] = σ2
εT

T−1∑
t=0

(
19
30

− 9t2

15T 2

)
ψ̃t +O(1). (30)

From (24), (28), (29) and (30), we obtain

E[R2] =
2σ2

εψ(1)
T

T−1∑
t=0

(
19
30

− 3t
T

+
17t2

5T 2
− t4

T 4

)
ψ̃t + o

(
1
T

)
.

Furthermore, since
∑∞

j=0 |ψ̃j | <∞, the above summation converges to
∑∞

j=0(19/30)ψ̃t and

we get

E[R2] =
19σ2

εψ(1)
15T

∞∑
j=0

ψ̃j + o

(
1
T

)
.

Noting that ψ(1) = 1/φ(1) and

∞∑
j=0

ψ̃j = ψ′(1) =
(

1
φ(1)

)′
= − φ′(1)

φ(1)2
,

we finally obtain (13).

We obtain a similar expression for the constant case in exactly the same manner and we

omit the proof.�

31



References

[1] Andrews, D., and J. C. Monahan (1992). An Improved Heteroskedasticity and Auto-

correlation Consistent Covariance Matrix Estimator, Econometrica 60, 953-956.

[2] Aznar, A. and M. Ayuda (2008). A Point Optimal Test for the Null of Near Integration,

presented at EEA-ESEM meeting 2008, University of Bocconi.

[3] Berk, K. N. (1974). Consistent Autoregressive Spectral Estimates, Annals of Statistics

2, 289-502.

[4] Brillinger, D. R. (1981). Time Series Data Analysis and Theory. Holden-Day, San

Francisco.

[5] Caner, M., and L. Kilian (2001). Size Distortions of Tests of the Null Hypothesis of

Stationarity: Evidence and Implications for the PPP Debate, Journal of International

Money and Finance 20, 639-657.

[6] Carrion-i-Silvestre, J. L., and A. Sansó (2006). A Guide to the Computation of Sta-
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