HI1TOTSUBASHI
UNIVERSITY

Global COE Hi-Stat Discussion Paper Series 273

Research Unit for Statistical
and Empirical Analysis in Social Sciences (Hi-Stat)

Pricing Nikkei 225 Options Using Realized Volatility

Masato Ubukata
Toshiaki Watanabe

S
5
=
S

=7

January 2013

1IScussion

Hi-Stat D

Hi-Stat

Institute of Economic Research

Hitotsubashi University

2-1 Naka, Kunitatchi Tokyo, 186-8601 Japan
http://gcoe.ier.hit-u.ac.jp




Pricing Nikkei 225 Options Using Realized Volatility*

MASATO UBUKATA

Department of Economics, Kushiro Public University of Economics

TOSHIAKI WATANABE

Institute of Economic Research, Hitotsubashi University

Abstract

This article examines option pricing performance using realized volatilities with or without
handling microstructure noise, non-trading hours and large jumps. The dynamics of realized
volatility is specified by ARFIMA(X) and HAR(X) models. Main results using put options on the
Nikkei 225 index are: (1) ARFIMAX model performs best, (2) the Hansen and Lunde (2005a)
adjustment for non-trading hours improves the performance, (3) methods for reducing microstruc-
ture noise-induced bias yield better performance, while if the Hansen-L unde adjustment is used,
the other methods are not necessarily needed and (4) the performance is unaffected by removing
large jumps from realized volatility.

JEL Classification Numbers: C13, C22, C52.

Keywords. microstructure noise, Nikkei 225 stock index, non-trading hours, option pricing, real-
ized volatility.

*Thisisarevised version of Ubukataand Watanabe (2011). Financial support from the Ministry of Education, Culture,
Sports, Science and Technology of the Japanese Government through Grant-in-Aid for Scientific Research (N0.18203901,;
21243018; 22243021; 23730301) and the Global COE program “Research Unit for Statistical and Empirical Analysisin
Social Sciences’ at Hitotsubashi University and the Joint Usage and Research Center, Institute of Economic Research,
Hitotsubashi University (IERPK 1109, 1206) is gratefully acknowledged. We would also like to thank seminar participants
at the Bank of Japan, Tohoku University, Hiroshima University of Economics and Nihon University and the staff of the
Institute for Monetary and Economic Studies (IMES), the Bank of Japan, for their useful comments. All remaining errors
are solely our responsibility.



1 Introduction

One of the most important variables in option pricing is the volatility of the underlying asset. While
the well-known Black and Scholes (1973) model assumes that the volatility is constant, few would
dispute the fact that the volatility changes over time. Many time series models are now available
to describe the dynamics of volatility. One of the most widely used is the ARCH (autoregressive
conditional heteroskedasticity) family including ARCH model by Engle (1982), GARCH (generalized
ARCH) model by Bollerslev (1986) and their extensions.

The problem of using these modelsisthat we must specify the model before estimating the volatil-
ity and the estimate of volatility depends on the specification of volatility dynamics. Recently, realized
volatility has attracted the attentions of financial econometricians as an accurate estimator of volatil-
ity. Realized volatility isindependent of the specification of volatility dynamics because it is simply
the sum of squared intraday returns.

ARCH type models have aready been applied to option pricing by Duan (1995), Bollerslev and
Mikkelsen (1999), Heston and Nandi (2000) and Barone-Adesi et al. (2008). More recently, some
authors have applied realized volatility to option pricing as well as the applicationsto volatility fore-
casting (Koopman et al. 2005; Andersen et a. 2007) and Vaue-at-Risk (Giot and Laurent, 2004;
Clements et a., 2008; Watanabe, 2012). Stentoft (2008) examine an option pricing model with real-
ized volatility using inverse Gaussian distribution. Christoffersen et al. (2010) propose generalized
expected realized volatility model to incorporate realized volatility into the Heston-Nandi (2000)
GARCH model and derive closed-form option valuation formulas. Cors et a. (2011) develop the
HAR model (heterogeneous interval autoregressive) by Corsi (2009) and appliesit to option pricing.

This article investigates how different option pricing performance would be if we take account of
some practical issues involved in calculating realized volatility. The high-frequency financial litera-
ture has developed to measure realized volatility associated with microstructure noise-induced bias,
the presence of non-trading hours and separate estimates of the continuous and discontinuous (jump)
components of the volatility process. This raises the question of what cal culation method for realized
volatility is reasonably useful in option pricing. As far as we know, there are few that have tackled
this problem. One exception is Bandi et a. (2008), which apply different realized volatilities to the
pricing of S&P 500 index options and compare their option pricing performance. Their method is,
however, different from ours asfollows. First, they compare the profits from the straddle trading strat-
egy obtained by substituting the volatility forecasts from a time-series model for realized volatility
into the Black-Scholes option pricing formula. We employ arealized volatility option pricing model
without the Black-Scholes formula. Second, they compare the performance of realized volatilities
with or without taking account of microstructure noise, while our analysis further includes realized
volatilitieswith or without taking account of non-trading hours and asset price jumps and comparison
with ARCH-type models.

There are several problemsin calculating realized volatility. First, realized volatility isinfluenced
by market microstructure noise induced by various market frictions such as bid-ask spread and non-



synchronous trading (Campbell et a., 1997). There are some methods available for mitigating the
effect of microstructure noise on realized volatility (Ait-Sahaliaet al., 2005; Bandi and Russell, 2006,
2008, 2011; Barndorff-Nielsen et al., 2004b, 2008; Hansen and Lunde, 2006; Jacod et al., 2009; Ku-
nitomo and Sato 2008; Oya 2011; Zhang, 2006; Zhang et al., 2005; Zhou 1996). It is worthwhile
applying these methods and comparing the results. We use severa different methods for mitigating
the effect of microstructure noise on realized volatility. We analyze whether using these methods
may improve the performance of option pricing of Nikkei 225 stock index options traded at Osaka
Securities Exchange. Second, the Tokyo stock exchange, where the 225 stocks that constitute the
Nikkel 225 stock index are traded, opens only for 9:00-11:00 and 12:30-15:00. We cannot obtain
high-frequency returns during the period when the market is closed. Adding the squares of overnight
(15:00-9:00) and lunch-time (11:00-12:30) returns may make realized volatility noisy. Following
Hansen and Lunde (2005a), we calculate realized volatility without overnight and lunch-time returns
and multiply a constant such that the sample mean of daily realized volatility is equal to the sample
variance of daily returns. We examine whether this method is effective in option pricing by com-
paring with smply adding the squares of overnight and lunch-time returns. Third, financial markets
sometimes display asset price discontinuities, so-called jumps. Under jump-diffusion processes for
the underlying asset prices, the realized volatility includes variation due to jumps. We also construct
realized volatility removing significant large jumps and investigate its contribution to option pricing
performance.

Many authors have documented that realized volatility follows along-memory process (Andersen
et a., 2001, 2003). We use the ARFIMA (autoregressive fractionally integrated moving average)
model and HAR model by Corsi (2009) to describe the dynamics of realized volatility. It is aso well
known in stock marketsthat today’svolatility is negatively correlated with yesterday’sreturn. We also
extend ARFIMA and HAR models to take account of this asymmetry in volatility. For ARCH type
models, we use the ssmple GARCH model proposed by Bollerslev (1986), the EGARCH (exponential
GARCH) model by Nelson (1991) that may capture the asymmetry in volatility and the FIEGARCH
(fractionally integrated EGARCH) model by Bollerslev and Mikkelsen (1996) that may also alow for
the long-memory property of volatility.

We cal culate option prices under the assumption of risk neutrality for the examination of realized
volatility option pricing model, while it would be important to relax this assumption. However, a
direct test for risk premium under some specifications of conditional expectation of the Nikkei 225
returns with realized volatility impliesthat the data used here may be insensitive to estimated param-
eters of the market price of risk. Thus, we only consider the case where the risk neutral and physical
dynamics of realized volatility are identical. Duan (1995) has developed a more general method for
pricing options in ARCH type models, which does not assume risk neutrality. We aso calculate
option prices both by assuming the risk neutrality and by using the Duan (1995) method.

Main results using the Nikkei 225 stock index and its put options prices are: (1) ARFIMAX
model with daily realized volatility performs best, (2) the Hansen and Lunde (2005a) adjustment
without using overnight and lunch-time returns can improve the performance, (3) the performanceis



improved by mitigating the effect of microstructure noise on realized volatility, while if the Hansen
and Lunde (2005a), which al so plays arole to remove the bias from the microstructure noise by setting
the sample mean of realized volatility equal to the sample variance of daily returns, is used, the other
methods for taking account of microstructure noise do not necessarily improve the performance, (4)
the option-pricing performance is not necessarily improved by removing significant large jumps from
realized volatility and (5) the Duan (1995) method does not improve the performance compared with
assuming the risk neutrality.

The article proceeds as follows. Section 2 explains several methods used in this article for cal-
culating realized volatilities. Section 3 explains ARFIMA(X) and HAR(X) models to describe the
dynamics of realized volatility and ARCH type models used in this article for comparison. Section 4
explains how to calculate option prices using the ARFIMA(X) and HAR(X) models with daily real-
ized volatility and ARCH type models with daily returns. Section 5 explains the data and Section 6
compares the performance of option pricing. Section 7 concludes. The appendix provides a detailed
description of realized volatilitiesemployed in thisarticle.

2 Realized Volatility

We start with a brief review of realized volatility using the following diffusion process.
dp(s) = p(s)ds + o(s)dW (s), (1)

where s istime, p(s) isthelog-price, W () isastandard Brownian motion, and (s) and o(s) arethe
drift and the volatility respectively, which may be time-varying but are assumed to be independent
of dW (s). In thisarticle, we cal o(s) or o%(s) volatility interchangeably although o(s) is usualy
called volatility in the finance literature. Then, the volatility for day ¢ is defined as the integral of
o?(s) over theinterval (¢ —1,¢) wheret — 1 and ¢ represent the market closing timeon day ¢t — 1 and
t respectively, i.e.,

t
Ni= [ o), @)
t—1
which is called integrated volatility. The integrated volatility is unobservable, but if we have the
intraday return data (rHH n Tt-142/n, - - -, Tt), WE CaN estimate it as the sum of their squares
RV, = Z Tt2—1+i/n? 3)

i=1
which is called realized volatility. If the prices do not include any noise, realized volatility RV; will

provide a consistent estimate of 1V, i.e,,

plimRV;, = IV,. (4)
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There are two problems in calculating realized volatility under these settings. First, although the
realized volatility isan accurate estimator of integrated volatility under the assumption of acontinuous
stochastic model, it fails when there is market microstructure noise as seen in rea high-frequency
data. The microstructure noise can be induced by various market frictions such as the discreteness
of price changes, bid-ask bounces, and asymmetric information across traders, inter alia.® A growing
literature attemptsto study an integrated volatility estimation from microstructure noise-contaminated
high-frequency data. In thisarticle, we employ someinfluential integrated volatility estimators robust
to the microstructure noise.

Second, the Tokyo Stock Exchange is open only for 9:00-11:00 (morning session) and 12:30—
15:00 (afternoon session) except for the first and last trading days in every year, when it is open
only for 9:00-11:00. It isimpossible to obtain high-frequency returns for 15:00-9:00 (overnight) and
11:00-12:30 (lunch-time). Since realized volatility obtained using high-frequency returns over 4.5-
hour trading period only captures the volatility during the part of the day that the market is open, we
need to extend the realized volatility to a measure of volatility for the full day. If we ssmply add the
sguares of overnight and lunch-time returns, realized volatility may be subject to discretization error.
Hansen and Lunde (2005a) propose to calculate realized volatility only when the market is open,
which is denoted as RVt("), and multiply a constant ¢ such that the sample mean of realized volatility
isequal to the sample variance of daily returns, i.e.,

_ ZtT:1(Rt - E)Q
S RV

RV, = ¢cRV,"”), ¢ , (5)

where (R, ..., Rr) isthe sample of daily returns and R is the sample mean?.

In order to test the effects of taking into consideration the microstructure noise and the non-trading
hours on option pricing, we use as many as 34 daily realized volatilities listed in Table 1. Without
microstructure noise, it would be desirable to use intraday returns sampled at the highest frequencies.
Since the highest frequencies available for Nikkei 225 stock index is 1-minute, we first calculate re-
alized volatility using 1-minute returns (n = 270). From the second to seventeenth methodsin Table
1 are expected to correct the bias of the classical realized volatility and mitigate the variance increase
of the estimator induced by the microstructure noise. A more detailed description of the methodsis
provided in the appendix. We apply the Hansen and L unde (2005a) adjustment to the 17 kinds of real-
ized volatilities, which are denoted as RV (1min) 7L, RV (5min)L, RV (10min)ZL, RV (15min)AL,
RV (20min)L, RV (BR)?E, BK(BR)HE, ZMA(ZM AL, ZMA(BR)IE, BO(ZM A, ZM A)HE,
BC(ZMA, BR)"", FBK(BNHLS)"", FCK(BNHLS)"", FMTH(BNHLS)"", FBK(BR

1The literature on market microstructure provides important insights from early studies including Roll (1984), who
derives a simple estimator of the bid-ask spread based on the negative autocovariance of returns. Harris (1990) examines
the rounding effects emanating from the discreteness of transaction prices. In the recent literature on microstructure noise,
Meddahi (2002) and Hansen and Lunde (2006) examine the variance of microstructure noise as well as the correlation
between the microstructure noise and frictionless equilibrium price. Ubukata and Oya (2009) examine dependence of
microstructure noise.

2See Martens (2002) and Hansen and L unde (2005b) for the other methods.
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YL FCK(BR)"L, FMTH(BR)"L. For comparison, we also calculate 17 kinds of daily re-
alized volatilities constructed by adding the sgaures of overnight and lunch-time returns instead
of the Hansen and Lunde (20053) adjustment, which are denoted as RV (1min)S%, RV (5min)S%,
RV (10min)S%, RV (15min)S%, RV (20min)S%, RV (BR)SE, BK(BR)SE, ZMA(ZMA)S®, ZM A
(BR)S®, BC(ZMA, ZMA)S®, BC(ZM A, BR)S®, FBK(BNHLS)S®, FCK(BNHLS )R, F
MTH(BNHLS)S®, FBK(BR)S®, FCK(BR)®, FMTH(BR)S*.

3 ARFIMA(X), HAR(X) and ARCH type Model

Many researchers have documented that realized volatility may follow along-memory process. Let
p(h) denote the h-th order autocorrelation coefficient of variable X'. Then, X followsashort-memory
processif Y7 |p(h)| < oo and along-memory processif >~ 7 |p(h)| = co. A stationary ARMA
model is a short-memory process. As h increases, the autocorrelation coefficient p(h) of the long-
memory process decays more slowly than that of the short-memory process. More specifically, the
former decays hyperbolically and the latter decays geometrically.

The most widely used for along-memory processis ARFIMA(p, d, ¢) model®

o(L)(1 — L)X, = O(L)u;, u; ~ NID(0,0?), (6)

where L denotesthelag operatorand (L) = 1—¢ L—- - -—¢,LP and (L) = 1—6,L—- - -—0,L? are
the p-th and ¢-th order lag polynomials assumed to have all roots outside the unit circle. The order of
integration d is allowed to take non-integer values. If d = 0, ARFIMA model collapses to stationary
ARMA model and if d = 1, it becomes non-stationary ARIMA model. If 0 < d < 0.5, X, follows
a stationary long-memory process and if 0.5 < d < 1, X, follows a non-stationary long-memory
process. (1 — L) may be written as follows,

(1_L)d:1+Zd(d—1)--1;!(d—k+1)(_L)k‘ -

We assume that u, follows an independent normal distribution with zero mean and variance o2
By settingp = 0 and ¢ = 1, which are selected by the Schwartz information criterion (SIC), and
X; = In(RV;) — u where i isthe unconditional mean of In(RV;), we consider the following model.

(1 — L) [In(RV;) — p] = uy + Ous_y, uy, ~ NID(0,0%). (8)

We estimate parameters d, ;. and 6 jointly using the approximate maximum likelihood method (Beran,
1995), where it is assumed that In(RV;) = p (t = 0,—1,...). We can estimate 02 as the sample
variance of residual.

We also employ HAR model by Corsi (2009) well-known as a simple approximate long-memory

3See Beran (1994) for the details of long-memory and ARFIMA model.
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model of realized volatility. The model consists of three realized volatility components defined over
different time periods as follows.

IH(RVt) = B+ B IH(RVt—l) + 32 ln(RVﬁl) + 33 ln(RV;Tl) + vy, Vg~ NlD(O: 05), 9)

where RVY, = L3 RV, ; and RV;", = L3 RV, ; are the average of the past realized
volatilities corresponding to time horizons of 5 trading days (one week) and 22 trading days (one
month), respectively. We can estimate parameters 3y, (31, B2, 83 and o2 by applying simple linear
regression.

It iswell-known that thereis a negative correl ation between today’ s return and tomorrow’ s vol atil-
ity in stock markets. To take into account this phenomenon, we extend the above ARFIMA(0,d,1)
model (8) to the following ARFIMA(0,d,1)-X model

(1= L) [In(RV;) — po — pu|Reer| — po Dy |Rizi|] = w + Ouyp—y,  u, ~ NID(0,0%),  (10)

where D, , isadummy variablethat takesoneif thereturn on day ¢t —1 isnegative and zero otherwise.
We estimate parameters d, jug, ji1, 2, 0 and o2 using the same method as that for ARFIMA model.
If the estimate of 1, has a statistically significant positive value, it is consistent with a well-known
negative correlation between today’s return and tomorrow’s volatility in stock markets. The HAR
model (9) can be naturally extended to HAR-X model taking account of the asymmetry in volatility
asfollows.

In(RV;) = Bo + B1 In(RVi1) + B2 In(RV,”,) + Bs In(RV™,) + Ba|Ri—1| + Bs D1 | Ri—1| + vy, (12)
v, ~ NID(0, 02).

We estimate parameters 3y, 51, 32, 83, 1, B5 and o using the same method asthat for the HAR model.
The positive value of 5 indicates the negative correlation between today’s return and tomorrow’s
volatility.

Some researchers such as Barndorff-Nielsen et a. (2004a), Barndorff-Nielsen and Shephard
(2001, 2002) and Nagakura and Watanabe (2011) have proposed a UC (unobserved components)
model*. Assuming that the asset price follows a contimuous-time mode! called square-root stochastic
variance model, they show that the realized volatility calculated using the discretely sampled data
follows an ARMA(1,1) model. Since it is the realized volatility rather than its log that follows an
ARMA(1,1) model and the distribution of the error term is unknown, the future volatility sampled for
option pricing may possibly be negative if we assume that the distribution of error term is normal.
Thus, we do not use this model in this article.

4Nagakura and Watanabe (2011) consider microstructure noise while Barndorff-Nielsen et al. (2004a) and Barndorff-
Nielsen and Shephard (2001, 2002) neglect it.



We aso estimate ARCH type models using daily returns. We define daily return as
R, = In(S,) — In(S,_,), (12)
where S; isthe closing price on day ¢. We specify daily return as
Ry = E(R|I,_)) + €, & = 0,2, z ~ NID(0,1), (13)

where E(R;|I;_) is the expectation of R, conditiona on the information up to day ¢ — 1 and z,
is assumed to follow an independent standard normal distribution. Then, o7 is the variance of R,
conditional on the information up to day ¢t — 1. We will explain how to specify E(R,|I;_,) |ater.

For volatility specification, we use three different ARCH type models. First isthe GARCH model
proposed by Bollerslev (1986). Specifically, we use the GARCH(1, 1) model

ol =w+ Bol | +ac_, w>0, B,a>0, (14)
where w,  and « are parameters, which are assumed to be non-negative to guarantee that volatility is
always positive. Thismodel can capture the volatility clustering. Volatility isstationary if |f+a| < 1,
and the speed for which the shock to volatility decays becomes slower as 3 + o approaches to one.

As has aready been mentioned, another well-known phenomenon in stock markets is volatility
asymmetry, which cannot be captured by the above GARCH model. To capture this phenomenon, we
also use the EGARCH model proposed by Nelson (1991). Specificaly, we use the EGARCH(1, 0)
model

In(o7) =w+ ¢ [In(o7 ) —w] +0z1 +7(ze1| — Elza]), |9 <1 (15)
While the GARCH model specifies the process of o2, the EGARCH model specifies that of its log-
arithm. Thus, it does not require non-negativity constraints for parameters. If 6 < 0, it is consistent
with the volatility asymmetry in stock markets. In this model, volatility is stationary if |¢| < 1, and
the speed for which the shock to volatility decays becomes slower as ¢ approachesto one. Since z;_;
is assumed to follow the standard normal distribution, E |2, | = /2/7.

Neither the GARCH nor EGARCH modelsallow volatility to have long-memory property. Hence,
we also use the FIEGARCH model proposed by Bollerdev and Mikkelsen (1996). Sincethismodel is
an extension of the above EGARCH model to allow the long-memory of volatility, it can also capture
the volatility asymmetry. We use the following FIEGARCH(1, d, 0) model.

(1= pL)(1 = L) [In(0?) —w] = 021+ (21| — Elze ), [o] < 1. (16)

Similarly to the EGARCH model, it is consistent with the volatility asymmetry in stock markets if
6 < 0. Asfor d, the same argument as that for ARFIMA model holds.
FIGARCH (Baillieet a., 1996) and FIAPGARCH (Tse, 1998) models can also take into account



the possibility that the volatility follows along-memory process. These models, however, have some
drawbacks. First, the variance of return will be infinite even though 0 < d < 0.5 (Schoffer, 2003).
Second, the parameter constraints to guarantee that the volatility is always positive are complicated
(Conrad and Haag, 2006). Thus, we do not use these models in this article. We estimate parameters
in the GARCH, EGARCH and FIEGARCH models using the maximum likelihood method®.

4 Option Pricing

We first calculate option prices under the assumption of risk neutrality. If the traders are risk neutral,
the expected return may be represented by

1
E(Rt|It,1) =r—d-— 50’?, (17)

where r and d are continuously compounded risk-free rate and dividend rate.®

The price of European option will be equal to the discounted present value of the expectation of
option prices on the expiration date. For example, the price of European put option with the exercise
price K and the maturity 7 is given by

Pr = exp(—r7)E |Max(K — §T+T,0)|IT , (18)

where S, isthe price of the underlying asset on the expiration date ' + 7.
We cannot evaluate this expectation analytically if the volatility of the underlying asset follows
ARFIMA(X), HAR(X) or ARCH type models. We calculate option prices by simulating Sr. from

5See Taylor (2001) for the estimation method for the FIEGARCH model.

61t would be important to relax the assumption of risk neutrality if the risk is priced in the market. For example, the
option pricing models with realized volatility proposed by Christoffersen et al. (2010) and Corsi et a. (2011) allow for
more flexible specification of the expected return such that

1
E(R|I;_1) =7 —d— 5&? + Ao,

where \ denotes the market price of risk and A = 0 correspondsto risk neutrality. Christoffersen et al. (2010) defines 2 as
aweighted average of two componentsby daily returninnovation and realized volatility such that 5 2 = mo?+(1—m)RV;
and Corsi et al. (2011) adopt an estimates of integrated volatility as 2. Asintroduced in Stentoft (2008), this specification
alowsusto directly test statistical significance of A\ using realized volatility, i.e.,

1
Rt = T—d—iRVYt‘i—)\RVYt-“ RVtht,

Rt — (’f’ - Z)V‘i— 05RVvt _ )\\/R—I/t ¥z
t

We estimate the parameter \ by the linear regression procedure with Newey and West (1987) standard errorsand different
realized volatilities, while its statistical significance is not obtained. Even in the other specification like R, = r — d —
%RVt + AW RV, + VRV, 2z, the parameter X is not significant at the 5% level, althoughit is significant at the 10% level
in some regressions with different realized volatilities. These results imply that the data used here may be insensitive to
the market price of risk.



ARFIMA(X), HAR(X) or ARCH type models. Supposethat (S5, ..., S\ ) are smulated. Then,
(18) may be calculated as follows.

Pr~ exp(—TT)% z; Max(K — Si . 0). (19)
We set m = 10000. For variance reduction, we used the control variate and the Empirical Martingale
Simulation proposed by Duan and Simonato (1998) jointly.

Duan (1995) relaxed the assumption of risk neutrality to derive option prices when the price of
underlying asset follows ARCH type models. We also use this method. Following Duan (1995), we
set

E(R|I;.) =7 —d— %af + Aoy, (20)

where Ao, captures the risk premium.

Unless the traders are risk neutral, we must convert the physical measure P into the risk neu-
tral measure () and evaluate the expectation in equation (18) under the risk neutral measure Q).
Duan (1995) makes the following assumptions on ), called local risk-neutral valuation relationship
(LRNVR).

1. Ry|I; , followsanormal distribution under the risk neutral measure Q).
2. E9exp(Ry)|1;_1] = exp(r — d).

3. VarQ[Rt|_[t_1] = VarP[Rt|[t_1] as.

Under assumptions 1 and 2, daily returns under the risk neutral measure ( must be represented by
1
Rt:r—d—§ot2+ft, & = ouwy,  w, ~ NID(0, 1). (21)
Comparing equation (21) with equations (13) and (20) leads to

€ = ét_)\o—t, (22)
Zt — Wt -\ (23)

Since assumption 3 means that volatilities are the same between P and @, al we have to do for
volatility is to substitute equations (22) or (23) into ¢, in the GARCH volatility equation or z; in the
EGARCH and FIEGARCH volatility equations. For example, the GARCH(1, 1) volatility equation
will be

ol =w+ Bol | +al&1 — Aoy_1)?, w >0, B,a> 0. (24)
Equations (21) and (24) constitute GARCH(1, 1) model under ¢). Hence, we can evaluate the option
prices as follows.

[1 ] Estimate the parameters A, w, § and « in GARCH(1, 1) model under P that consists of equa-
tions (13), (20) and (14).



[2 ] Simulate Sy, using GARCH(1, 1) model under ( that consists of equations (21) and (24) by
setting the parameters \, w, S and o equal to their estimatesin [1].

[3 ] Substitute (S}QT, e S}’TT) simulated in [2] into equation (19) to obtain the option price.

Similarly, we can calculate the option price using the EGARCH and FIEGARCH models. The
EGARCH (1, 0) and FIEGARCH(1, d, 0) volatility equations under Q will be

n(o?) = w+ ¢ (7)) —w] + 01 = )+ (loa = A = V2/m),  (29)
(1= 6L)(1 = L) n(o?) =] = 0(us = N) +7 (Jur = A = V2/m) . (26)

For comparison, we also calculate option prices using the Black-Scholes formula with volatility
o asthe standard deviation of daily returns over the past 20 days.

5 Data

We analyze the Nikkel 225 stock index options traded at the Osaka Securities Exchange. The un-
derlying asset is the Nikkei 225 stock index, which is the average of the prices of 225 representative
stocks traded at the Tokyo Stock Exchange. The sample period is from May 29, 1996 to September
27, 2007. Following equation (12), we calculate the daily returns for the underlying asset as the log-
difference of the closing prices of the Nikkei 225 index in consecutive days. Table 2 summarizes the
descriptive statistics of the daily returns (%) for the full sample. The mean is not significantly differ-
ent from zero. While the skewnessis not significantly different from zero, the kurtosisis significantly
above 3, indicating the well-known phenomenon that the distribution of the daily return isleptokurtic.
LB(10) isthe Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the
null hypothesis of no autocorrelations up to 10 lags. According to this statistic, the null hypothesisis
not rejected at the 1% significance level although it is rejected at the 5% level. We do not consider
autocorrelations in the daily return in the following analyses.

We calculate realized volatility using the Nikkei NEEDS-TICK data. This dataset includes the
Nikkel 225 stock index for every minute from 9:01 to 11:00 in the morning session and from 12:31
to 15:00 in the afternoon session. Sometimes, the time stamps for the closing prices in the morning
and afternoon sessions are dightly after 11:00 and 15:00 because the recorded time shows when the
Nikkei 225 stock index is calculated. 1n such cases, we use all prices up to closing prices. Using these
prices, the 34 daily different realized volatilitieslisted in Table 1 are calculated with or without using
the adjustment coefficient ¢ defined by equation (5).

Before the computation of the 34 daily different realized volatilities, we provide the realized
volatility signature plotsin Figure 1 to roughly gauge the impact of microstructure frictions contained
in the high-frequency returns of the Nikkei 225index. The signature plotsare generated by the sample
mean of RV (1min), RV (2min), - - -, RV (20min) based on equation (3) as afunction of the sampling
frequency of the Nikkel 225 intraday returns. RV % (solid line) and RV % (dotted line) correspond
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to the realized volatility with the squares of overnight and lunch-time returns or the Hansen and
Lunde (2005a) adjustment, respectively. If there is no severe microstructure noise, both plots should
be leveled off at the frequencies. However, we can find the large impact of microstructure noise, as
evidenced by a rapid decline in the plot of RV *% with short measurement intervals. On the other
hand, RV %% applying the Hansen and Lunde (20058) adjustment comparatively stabilizes for all
sampling frequencies, although there is a gradual increase in the range of 1-7 minutes. This result
implies that the Hansen and Lunde (2005a) adjustment, where the mean of realized volatility is equal
to the sample variance of daily returns, may play a role to partialy offset the bias caused by the
microstructure noise as well as removing the discretization noise attributed to non-trading hours.

Figure 2 plots some kinds of realized volatilities and Table 3 summarizes the descriptive statis-
tics of the 34 daily different realized volatilities. From RV (1min) "% to FMTH (BR)"" are adjusted
such that the mean of realized volatility isequal to the samplevariance of daily returns, but their means
are different because the adjustment coefficient ¢ is calculated day by day using the past 1200 real-
ized volatilities and daily returns. From RV (1min)*® to FMT H(BR)*" are not adjusted and their
means are much lower than those of the others. Among the 17 realized volatilities with the Hansen
and Lunde (2005a) adjustment, RV (1min) '’ hasthe smallest standard deviation. RV (20min)“* has
the largest standard deviation of them as induced by the range from the minimum at 0.0788 to the
maximum at 37.3182. The standard deviation of Z M A(Z M A)*" isthe smallest of all. These results
are confirmed by Figure 2. Figure 2(a) showsthat RV (15min)#L is more volatile than RV (1min) L
and RV (BR)"L, and Figure 2(b) shows that RV (1min)°® is smaller on average and less volatile
than RV (1min)”%. The values of skewness and kurtosis indicate that the distributions of al real-
ized volatilities are non-normal. LB(10) is so large that the null hypothesis of no autocorrelation is
rejected. Table 3 (b) shows the descriptive statistics for log-realized volatilities. They are qualita-
tively the same as those of Table 3 (a) except skewness and kurtosis. While realized volatilities are
positively skewed, log-realized volatilities are negatively skewed at the 5% significant level except
In(RV (10min) L), In(RV (15min) 2L, In(RV (20min)ZL), In(RV (10min)S®), In(RV (15min)* %)
and In(RV (20min)*%). The kurtosis of log-realized volatilities is much smaller than those of real-
ized volatilities. The kurtosis of In(RV (1min)# %) and In(RV (1min)*%) is not significantly above 3
at the 5% level. Thedistributions of log-realized volatilities are much closer to the normal distribution
than those of realized volatilities. Thus, we use log-realized volatility as a dependent variable in the
ARFIMA model (8), HAR model (9), ARFIMAX model (10) and HARX model (11).

To measure the performance of option pricing, we also use prices of the Nikkel 225 stock index
optionstraded at the Osaka Securities Exchange. Nikkel 225 stock index optionsare European options
and their maturities are the trading days previous to the second Friday every month. Considering
theoretical option prices with respect to arisk neutral measure, we assess the performance of option
pricing using options which are most likely to be efficiently priced. For the Nikkei 225 stock index
options, put options are traded more heavily than call options. For the maturity, option trading seems
to be more active during the week following an expiration date and the options with the maturity more
than one month are not traded so much. Thuswe concentrate on put optionswhose maturity is 30 days
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(29 daysif the day when the maturity is 30 daysis aweekend or holiday). On such days, we consider
put options with different exercise prices whose bid and ask prices are both available at the same time
between 14:00 and 15:00. For each option, we use the average of bid and ask prices at the same time
closest to 15:00 as the market price at 15:00. The reason why we use the average of bid and ask prices
instead of transaction pricesis that transaction prices are subject to market microstructure noise due
to bid-ask bounce (Campbell et al., 1997). We a so exclude some kinds of put options which are not
priced at the theoretical range from the lower bound at P = Max(0, K'exp(—r71) — Srexp(—dr)) to
the upper bound at P = Kexp(—rT).

Following Bakshi et a. (1997), we classify put optionsinto five categories such asDITM (deep-in-
the-money), ITM (in-the-money), ATM (at-the-money), OTM (out-of-the-money) and DOTM (deep-
out-of-the-money) using the moneyness which is the ratio of the underlying asset price over the ex-
ercise price. Table 4 showsthis classification. We examine the performance in each category as well
asin total. Table 5 describes the put prices calculated as the average of bid and ask prices and the
Black-Scholes implied volatilities for each moneyness. The average put prices range from 21.30 yen
in DOTM to 2859.70 yen in DITM. Optionsin DOTM and OTM account for 41% and 16% of the
total sample. The implied volatilities form a smile pattern where options in DOTM and DITM are
characterized by higher volatilities more than 30% compared with 22.86% for optionsin ATM.

We estimate the ARFIMA(X) and HAR(X) models using 1200 daily realized volatilities up to
the day before the options whose maturity is one month are traded, where the adjustment coefficient
¢ defined by equation (5) is calculated using the same 1200 realized volatilities with 1200 daily re-
turns. We also estimate ARCH type models using the same 1200 daily returns with risk-free rate and
dividend. As mentioned, the daily returns are calculated as the log difference of closing prices. We
use CD rate as a risk-free rate and fix the annual dividend rate as 0.5% following Nishina and Nabil
(1997). The first date when options whose maturity is one month are traded is April 11, 2001. We
first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using 1200 daily
realized volatilities and returns up to April 10, 2001, where we cal cul ate the adjustment coefficient ¢
using the same 1200 daily realized volatilities and returns. Then, given the obtained parameter esti-
mates, we calculate the put option prices on April 11, 2001 using CD rate and the Nikkel 225 index
at 15:00 on that date. The next date when options whose maturity is one month are traded is May 9,
2001. We first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using
1200 daily realized volatilities and returns up to May 8, 2001, where we calculate the adjustment
coefficient ¢ using the same 1200 daily realized volatilities and returns. Then, given the obtained
parameter estimates, we calculate the put option prices on May 9, 2001 using CD rate and the Nikkei
225 index at 15:00 on that date. We repeat this procedure up to September 2007.

Figure 3 plots the estimates of all parameters in all models for each of the above 78 iterations.
Figure 3 (a) and (b) plot the estimates of parametersin the ARFIMA and ARFIMAX models using
RV (15min)%. The estimates of d in the ARFIMA and ARFIMAX models move around 0.5 and
are above 0.5 in the latter half, indicating the long-memory and the possibility of non-stationarity of
log-realized volatility. The estimates of p» inthe ARFIMAX model are positive for al periods, indi-
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cating the well-known phenomenon of a negative correlation between today’s return and tomorrow’s
volatility. Figure 3 (c) and (d) plot the estimates of parametersin the HAR and HARX models using
RV (15min) L, The positive estimates of 3;, 3, and 35 inthe HAR and HARX modelsfor all periods
are consistent with the empirical results using S&P500 in Corsi (2009). The estimates of 35 in the
HARX model are positive, indicating the asymmetry in volatility. Figure 3 (e), (f) and (g) plot the
estimates of parametersin ARCH type models using daily returns. The sum of the estimates of 5 and
a inthe GARCH model and the estimates of ¢ in the EGARCH model are closeto 1 for all periods,
indicating the well-phenomenon of volatility clustering. These models, however, do not alow for the
long-memory of volatility. The estimates of d in the FIEGARCH model are more volatile than those
of the ARFIMA(X) model. They move around 0.2 in the first half while they move up to 0.54 and
down to O in the latter half. These results provide evidence that a structural change may occur during
our sample period, but we leave it for future research. The estimates of # in the EGARCH and FIE-
GARCH models are negative for all periods, indicating a negative correlation between today’s return
and tomorrow’s volatility.

6 Results

To measure the performance of option pricing, we use four loss functions, MAE (Mean Absolute
Error), RMSE (Root Mean Sguare Error), MAPE (Mean Absolute Percentage Error) and RMSPE
(Root Mean Square Percentage Error) defined as

13- 1 Sn /- 2
MAE:ﬁ; P —Pp|. RMSE= N;(H—B),

1 K |A-P RO AY
MAPE:N; 7| RMSPEJN;< 7 )

where N is the number of put options used for evaluating the performance, P; is the price of the
ith put option calculated by each model and P; is its market put price calculated as the average of
bid and ask prices at the same time closest to 15:00. From the fact that the lowest market put price
amountsto 1.5 yen which is calculated as the mid-point of the ask price at 2 yen and the bid price at
1 yen, any price P, less than the lowest price is approximated at 1.5 yen. MAE and RM SE, which are
the absolute metrics, assign alot of weight to options with high valuations such as DITM and ITM.
For MAPE and RM SPE as the relative metrics, much more weight may be put on DOTM and OTM
options with valuations close to zero.

Table 6 showsthevaues of lossfunctionsfor ARCH type modelswith daily returns, the ARFIMA
(X) and HAR(X) models with RV (15min)#L and the BS model. In total, the ARFIMAX model per-
formsbest except for RM SE, whilethe HARX model performsbest for RMSE. InDOTM, ARFIMAX
model performs best for RM SPE and MAPE while the FIEGARCH model performs best for the other
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loss functions. In OTM and ATM, the ARFIMAX model performs best except for RMSE and it per-
forms best for RMSPE and MAPE in ITM. In DITM, the GARCH model performs best for all loss
functions. Although there are some exceptions depending on moneyness and loss function, we may
conclude that the ARFIMAX model performs best.

Tables 7 and 8 show the values of loss functions for the ARFIMAX model with 34 different re-
alized volatilities. Table 7 shows the result for the realized volatilities calculated simply by adding
the squares of overnight and lunch-time returns instead of using the Hansen and Lunde (2005a) ad-
justment. In total and all moneyness, the loss functions of RV (1min)S%, which does not take ac-
count of microstructure noise at all, have larger values than those of the other realized volatilities
except ZM A(ZM A)SE. This result is intuitive because RV (1min)“% is seriously affected by the
microstructure noise as shown by the realized volatility signature plot in Figure 1. Thus we con-
clude that the option pricing performance is improved by applying methods to remove microstructure
noise-induced biasin realized volatility.

Table 8 showstheresult for the realized vol atilities cal cul ated using the Hansen and L unde (2005a)
adjustment instead of adding the squares of overnight and lunch-time returns. In total, most loss
functionsin Table 8 are smaller than those in Table 7 regardless of realized volatilitieswith or without
taking account of microstructure noise. The improvement could be seen for all loss functions in
DOTM and DITM and for RMSE and MAE in OTM. These results indicate that the Hansen and
Lunde (2005a) adjustment may improve the performance of option pricing. It is aso noteworthy
that the performance of RV (1min)”* isno longer bad compared with the other realized volatilities,
dthough RV (15min)“%, RV (20min)”% and ZM A(ZM A)"" perform best in total. This means
that the Hansen and Lunde (2005a) adjustment plays a role to remove not only the discretization
noise included in the squares of the lunch-time and overnight returns but also partially offset the bias
caused by microstructure noise. Thisfinding is also consistent with the result that the signature plot
of RVHL in Figure 1 comparatively stabilizes for all sampling frequencies. Judging from the results
in Tables 7 and 8, we conclude that: (1) the Hansen and Lunde (2005a) adjustment for removing the
discretization noiseinduced by non-trading hoursimprovesthe performance, (2) methodsfor reducing
microstructure noise-induced bias yield better performance, while if the Hansen and Lunde (2005a)
adjustment, which plays an additional role to partially offset the microstructure noise-induced bias, is
used, they are not necessarily needed. 7 &

"We have focused on put optionswhose maturity is 30 days so far. Following Barone-Adesi et al. (2008), the maturity
of 30 days can be classified as short maturity. We a so analyze put options whose maturity is 90 days classified as medium
maturity. Theresult, which is not reported in this article to save the space, al so supports an evidencethat the option pricing
performance is improved by taking account of microstructure noise but it does not necessarily improve the performance
when the Hansen and Lunde (20053a) adjustment is employed.

8Bandi et a. (2008) compare the option pricing performance of the realized volatilities of the S& P 500 index. Their
method is, however, different from ours as follows. (1) They compare the profits from the straddle trading strategy ob-
tained by substituting the volatility forecasts from the ARFIMA model for realized volatility into the Black-Scholes option
pricing formula. (2) They only analyzethe performanceof RV (5min) 7~ to FMT H(BR)™*, which are calculated using
the Hansen and Lunde (2005a) adjustment, while we also analyze the performance of RV (1min) 77 and RV (1min)%
to FMTH (BR)®, which are calculated by adding the lunch-time and overnight returns without using the Hansen and
Lunde (2005a) adjustment. (3) They do not analyze ARCH-type models.
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So far, we assumed risk neutrality. Asexplained in Section 4, Duan (1995) has proposed a method
for GARCH option pricing relaxing this assumption. We also apply this method to the GARCH,
EGARCH and FIEGARCH models. Table 9 shows the result. The values of loss functions using
this method are not so much different from those assuming risk neutrality. This result means that the
Duan (1995) method does not improve the performance of option pricing compared with assuming
risk neutrality.

Financial markets sometimesdisplay asset price discontinuities, so-called jumps. If jump-diffusion
processes are used instead of equation (1), the realized volatility measures used in this article include
not only integrated volatility but also jump variation. Andersen et a. (2007) conclude that the per-
formance of forecasting future realized volatility could be improved by using the HAR model with
realized volatility separately from significant jumps. In this subsection, the realized volatility without
significant jumps s constructed to assess its contribution to option pricing performance.

We employ the following procedure to remove significant jump variation. Barndorff-Nielsen and
Shephard (2004) propose a consistent estimator of the integrated volatility unaffected by jumps called
the realized bipower variation

_ n -
BV = i —= 3 | Timsim || Tic-uym | (27)
=2

where 11; = /2/7. The bipower variation, which is originally defined as the sum of the products of
adjacent absolute returns, is influenced by microstructure noise. To mitigate the noise-induced bias,
we construct the following realized bipower measure based on skip-one returns introduced in Huang
and Tauchen (2005) and Andersen et al. (2007)

n
n

BVi; = /LIQTL 5 Z | "ot || Te—14G=2)/m | - (28)

1=3

We calculate BV , calculated from 15 minute high-frequency returns for which the bipower variation
signature plots in equation (28) are leveled off. Identification of the significant jumpsis based on an
asymptotically normal test statistic using realized volatility and bipower variation

Vn(RV, — BVy )RV,

7 = : (29)
V0t + 2% = 5)Max(1, TQ BV )
where
_ n a
TQ1,t = nﬂ4/33m Z | Tt—14i/n |4/3| Tt—14+(i—2)/n |4/3| Tt—14(i—4)/n |4/3, (30)
i=5

pays = 22PT(7/6)0(1/2)7".

TQ,, is caled the realized tripower quarticity based on skip-one returns which converges to the
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integrated quarticity of continuous processes. RV, in equation (29) isreplaced by RV (15min) during
the market open. Thus daily realized volatility without significant jumps (RV -Jump) is constructed
by the realization of Z; and some critical value ®,,-

RV —Jump, = I[Zf > ®,|BVi,+ I[Zf < ®,-]RV}, (31)

where I[ - ] denotes the indicator function. The proportion of day with significant jumps based on
significance levels (1 — o* = 0.001,0.01, 0.025, 0.05) takes 5.2%, 13.1%, 20.2% and 26.0% for the
full sample, respectively. We estimate the ARFIMAX model and simulating option prices using the
RV -Jump based on o* = 0.999, which is the same setting as Andersen et al. (2007).

Table 10 summarizes the vaues of loss functions for RV (15min)** and RV -Jump with the
Hansen and Lunde (2005a) adjustment. The values of loss functions for RV'-Jump are not so much
different from those for RV (15min)ZZ. Judging from the result in Table 10, we may conclude that
the option-pricing performance is not necessarily improved by removing significant large jumps from
realized volatility.

7 Conclusions

Thisarticle analyzes whether realized volatility is useful for option pricing. Different realized volatil -
ities are calculated with or without taking account of microstructure noise, with or without using
overnight and lunch-time returns and with or without separating significant large jumps from real-
ized volatility. This article compares the performance of option pricing among the ARFIMA(X) and
HAR(X) modelswith daily realized volatility and the ARCH models with daily returns. Main results
using the Nikkei 225 stock index and its put options prices are: (1) ARFIMAX model with daily real-
ized volatility performs best, (2) the Hansen and Lunde (2005a) adjustment without using overnight
and lunch-time returns can improve the performance, (3) the performance is improved by removing
the bias from microstructure noise, while if the Hansen and L unde (2005a), which aso playsarole to
remove the microstructure noise-induced bias by setting the sample mean of realized volatility equal
to the sample variance of daily returns, isused, the other methodsfor taking account of microstructure
noise do not necessarily improve the performance, (4) the performance is not necessarily improved
by removing significant large jumps from realized volatility and (5) the Duan (1995) method does not
improve the performance compared with assuming the risk neutrality.

Several extensionsare possible. First, Jacod et al. (2009) propose an alternative realized volatility
using preaveraging approach robust to microstructure noise. Andersen et al. (2012) propose two
new jump-robust estimators of integrated volatility called the minimum or median realized volatility.
It is interesting whether the performance of option pricing will aso be improved by applying their
estimators. Second, Hansen et al. (2012) and Takahashi et al. (2009) have proposed to model daily
returns and realized volatility jointly. They extend ARCH type models and the stochastic volatility
model respectively. It isaso interesting to apply their methods to option pricing.
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Appendix Integrated volatility estimatorswith microstructure
noise

Here, we give a detailed review of various realized volatilities using the high-frequency returns em-
ployed in our analysis. Assume the i-th intraday return r,_,;/, for day ¢ contaminates with mi-
crostructure noise as follows

Fe—ivim = p(E—1+i/n)—p(t—1+(—1)/n)+nt—1+i/n)—nt—1+(i—1)/n)
= p(t—=14i/n)—p(t -1+ (G —1)/n) + €—1ti/n, (A1)

wheree,_i1i/, :=n(t —1+1i/n) —n(t — 14 (i — 1)/n) and n represents microstructure noise.

e Realized volatility with 1-, 5-, 10-, 15- and 20-minute returns, RV (1min), RV (5min), RV
(10min), RV (15min) and RV (20min).

Without microstructure noise, it would be desirable to use intraday returns sampled at the highest
frequencies. Since the highest frequencies available for the Nikkel 225 stock index is 1-minute, we
first calculate realized volatility using 1-minute returns (n = 270), which is denoted as RV (1min).
However, it may fail to satisfy the consistency condition when there is market microstructure noise
as usualy documented in rea high-frequency data. Another classical approach is to use realized
volatility constructed from intraday returns sampled at moderate frequencies rather than at the highest
frequencies. This approach can partially offset the bias of the microstructure effect. In practice,
researchers are necessarily forced to select a moderate sampling frequency. For example, it may be
regarded as around those frequencies for which realized volatility signature plots under alternative
sampling frequencies are leveled off. We provide the realized volatility signature plots in Figure 1
to roughly gauge the impact of microstructure frictions contained the high-frequency returns of the
Nikkel 225 index. In addition, evidence from previous studies suggests that it may be optimal to use
5 to 30-minutereturn data. Hence, we employ RV (5min), RV (10min), RV (15min) and RV (20min)
which are equal to the sum of squared 5-, 10-, 15- and 20-minute returns (n = 54,27, 18 and 14),
respectively.

e Optimally-sampled realized volatility, RV (BR).

The selection of a moderate sampling frequency is important to get an accurate estimate of the inte-
grated volatility because the noise-induced bias at high sampling frequencies can be traded off with
the variance reduction obtained by high-frequency sampling. To take this trade off between the bias
and variance into account, Bandi and Russell (2008) provide a theoretical justification for the choice
of optimal sampling frequency in terms of the mean squared error (MSE) criterion. They derive the
following approximated optimal number of observationsn* based on the minimization of MSE in a
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finite sample

W=

n*aj[{Eéig}Q] , (A.2)

where I(Q represents an integrated quarticity of the equilibrium price process (IQ = ftil ot(s)ds).
It is estimated by 7Q) = By T ifn (realized quarticity) with low frequency returns such as 15-
minute returns. Following the consistent estimator of noise moment as shown by Bandi and Russell
(2008), E(e?) can be estimated by E(e?) = 13" 2 /n @ the highest frequencies. Thus, the
optimally-sampled realized volatility, RV (BR), is equal to the realized volatility with the optimal

N 1/3
number of observations calculated asi* = |I1Q/(E (e2))?

e The Bartlett-type kernel estimator in Barndorff-Nielsen et al. (2004b) with a finite sample
optimal number of autocovariances proposed by Bandi and Russell (2011), BK (BR).

RV (1min), RV (5min), RV (15min) and RV (BR) have the obvious drawback that they do not in-
corporate all data and whereby information is lost. The methods introduced here take advantage of
the rich sources in al high-frequency data. The problem of estimating the integrated volatility under
microstructure noise is similar to the autocorrelation corrections that are used in the long-run vari-
ance estimation in stationary time-series (Newey and West, 1987; Andrews, 1991). So it is natural
to consider kernel-based estimators of integrated volatility under microstructure noise. The literature
includes the earlier study by Zhou (1996) who proposes a particular kernel estimator which incorpo-
rates the first-order autocovariance. Barndorff-Nielsen et al. (2004b) derive kernel-based estimators
that are far more precise than that of Zhou (1996). They examine the Bartlett-type kernel estimator
defined as

H
n—1H -1 H—h
BE = ( p T) %”thl (T) hs (A-3)

where v, = Z?;lh T—1+i/nTi—1+(i+h)/n 1S the h-th autocovariance of intraday returns and -, is equal
to realized volatility using returns sampled at the highest frequencies. This estimator weights the
realized volatility and the H-th return autocovariances by Bartlett weights. The optimal number of
autocovariances is given by the minimization of M SE of the estimator in finite sample (see equation
7 to 10 in Bandi and Russell, 2011 for exact M SE minimization expressions). There is a convenient
rule-of-thumb for choosing H in practice as proposed in Bandi and Russell (2011). The expressionis
obtained as

1
[ 3IV2\3

where 7'V denotesintegrated volatility. 7V and 1) are estimated using realized volatility and realized
guarticity with lower frequency returns such as 15-minute returns. Hence, BK with a finite sample
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optimal number of autocovariances H* leadsto BK (BR).

e The two-scale estimator with an asymptotically optimal number of subsamples proposed by
Zhang et a. (2005), ZM A(Z M A).

Zhang et a. (2005) propose a two-scale or subsampling estimator in the spirit of the estimation of
the long-rum variance studied by Carlstein (1986). Denote the original grid of observation times as
U ={t—1,t—1+1/n,t—1+2/n...,t}. Consider ¥ ispartitioned into K nonoverlapping subgrids,
\If%’ j=1,...,K, for example, the first sub-grid starts at ¢ — 1 and takes every K —th arrival time

( ={t—1,t—1+K/n,t —1+42K/n...}), and the second sub-grid starts at t — 1 + 1/n and
tak&everyK th arrival tlme(\Iff( ={t—14+1/nt—14+10+K)/n,t —1+(1+2K)/n...}).
Then, the realized volatility for the subgrid ¥’ is defined as

nj

) — 2
RVE = Z P14 (j—14iK) /n? (A.5)

=1

wherer, . 11ik)m 1SSubsampling return between transaction pricesat timest —1+(j —1+iK)/n
andt — 14 (j — 14 (i — 1)K)/n. Thetwo-scale estimator in Zhang et al. (2005) is given by

K
ZMA = (1/K)> " RVY — (a/n)RV, (A.6)
7=1

where 7 = (n — K + 1)/K and RV is the realized volatility for the full grid ¥'. The second term
corrects the bias in the first term. The asymptotic optimal number of subsamples i* (ZM A) derived
by minimizing the estimator’s asymptotic variance is given by
~ Jg271/3
K*(ZMA) = %] n?3. (A7)

1Q and E(¢?) are estimated by realized quarticity with 15-minutereturnsand E(e?) = £ >0 17 |,
at the highest frequencies, respectively. Thus, ZM A(ZM A) isequal to ZM A with K*(ZM A).

e Thetwo-scale estimator in Zhang et al. (2005) with afinite sample optimal number of subsam-
ples proposed by Bandi and Russell (2011), ZM A(BR).

Barndorff-Nielsen et al. (2004b) show that Z M A in (A.6) can be written as follows
n—H+1 " (H-h 1
IMA=|1— ——— 2 — - — A.
( nH >%+ hz:;( T >7h HQH, (A.8)

wheref;, = 0,and 0y = Oy, + (Tt—l—i—l/n -+ Tt—l—l—(H—l)/n)z + (rt—l—i—(n—H—I—Q)/n -+ Tt)2 for
H > 2. Thethird term guarantees consistency of Z M A and differentiates Z M A from theinconsistent
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BK. This equation implies the two-scale estimator in Zhang et al. (2005) is amost identical to the
modified Bartlett kernel estimator. Bandi and Russell (2011) additionally show that the finite sample
MSEs of BK and ZM A are very similar in practice. Hence, the ZM A with K = H* in (A.4)
correspondsto Z M A(BR).

e The bias-corrected two-scale estimator in Zhang et al. (2005) with an asymptotically optimal
number of subsamples proposed by Zhang et al. (2005), BC(ZM A, ZM A).

The two-scale estimator Z M A has a finite sample bias as shown in Zhang et al. (2005) who provide
the approximate correction for this bias. On the other hand, Bandi and Russell (2011) report the
exact bias-correction form. Following a suggestion by Bandi and Russell (2011), the bias-corrected
estimator is defined as

BCO(ZMA) = c¢(K,n)ZMA, (A.9)
~ ~ ~ -1
- — _ K2 _
o(fm) = (Kn 1+2K — K n) |
Kn

Since BC(ZM A) is asymptotically equivalent to Z M A, the asymptotically optimal number of sub-
samplesisgivenby K*(ZM A). Thus, BC(ZM A) with K*(Z M A) can be described by BC(ZM A,
ZMA).

e The bias-corrected two-scale estimator in Zhang et al. (2005) with a finite sample optimal
number of subsamples proposed by Bandi and Russell (2011), BC(ZM A, BR).

Since BC'(ZM A) is unbiased in a finite sample, the optimal number of subsamplesis provided by
minimizing the finite sample variance of BC(ZM A). Bandi and Russell (2008, 2011) show that the
optimal number of subsamplesis defined as

K*(BR) = argmin [Var (BC(ZMA))] = arg min {{c(f(,n)}z Var(ZMA)} . (A.10)

0<K/n<1/2 0<K/n<1/2

where, if K /n <1/2,

1 13 1
Var(ZMA) =(—40, — 81V o )n ( 4o, — 801V + 310+ ?1&/2) = (2JQ+81V2)

2 2 2
(IQ+IV2)£+< ad 4”/ éQ)

3 3n
4 80t + 16021V — 8IQ — 28 1V?
+ ——4(IQ+IV2)+< K T €5
n n
N 24021V — 21Q + 8o, N —80, +8a,1V n
n? n K
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2 —40t — 8021V +4IQ — 8IV?
e ()
N (—403 - 16U§IV+21Q> . (W) N iﬂ " (A1)
n n n K2

9 . . . . . ~2 1 n 2
where ;) represents a variance of microstructure noise ) and is estimated by 6, = 5> ;=i 71/

at the highest frequencies. Hence, BC'(ZM A) with K*(BR) leadsto BC(ZM A, BR).

e Theflat-top Bartlett kernel estimator with an asymptotically optimal number of autocovariances
proposed by Barndorff-Nielsen et a. (2008), FBK(BNHLS).

Barndorff-Nielsen et al. (2008) examine the following unbiased flat-top kernel type estimator (called
the realized kernel)

RK =+ Y k(x) (ya+7-1), (A.12)
h=1

where v, = Y7 riiqimri—14(—n)m With h = —H,--- | H and the non-stochastic k(x) € [0, 1]
for z = % is a weight function. The flat-top Bartlett kernel estimator is equivalent to RK in
case where k(x) = 1 — z. For this class of kernels, Barndorff-Nielsen et a. (2008) show that the
asymptotic distribution of RK — I'V is mixed normal with zero mean and rate of convergence n'/¢
when H = ¢n?/? where ¢ is a constant. Then, the asymptotically optimal value of ¢ which minimizes
the asymptotic variance is given by

¢~ 2.28(3, (A.13)
where(? = 02//1Q. Hence, RK withk(z) = 1—z and H = ¢*n*/® correspondsto F BK (BNHLS).

e The flat-top cubic kernel estimator and the flat-top modified Tukey-Hanning kernel estimator
with an asymptotically optimal number of autocovariances proposed by Barndorff-Nielsen et
a. (2008), FCK(BNHLS)and FMTH(BNHLS).

The estimators based on the cubic kernel and the modified Tukey-Hanning kernel are equivalent to
RK with k(z) = 1 — 322 + 223 and k() = {1 — cosr (1 — x)?} /2, respectively. When H = c(n'/?,
RK for thisclassof kernelsisconsistent at therate of convergencen'/* asshownin Barndorff-Nielsen
et a. (2008). The asymptotically optimal value of ¢ is expressed as

. ko' 3kI0k2?

where p = IV/\/IQ, k2° = [ k(z)’dw, kL' = [ K (z)?dz and k22 = [, k"(2)?dx, where the
primes represent derivatives. The valuesof (k2°, k-1, k2?) amount to (k2 k-1, k%?) = (0.371,1.20,

21



12.0) for the cubic kernel and (k2:°, k11, k2%) = (0.219,1.71, 41.7) for the modified Tukey-Hanning
kernel. We define FCK(BNHLS) and FMTH(BNHLS) as RK with H = ¢*(n'/? at k(z) =
1 — 32?4+ 223 and k(x) = {1 — cosr(1 — z)?}/2.

e The flat-top Bartlett kernel estimator, the flat-top cubic kernel estimator and the flat-top mod-
ified Tukey-Hanning kernel estimator with a finite sample optimal number of autocovariances
proposed by Bandi and Russell (2011), FBK (BR), FCK(BR) and FMTH (BR).

Bandi and Russell (2011) provide an alternative way to choose the number of autocovariancesin finite
samples. Denote H as dn with0 < § < 1. The optimal value of ¢ is defined in Theorem 3 of Bandi
and Russell (2011) asfollows

§* = arg min [(bias(RK))* + Var(RK)], (A.15)

0<6<1

where bias(RK) = 0 and

1
Var(RK) = FQwTQlw + dopn(w ' Qaw) + 4o, (W' Qw) 4+ 2021V )4 (w" Quw), (A.16)

withw = (1,1,k (55),--- .k (5’;;1))T andQ, a =1,---,4 are(dn + 1,5n + 1) square matrices.

For j < én, thematrices 2, and 2, are defined as

W[1,1] =2, YU[1+4,1+4]=4,
W1,1] =1, Qf2,1]=-1, WU[1,2]=-1, U2,2]=2,
Ul +5,1+51=2, Qu[l+j,7=-1, Qfj,j+1]=-1, (A.17)

and zeros everywhere else. For j < on — 1, the matrices (2, and €23 are defined as

Qo[1,1] =3, Q[1,2] = -4, UW[2,1]= -4, 2,2]=T,

WLR2+7,24+7]1=6, W2+j,1+7]=-4, QWl+72+5]=—-4, W2+, =1,
Dlf,2+7] =1, B,1]=-1, Q[1,2]=2, NB2,1]=2, K[2,2]=—4.5,
W[j+2,7+2]=-3+1)—1, W2+451+j]=20+1), B1+j2+5]=2(y+1),
WB2+7,7]=-0+1)/2, Bl2+41=-0U+1)/2, (A.18)

and zeros everywhereelse. Thus, RK with H = §*n for the Bartlett kernel, cubic kernel and modified
Tukey-Hanning kernel leadsto FBK (BR), FCK (BR) and FMT H(BR), respectively.
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Table 2: Descriptive statistics of daily returns

Mean —0.0095

(0.0270)
Std. 1.4261
Min —7.2340
Max 7.6605
Skewness —0.0616

(0.0464)
Kurtosis 4.9003

(0.0927)
LB(10) 18.69

The numbers in parentheses are standard errors.
LB(10) is the Ljung-Box statistic adjusted for het-
eroskedasticity following Diebold (1988) to test the
null hypothesis of no autocorrelations up to 10 lags.
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Table 4: Moneyness of put options

S/K
091 < S/K
097 < S/K
1.03< S/K
1.09< S/K

< 0.91
< 0.97
< 1.03
< 1.09

deep-in-the-money (DITM)
in-the-money (ITM)
at-the-money (ATM)
out-of-the-money (OTM)
deep-out-of-the-money (DOTM)

S = price of underlying asset and K = exercise price.
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Table 5: Options data description

DOTM OTM  ATM I'T™™ DITM

Sample size 268 101 115 92 71
Put price (yen)

Mean 21.30 108.44 339.61 888.34 2859.70
Std. 35.01 78.73 14760 314.48 1298.70
Implied volatility (%)

Mean 3153 2483 2286 2255 39.79
Std. 8.91 8.20 7.98 8.52 14.11

Put price and implied volatility are the average of the bid and ask pricesand the Black-
Scholes implied volatility.
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Table 6: Put option pricing performance using different models

DOTM OT™M ATM IT™ DITM Total
Sample size 268 101 115 92 71 647
RMSE
GARCH 26.0156 04.6635 74.2943 69.1827 49.6875*  51.7628
EGARCH 24.2628 27.9856 77.9481 67.8789 52.6027 52.9858
FIEGARCH  22.5543*  50.5758 67.4635 62.6299 53.0315 47.8055
ARFIMA 27.9894 52.9349 61.2785 62.2902 53.8925 47.9563
ARFIMAX 27.2277 52.0127 59.7248 60.5138 54.4645 47.0068
HAR 27.7424 51.8933 60.2853 62.5671 52.8699 47.4187
HARX 25.0464 47.8573*  56.8534*  59.0927*  53.2045 44.71107
BS 32.4432 68.7164 96.2482 77.9895 56.2863 63.4998
MAE
GARCH 11.0711 36.4578 60.6267 48.5941 37.5032%  32.0784
EGARCH 11.8561 43.4189 65.7360 47.5408 39.9573 34.5179
FIEGARCH 9.9522*  35.5033 55.6567 42.0410 40.0367 29.9288
ARFIMA 11.3099 28.3373 42.9685 38.4628 40.4842 26.6576
ARFIMAX 11.0443 28.0901*  41.8705*  37.5631 40.9825 26.2406*
HAR 11.6949 31.0200 44.0702 39.4255 39.9260 27.5073
HARX 10.6813 29.4854 42.5278 37.3004*  40.2374 26.3057
BS 13.7432 44.8889 68.7296 50.4678 42.0261 36.7044
RMSPE
GARCH 0.8403 0.6204 0.2918 0.0914 0.0178* 0.6074
EGARCH 1.7426 0.8541 0.3204 0.0883 0.0190 1.1795
FIEGARCH 1.2416 0.6452 0.2679 0.0805 0.0192 0.8469
ARFIMA 0.5412 0.3417 0.1890 0.0726 0.0198 0.3830
ARFIMAX 0.5018* 0.3357* 0.1821* 0.0702* 0.0201 0.3585*
HAR 0.5537 0.4346 0.2088 0.0775 0.0196 0.4064
HARX 0.5631 0.4351 0.2022 0.0740 0.0197 0.4111
BS 0.8006 0.5289 0.2635 0.0898 0.0261 0.5681
MAPE
GARCH 0.5636 0.4363 0.2199 0.0646 0.0135* 0.3513
EGARCH 1.0230 0.6041 0.2460 0.0623 0.0145 0.5722
FIEGARCH  0.7511 0.4658 0.2059 0.0551 0.0145 0.4299
ARFIMA 0.4307 0.2612 0.1406 0.0484 0.0149 0.2527
ARFIMAX 0.4127* 0.2552* 0.1361* 0.0471* 0.0151 0.2433*
HAR 0.4523 0.3175 0.1522 0.0518 0.0146 0.2729
HARX 0.4441 0.3125 0.1481 0.0493 0.0147 0.2677
BS 0.7221 0.4432 0.2106 0.0632 0.0168 0.4165

The values of loss functionsfor the ARFIMA (X) and HAR(X) models are calculated using RV (15min) A1,

* indicates the best model which minimizes the loss function.



Table 7: Put option pricing performance using different realized volatilities without the Hansen and
Lunde (2005a) adjustment

DOTM OT™M ATM I'T™ DITM Total
Sample size 268 101 115 92 71 647
RMSE
RV (1min)sk 33.9227 72.1248 74.8183 70.0870 27.2975 57.8139
RV (5min)~k 30.4495 59.6870 61.8254 63.0656 95.5741 50.2400
RV(lOmln)SR 29.3536*  57.2161*  59.8651*  61.8367 55.1318*  48.8080

RV (15min)S% 29.3730 57.6910 59.8751 60.7149*  55.3323 48.7268"

RV (20min)S% 29.8907 59.0459 61.1204 62.3050 95.5908 49.6935
RV (BR)SE 31.4080 61.9816 63.5877 64.5523 95.8642 51.5946
BK(BR)S% 31.8216 64.7460 66.7455 65.6855 56.2317 53.1619
ZMA(ZMA)SE 36.3957 85.3358 95.5640 80.5196 58.4440 67.8635
ZMA(BR)% 32.9158 69.2221 72.0256 68.2550 56.9409 56.0100

BC(ZMA,ZMA)S®  32.6506 66.1236 67.4768 66.6304 96.3029 53.9682
BC(ZM A, BR)SE 31.3256 61.9178 63.3207 63.9560 95.8048 51.3905
FBK(BNHLS)% 31.4899 62.4976 63.8867 64.3749 95.5842 51.7133

FBEK(BR)S® 31.3638  62.3141  63.7062  64.0400  55.9466  51.5910
FCK(BNHLS)S® 311045  61.5259  63.2229  63.7776  55.4729  51.1685
FCK(BR)S® 31.2035  61.8627  63.4931  64.1561  55.5018  51.3866
FMTH(BNHLS)S®  31.3766  62.9582  64.5155  64.4555  55.8836  51.9598
FMTH(BR)SE 31.4534  62.6571  63.9747  63.9862  55.4588  51.6702
MAE
RV (1min)SE 16.3136  47.5962  48.5876  38.9868  43.4660  33.1371
V (5min)S% 13.4821  32.3113  37.9234 357661  41.4337  27.0017
V (10min)S® 12.7270*  29.8991*  37.0606  35.4503  41.1649  26.0846*
V (15min)S® 13.0653  31.1078  36.5558*  34.6110*  41.1455*  26.2022
V (20min)S& 13.0366  31.4907  36.5906  34.6329  41.4576  26.2937
V(BR)SE 14.0925  33.9555  37.9471  36.2942  41.8724  27.6387
BK(BR)S® 14.5502  37.1796  39.2043  36.2738  42.0863  28.5750
ZMA(ZMA)SR 17.9269  62.0901  71.0353  46.9129  44.6885  41.3191
ZMA(BR)SR 15.5126  43.2578  43.1437  37.4512 428567  30.8753
BC(ZMA,ZMA)SE 151992  40.2561  41.2533  36.9121  42.3911  29.8131
BC(ZMA, BR)S® 14.2124  34.8881  37.8539  36.0624  41.8269  27.7794
FBK(BNHLS)S® 142090  35.6258  38.2322  36.3791  41.8211  28.0421
FBEK(BR)S® 14.2527 354728  38.1690  36.2129  42.0552  27.9898
FCK(BNHLS)S®  14.0746  34.5858  37.9700  36.0905  41.6088  27.6758
FCK(BR)S® 14.1644  35.1162  38.2068  36.3642  41.5789  27.8735
FMTH(BNHLS)SE 14.3573 362120  38.5568  36.3048  41.8786  28.2112
FMTH(BR)SE 14.4084  36.1213  38.3852  35.9645  41.6931  28.1189

Thisis calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 7: (Continued) Put option pricing performance using different realized volatilities without the
Hansen and Lunde (2005a) adjustment

DOTM  OTM  ATM IT™ DITM Total
Samplesize 268 101 115 92 71 647
RMSPE
RV (1min)S& 0.6593  0.4420  0.1822  0.0757  0.0231  0.4662
RV (5min)SE 0.5735  0.3189  0.1536  0.0685  0.0211  0.3962
RV (10min)S% 0.5538*  0.3027* 0.1553  0.0682  0.0206*  0.3825*
RV (15min) 5% 0.5629  0.3104  0.1550  0.0669  0.0207  0.3889
RV (20min) 5% 0.5610  0.3147  0.1506* 0.0678  0.0214  0.3880
RV (BR)S® 0.5875  0.3282  0.1554  0.0700  0.0215  0.4060
BK(BR)SE 0.6044  0.3564  0.1593  0.0705  0.0217  0.4200
ZMA(ZMA)S® 0.7044  0.5806  0.2513  0.0892  0.0242  0.5202
ZMA(BR)S® 0.6342  0.4076  0.1711  0.0731  0.0224  0.4456
BC(ZMA, ZMA)SE 06223 03795  0.1612  0.0714  0.0221  0.4339
BC(ZMA, BR)S® 0.5940  0.3372  0.1508  0.0685  0.0215  0.4107
FBK(BNHLS)SE 05954 03457  0.1516  0.0689  0.0215  0.4127
FBK(BR)® 0.5952  0.3439  0.1519  0.0684  0.0216  0.4123
FCK(BNHLS)S® 05900 0.338  0.1511  0.0684  0.0212  0.4085
FCK(BR)SR 0.5913  0.3409  0.1511  0.0686  0.0213  0.4096
FMTH(BNHLS)SE 05986  0.3495  0.1532  0.0690  0.0215  0.4152
FMTH(BR)S? 0.6005  0.3491  0.1527  0.0683  0.0214  0.4163
MAPE
RV (1min)SE 0.5865  0.4036  0.1403  0.0471  0.0166  0.3394
RV (5min)SE 0.4947  0.2565  0.1139  0.0439  0.0153  0.2731
RV (10min)S% 0.4725*  0.2370* 0.1143  0.0439  0.0151 0.2609"
RV (15min) 5% 0.4838  0.2476  0.1128  0.0430  0.0151*  0.2669
RV (20min) 5% 0.4815  0.2481  0.1088*  0.0427* 0.0154  0.2653
RV (BR)S% 0.5106  0.2647  0.1132  0.0444  0.0156  0.2810
BK(BR)SE 0.5299  0.2959  0.1141  0.0439  0.0157  0.2940
ZMA(ZMA)S® 0.6298  0.5577  0.2105  0.0573  0.0174  0.3954
ZMA(BR)S® 0.5623  0.3583  0.1236  0.0450  0.0162  0.3190

BC(ZMA,ZMA)SE  0.5469 0.3292 0.1193 0.0446 0.0160 0.3072
BC(ZMA, BR)E 0.5183 0.2767 0.1103 0.0436 0.0156 0.2854
FBK(BNHLS)® 0.5182 0.2867 0.1109 0.0440 0.0156 0.2871

FBK(BR)SE 0.5189 0.2847 0.1113 0.0437 0.0157 0.2871
FCK(BNHLS)® 0.5137 0.2770 0.1109 0.0437 0.0155 0.2836
FCK(BR)S® 0.5149 0.2811 0.1112 0.0439 0.0155 0.2849
FMTH(BNHLS)S®  0.5230 0.2901 0.1119 0.0438 0.0156 0.2898
FMTH(BR)% 0.5246 0.2908 0.1115 0.0434 0.0156 0.2904

Thisis calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 8: Put option pricing performance using different realized volatilities with the Hansen and
Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size 268 101 115 92 71 647
RMSE
RV (1min)#E 25.2978  47.7543*  64.0820  62.4539  53.4289  47.1050
RV (5min)#E 26.4284  51.5841  65.4127  63.3466  53.7522  48.5066
RV (10min) - 27.1575  52.8379  62.8731  62.9773  54.3032  48.2857
RV (15min) L 27.2277  52.0127  59.7248*  60.5138*  54.4645  47.0068
RV (20min) L 27.9302  54.0083  62.5752  63.1618  54.4194  48.6489
RV (BR)HE 26.7606  52.6679  66.6746  64.7675  54.0437  49.3641
BK(BR)"E 27.1972  53.7206  65.6152  64.3998  54.3149  49.3519
ZMA(ZMA)HL 25.9143 485860  61.7137  61.3822  52.9438*  46.5508"
ZMA(BR)HE 26.8523  53.2114  65.9695  64.0342  54.2988  49.2017
BC(ZMA,ZMA)HE  25.0629*  49.0419  69.2279  65.8127  53.4596  49.1629
BC(ZMA, BR)HE 25.7274  50.3171  66.5138  64.4565  53.4167  48.5761
FBK(BNHLS)"L 25.6558  50.1531  67.3225  64.8069  53.1501  48.7658
FBK(BR)"E 25.5370  50.0205  67.0645  64.7963  53.5238  48.6983
FOK(BNHLS)H"E 25.8019  51.3447  67.4543  64.6765  53.5202  49.0624
FOK(BR)TF 25.6021  50.0879  66.9533  64.4833  53.2630  48.6056
FMTH(BNHLS)"L 255656  50.5696  67.6425  64.8444  53.5274  48.9441
FMTH(BR)HE 25.4036  50.0487  67.0296  64.3883  53.5993  48.5975
MAE
RV (1min)#E 10.0727 275188  48.8267  42.1931  40.6430  27.6064
RV (5min)# L 10.3591  28.7595  48.6002  41.5706  40.6569  27.7915
RV (10min) - 10.6429  28.5464  44.3286  39.6009  40.7957  26.8517
RV (15min) L 11.0443  28.0901  41.8705* 37.5631*  40.9825  26.2406*
RV (20min)“ £ 11.0477  29.1348  43.1179  38.0190  41.0241  26.6962
RV (BR)HE 10.3585  29.0898  49.3067  42.8011  40.8908  28.1690
BK(BR)"E 10.5398  29.2449  47.0859  41.1528  40.9414  27.6448
ZMA(ZMA)HL 10.0743  26.9184* 451734  39.2185  39.6322°  26.3301
ZMA(BR)HE 10.3499  29.5055  48.0478  41.7745  41.0417  27.8772
BO(ZMA, ZMA)EE 99812  29.0488  53.2391  45.1749  40.8443  29.0377
BC(ZMA, BR)HE 10.0627  28.8747  50.0498  43.5453  40.6527  28.2247
FBK(BNHLS)"L 10.0934  29.4657  51.3071  44.1896  40.4658  28.6243
FBK(BR)"" 9.9535  29.1728  50.9314  44.1319  40.6515  28.4660
FOK(BNHLS)H"E 10.0949  29.9475  51.0931  44.0451  40.4868  28.6438
FCK(BR)H"L 9.9827  29.2740  50.9210  44.0326  40.4420  28.4549
FMTH(BNHLS)"L  10.0022  29.7642  51.7559  44.3766  40.5523  28.7489
FMTH(BR)HE 9.9257*  29.3487  51.1854  44.2691  40.6878  28.5506

Thisis calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 8: (Continued) Put option pricing performance using different realized volatilities with the
Hansen and Lunde (2005a) adjustment

DOTM  OTM ATM IT™ DITM Total
Samplesize 268 101 115 92 71 647
RMSPE
RV (1min)#~ 0.4996*  0.3335* 0.2071  0.0760  0.0197  0.3595
RV (5min)ZL 0.5192  0.3612  0.2100  0.0760  0.0197  0.3752
RV (10min) 7L 0.5020  0.3369  0.1926  0.0741  0.0199  0.3599
RV (15min)#L 0.5018  0.3357  0.1821*  0.0702*  0.0201 0.3585*
RV (20min)# L 0.5026  0.3340  0.1821  0.0722  0.0204  0.3588
RV (BR)HL 05116  0.3625  0.2144  0.0782  0.0200  0.3715
BEK (BR)HL 0.5060  0.3603  0.2066  0.0765  0.0201  0.3671
ZMA(ZMA)HE 0.5046  0.3413  0.1924  0.0716  0.0192*  0.3620
ZMA(BR)HE 05131  0.3694  0.2065  0.0763  0.0201  0.3726
BC(ZMA,ZMA)"L 05183  0.3770  0.2241  0.0804  0.0201  0.3786
BC(ZMA, BR)HL 0.5033  0.3644  0.2104  0.0771  0.0197  0.3666
FBK(BNHLS)ML 05340  0.3799  0.2159  0.0779  0.0195  0.3871
FBEK(BR)"L 0.5372  0.3761  0.2154  0.0780  0.0197  0.3883
FCK(BNHLS)TL 05182  0.3743  0.2135  0.0776  0.0197  0.3770
FCK(BR)HL 0.5281  0.3781  0.2148  0.0776  0.0196  0.3833
FMTH(BNHLS)"L 05264  0.3768  0.2159  0.0782  0.0198  0.3823
FMTH (BR)"L 0.5211  0.3765  0.2150  0.0775  0.0197  0.3791
MAPE
RV (1min)ZL 0.4021  0.2588  0.1595  0.0534  0.0149  0.2445
RV (5min) 7L 0.4068  0.2758  0.1597  0.0527  0.0149  0.2491
RV (10min) 7L 0.4097  0.2607  0.1433  0.0496  0.0149  0.2446
RV (15min)# L 04127  0.2552* 0.1361*  0.0471* 0.0151  0.2433
RV (20min)#L 0.4069  0.2586  0.1371  0.0473  0.0152  0.2417*
RV (BR)"T 0.4087  0.2743  0.1620  0.0543  0.0150  0.2503
BK(BR)HE 0.4086  0.2741  0.1536  0.0519  0.0151  0.2484
ZMA(ZMA)HL 04040  0.2598  0.1465  0.0491  0.0144*  0.2425
ZMA(BR)HE 0.4035  0.2802  0.1552  0.0526  0.0151  0.2476

BC(ZMA, ZMA)"L (0.4087 0.2850 0.1727 0.0571 0.0152 0.2543
BC(ZMA, BR)"" 0.3976*  0.2795 0.1619 0.0547 0.0150 0.2465
FBK(BNHLS)!E 0.4151 0.2909 0.1662 0.0556 0.0149 0.2564

FBK(BR)1E 0.4121 0.2869 0.1652 0.0556 0.0149 0.2544
FCK(BNHLS)"" 0.4071 0.2905 0.1645 0.0553 0.0149 0.2527
FCK(BR)"" 0.4062 0.2888 0.1649 0.0554 0.0149 0.2522
FMTH(BNHLS)""  (.4043 0.2900 0.1673 0.0559 0.0149 0.2521
FMTH(BR)H"L 0.4040 0.2882 0.1656 0.0557 0.0149 0.2513

Thisis calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 9: Put option pricing performance of ARCH type models assuming the risk-neutrality and using
the Duan (1995) method

DOTM  OTM ATM '™ DITM Total

Sample size 268 101 115 92 71 647
RMSE
GARCH
Risk neutral  26.0156 54.6635 74.2943 69.1827 49.6875 51.7628
Duan 25.9641 54.3667 73.9599 68.8067 49.9518 51.5745
EGARCH
Risk neutral  24.2628 57.9856 77.9481 67.8789 52.6027 52.9858
Duan 24.1578 57.9305 77.6406 67.7803 52.7248 52.8715
FIEGARCH
Risk neutral  22.5543 50.5758 67.4635 62.6299 53.0315 47.8055
Duan 22.7415 50.3464 66.0049 61.5208 57.0599 47.7467
MAE
GARCH
Risk neutral  11.0711 36.4578 60.6267 48.5941 37.5032 32.0784
Duan 11.2023 36.3791 60.2807 47.8800 37.7829 31.9881
EGARCH
Risk neutral 11.8561 43.4189 65.7360 47.5408 39.9573 34.5179
Duan 11.8745 43.3187 65.3666 47.4544 40.1580 34.4540
FIEGARCH
Risk neutral  9.9522 35.5033 55.6567 42.0410 40.0367 29.9288
Duan 9.9815 34.9733 53.6757 40.2149 44.0664 29.6886
RMSPE
GARCH
Risk neutral  0.8403  0.6204 0.2918 0.0914 0.0178  0.6074
Duan 0.8708  0.6272  0.2915 0.0911 0.0180  0.6259
EGARCH
Risk neutral  1.7426  0.8541  0.3204 0.0883  0.0190  1.1795
Duan 1.7593  0.8501 0.3192 0.0881  0.0191 1.1892
FIEGARCH
Risk neutral  1.2416  0.6452  0.2679  0.0805 0.0192  0.8469
Duan 1.3006  0.6339  0.2591  0.0779  0.0204  0.8810
MAPE
GARCH
Risk neutral  0.5636  0.4363 0.2199  0.0646  0.0135  0.3513
Duan 0.5852 04376 0.2194 0.0639  0.0137  0.3603
EGARCH
Risk neutral  1.0230 0.6041  0.2460  0.0623 0.0145  0.5722
Duan 1.0346  0.6020  0.2447  0.0622 0.0146  0.5765
FIEGARCH
Risk neutral  0.7511  0.4658  0.2059  0.0551  0.0145  0.4299
Duan 0.7562  0.4559  0.1980  0.0525 0.0158  0.4288

“Risk neutral” shows the results assuming the risk-neutrality, which are the same as those
in Table 5. “Duan” shows the ones using the Duan (1995) method without assuming the
risk-neutrality.
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Table 10: Put option pricing performance with and without removing significant jumps from realized
volatility

DOTM OTM ATM '™ DITM Total

Sample size 268 101 115 92 71 647
RMSE

RV 27.2277 52.0127 59.7248 60.5138 54.4645 47.0068
RV-Jump 27.1354 51.6801 61.4029 61.9356 54.1492 47.5322
MAE

RV 11.0443 28.0901 41.8705 37.5631 40.9825 26.2406
RV-Jump 10.8016 28.0453 44.1756 39.7077 40.6776 26.8143
RMSPE

RV 0.5018  0.3357 0.1821  0.0702  0.0201 0.3585
RV-Jump 0.4976  0.3518 0.1922  0.0736  0.0200 0.3595
MAPE

RV 0.4127  0.2552 0.1361  0.0471  0.0151 0.2433

RV-Jump 0.4052  0.2632  0.1449 0.0504 0.0149 0.2435

RV is RV (15min) 7’ Rv-Jump is the difference between RV and significant jump, whichiis
detected using the test statistic in (29) at the 0.1% significance level.
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Figure 2: Realized volatility

(&) Some realized volatilities with the Hansen and Lunde (2005a) adjustment
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Figure 3: Parameter estimates
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(b) ARFIMAX
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(6) GARCH
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~ (g) FIEGARCH
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