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Abstract

Market microstructure noise, which is induced by market frictions such as the bid-ask
bounce and the discreteness of the price change, generates deviations of observed price from
frictionless equilibrium price. Estimation of the noise dependence is of direct economic inter-
est because it sheds light on market microstructure effects such that the bid-ask bounce and
the clustering of order flow are related to negative and positive autocorrelations of the noises,
respectively. This paper proposes a test statistic for the dependence and cross and auto co-
variance estimators of the bivariate noise processes, and derives their asymptotic distributions.
The asymptotic distributions provide another test statistics for statistical significance for the
cross and auto covariances. Monte Carlo simulation shows the covariance estimators and test
statistics provide good performance in a finite sample. An empirical illustration confirms the
proposed statistics and estimators capture various dependence patterns in market microstruc-

ture noise.
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1 Introduction

Market microstructure noise is induced by some market frictions: the bid-ask bounce, the dis-
creteness of price change and asymmetric information of traders, etc. A study about each of these
market frictions have been pioneered in market microstructure literature. Roll (1984) derives a
simple measure of estimating the bid-ask spread based on negative autocovariance of observed
return. Other covariance spread model is established by Stoll (1989) and George, Kaul and Ni-
malendran (1991). A related literature includes inferences about the decomposition of the bid-ask
spread using an indicator function driven by the direction of trade as in Glosten and Harris (1988),
Huang and Stoll (1997) and Madhavan, Richardson and Roomans (1997). Harris (1990) studies the
rounding effects by the discreteness of transaction price. The asymmetric information of traders
causes adverse selection components within bid-ask spread in both market maker system and limit
order market (see, e.g., Glosten and Milgrom 1985, Easley and O’Hara 1987, Copeland and Galai
1983, Foucault 1999 and Glosten 1994).

A recent microstructure noise analysis has provided a way to measure how much impact the
noise causes to transaction price because it deviates from frictionless equilibrium price by mi-
crostructure effects. Bandi and Russell (2006) propose an estimator to evaluate full-information
cost which is a difference between the transaction price and the unobserved price reflecting all
private and public information about the asset. Medahhi (2002) and Hansen and Lunde (2006)
study the variance of noise and correlation between the noise and an instanteneous volatility of
semimartingale price process which appear in the market with no frictions.

Many empirical analyses exhibit autocorrelations and read-lag relationship of cross-correlation
in observed intraday returns and these correlations could be induced by the dependence of mi-
crostructure noises. This paper studies a degree of the dependence of the microstructure noise.
The main contributions and results of the study are the followings: we propose a test statistic
for the dependence and cross and auto covariance estimators of bivariate noise processes and de-
rive their asymptotic distributions. Furthermore, we provide test statistics for significance of the

variance and covariance of the noise. We confirm that the proposed cross and auto covariance



estimators and test statistics have a good performance in finite samples through Monte Carlo sim-
ulation. As an empirical illustration, the statistics are applied to high-frequency asset prices on
the Osaka Securities Exchange and we find various dependence patterns in market microstructure
noise.

The measurement of the noise dependence enables bias correction for the integrated variance
and covariance estimation, which is important for option pricing, the measurement of value-at-
risk, and portfolio evaluation. We must be careful to the noise which contaminates high-frequency
prices. Realized variance and covariance are not necessarily the best approaches.

In the literature on integrated variance estimation with noise, Zhou (1996) proposes a kernel-
based estimator, and Zhang, Mykland aritt3ahalia (2005) suggest two scales of realized vari-
ance as a linear combination of realized variances at two frequencies, with Zhang (2006) extending
this estimator to multiple scales. Although these studies are conducted under an i.i.d. noise as-
sumption, market microstructure noise possibly has time dependence. Under the dependent noise
assumption, A-Sahalia, Mykland and Zhang (2006) modify the two- and multiple-scale real-
ized variances, and Hansen and Lunde (2005, 2006) and Barndorff-Nielsen, Hansen, Lunde and
Shephard (2008) develop the kernel-based estimator. Bandi and Russell (2008) show the optimal
frequency based on the minimization of the mean squared error. For integrated covariance esti-
mation with dependent noise, Voev and Lunde (2007) show that Hayashi and Yoshida’s (2005)
cumulative covariance estimator is biased in the presence of cross-correlated noises and propose
modified cumulative covariance estimators based on kernel and subsampling methods. However,
it is important that the adequacy of these estimators such as their unbiasedness, consistency and
efficiency depend on the dependence structure of the noise process. Therefore, we should know
whether the market microstructure noise is time dependent and how the degrees of the dependence
are for the estimation of integrated variance and covariance.

Voev and Lunde (2007) propose a test statistic for the cross-sectional dependence of the noises
in order to determine the kernel bandwidth of their estimator. The main differences from Voev and
Lunde (2007) and our study are a choice of the intervals used for the cross-covariance estimation

of the noises and an evaluation of a variance of the cross-covariance estimator of the noises. First,



Voev and Lunde’s (2007) cross-covariance estimator is based on subsampled interval whose length
is large enough in order to guarantee the unbiasedness of the estimator. If the interval is too wide,
the cross-covariance estimator may have a large variance. To take care of it, we propose a cross-
covariance estimator based on the interval with proper length where the dependence of the noise
disappears. The length of the interval is determined by a testing procedure proposed in this paper.
Second, although Voev and Lunde (2007) show the unbiasedness of the kernel-based cumulative
covariance estimator under dependent noise, their t-statistic uses an approximated variance of the
cross-covariance estimator under i.i.d. noise. As suggested in their paper, it is natural that this
approximation leads to t-statistics that are somewhat larger than they should be. On the other
hand, the test statistic derived in this paper does not require the i.i.d. noise approximation by using
subsampling methods.

The paper itself proceeds as follows. In section 2, the transaction price model and properties of
market microstructure noise are presented under a framework of high-frequency financial analysis.
We propose the test statistic for the cross-sectional dependence of noises in section 3. We provide
the cross and auto covariance estimators of the bivariate noise processes, their asymptotic distri-
butions, and the test statistics for their significance in section 4. Section 5 includes a simulation
experiment and an empirical illustration. We conclude the paper with an appendix that provides

proofs for the several lemmas and theorems.

2 Price process and market microstructure noise

We assume logarithmic equilibrium price processes of two as§&fs¢)} and{ P (¢)}, which

follow two-dimensional I® process without drift on a probability space, 7, P):

AP} (t) = ou(t)dWi(t), 1= 1,2, t € [0.T], (1)

d{Wr, Wa)y = p*(t)dt,  p"(t) € (—1,1),



wherelV; andW, are standard Brownian motions. We assume that the initial value of the price
Pr(0) is a constant and;(t) > 0 is a bounded progressively measurable functipR; (¢)} and
{P;(t)} correspond to the logarithmic prices which appear in the market without trading imper-
fections, frictions and informational effects.

We make some notation to represent intraday returns and an irregularly nonsynchronous trad-
ing. r; := Pi(t;)) — Pi(t,_1) is thei-th observed intraday return of an asset 1, apngd :=
Py(sj) — P»(s;—1) is thej-th one of an asset 2, wheteands; are the end times of thieth and
j-th intervals. The different notations of the transaction times for the two assets are due to the
nonsynchronous trading. A simple way to model high-frequency transaction price is to use hid-
den semimartingale processes, as named by Mykland and Zhang (2005). In this framework, the

logarithmic transaction pric&, is observed with market microstructure noise as follows:

Pi(ti) = Pr(ti) +n(t:), Pa(s;) = Py(s;) +d(sy), (2

where P/ (t) is the logarithmic equilibrium price described in (I)(t;) andd(s;) are the market
microstructure noises in asset 1 and 2 which have many sources, including the presence of bid ask
spreads, the discreteness of prices change and the difference in trade sizes, etc. We assume the

market microstructure noises have the following properties.

Assumption 1. Market microstructure noise.

Let a vector of market microstructure noise of asset 1 and4(be= (n(t) i(t))’.
(1a) {u(t)} is a sequence of random variables with zero mean.

(1b) The bivariate noise processes are covariance stationary with autocovariance function, which

has finite dependence in the sense that:

r) = B0 =| " O Zo oratt 05 m.

Yén (0) s(0)

m is a finite positive numbel(¢) is a covariance matrix with finite elements.
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(1c) There exists some positive numper 1 that satisfie|u(t)u'(s)|” < oo forall ¢, s.

(1d) The noise process is independent of the equilibrium price proé&ss.u(t), [ = 1,2.

To avoid complication of the subscript for (1b),;(¢) and~s,(¢) are rewritten as/(¢) and~(—/)

because ofy,s(¢) = E[n(t)o(t — ¢)] and~s,(¢) = En(t — £)o(t)] = E[n(t)é(t + ¢)]. The auto

and cross correlation coefficients of the two noises are definpgl(&s ps(¢) andp(¢). For (1d),

even if P andu(t) are correlated, the dependence between the noises generally dominates the
dependence between the equilibrium price and noise as the number of high-frequency observa-
tions increases. Furthermore, Hansen and Lunde (2006) suggest that the independence assumption
between the equilibrium price and noise does not statistically damage the analysis of asset prices
with high trading intensities.

Our interest of the study is to estimate the covariance matrix in Assumption (1b) and charac-
terize the asymptotic and finite sample properties of the auto and cross covariance estimators of
bivariate noise processes. A test statistic for the cross-sectional dependence of the noises using
the subsampling method is introduced in section 3. We provide the auto and cross covariance es-
timators of the bivariate noise processes, their asymptotic distributions, and test statistics for their

significance in section 4.

3 Cross-sectional dependence of noises

Microstructure noise as well as equilibrium price are unobservable. We introduce a simple identi-
fication approach to measure cross-sectional dependence of the noises and propose a test statistic

to detect a distance where the dependence of the noises disappears.

3.1 How to measure cross-sectional dependence of noises

First we define expectation and variance conditional on the stochastic arrival times. Denote the
conditional expectation and variance given intenvals= (¢;_1,t;] andJ? := (s;_y, s;] for all i, j

as k[ - | and V5[ - ]. We cannot identify the covariation of the equilibrium price processes that



have martingale properties and the covariance of the market microstructure noises in the pair of
overlapping intervals because the covariation of the equilibrium price processes is not zero. On the

other hand, in the pair of the nonoverlapping internfdlsn J7 = ()}, we have:

EU[Z rl,iTZ,jl{IiﬂJj}:(D}} = EU[Z €n,i€sj1{rinsi=0} |, 3)

1,J 0,

wheree, ; := n(t;) — n(t;—1) ande;; := §(s;) — d(s;_1). The product of returns on the nonover-
lapping intervals is used to identify the covariance of the noises as in Voev and Lunde (2007).

For the nonoverlapping intervald’ N J7 = (} and¢,_; — s; > 0, the distance between
the intervals is defined & = t,_; — s;. In the case of;_; — ¢; > 0, the difference of the
nonoverlapping intervals is denoted by= —(s;_; — t;). In Figure 1, the top panel (a) and the
lower panel (b) illustrate the former and latter cases, respectively. The nonoverlapping adjacent
intervals such thatt_; —s; = 0 ors;_; —t; = 0 are used in the case 6f= 0. In what follows, we
consider the case d@f> 0 because, for the other cases, we have only to replace the corresponding
definition of. Itis noted that = t;_; — s; > 0 implies{* N J7 = 0}. We define the product of

returns on the-th andj-th intervals satisfying;,_, — s; = ¢ > 0 as follows:
Zé,ij =T1,"24, fOI’ a”, i,j, such that ti—l — 855 = £. (4)
The conditional expectation ¢f, ; is:

Eu[Zei] = Eu[n(t)d(s;)] — Eu[n(ti)d(s;—1)] — Eu[n(ti-1)d(s;)] + Eu[n(ti-1)d(sj-1)]

= Y+ At) =yl + At + As;) —y(0) + (L + Asy), (5)

whereAt; :=t; — t,_; andAs; := s; — s;_;. For all/ taking more than a large enoughsuch
that~(L) = 0, we obtainy(¢) = 0 and By[Z;;] = 0 from (1b) in Assumption 1. Now suppose
s* := ming{s | Y(L —s) # 0,s > 0}. Thisimpliesy(L) = v(L —1) =~v(L -2) = --- =
WL — s +1) = 0andy(L — s*) # 0, and B [Z1.55] = En[Z145] = Eo[Z104] = -+~ =
Eu[Zi—s414] = 0 and By[Z,_ ;] # 0 because ofy(L — s*) # 0. Denotel* = L — s*.
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Then we havey(¢* + 1) = 0 andv(¢*) # 0 and conclude that the distanéeis the threshold

value of dependence of the noises. We note that Wheﬁlj@mf,j] = (0 does not necessarily imply
whethery(¢) = 0. This is because the sum of all cross-covariances in (5) possibly takes a value
of zero, even where(¢) # 0. To avoid this situation, we apply the method of determination for

¢* described above. Thus, a test statistic for determining the threshold value can be constructed by

using a sample mean &f,;;, which satisfies the nonoverlapping intervals with the distance

3.2 Test statistic for cross-sectional dependence of noises

From Assumption (1b), the dependence of the two noises disappears when the noises are suffi-
ciently separated. In this subsection, we propose a test statistic to detect the threshold value as
in the previous subsection. For the construction of the test statistic, we define a sequence that
arrangesZ,;; in ascending order of inderas{Zg,k}kNil. N, is the total number of the products

of returns on the nonoverlapping intervals with the distaficé/e define the-th pair of the se-

lected intervals asl, and B;. ThenZ, is defined as a product of returns on nonoverlapping
intervals A, and By. Figure 2 illustrates each pair of intervald,, By), (Axi1, Brr1) and(Ag. o,

Byi) for k = 1. We define the sample mean &f ,; that is Z, y, :== -+ S

7, 2k Zek @S the esti-

mator of Ey;[Z,4]. Let fon, = (Z@NZ — Ey [Z&NJ)N;/Z be the theoretical standardization for
Zin,- We make the following assumption for the asymptotic variancg @f which is given by
limpy, 00 Eig [(fé,N[)q = U?J:

Assumption 2. Vi [n~1/2 Z:Fk'f“ Zoy) — a; » uniformly in anyk’, asn — oo. This means that

for any sequencény, } that tends to infinity withVy, sup,, Vi [n]_vi/Q Z::,;ﬁ Zoy) — o — 0

asN, — oo.

Next we consider the asymptotic normality of the estimatdEefZ; ;). It is noted that Z,; }
is a sequence of dependent and heterogeneously distributed random scalars because the variance
depends on the length of the irregularly observed interval{d@g } is serially correlated. We

obtain the following lemma for the asymptotic normality of the estimatdz,@fZ, x].



Lemma 1. Suppose Assumptions 1 and 2 hold.Mgoes to infinity, we have:

(Y] ©
Oy, f

The proof is given in the Appendix.

Although the asymptotic varianczejf IS unknown, we can construct a consistent estimator
of azf by applying a subsampling method first proposed by Carlstein (1986). Carlstein (1986)
considers variance estimation for a general statistic without specifying the dependence in a sta-
tionary sequence. Fukuchi (1999) and Politis, Romano and Wolf (1999) extend their results to
heteroskedastic observations.

We define thei-th subseries usingZ, ; }1*, as follows:
{2} = (Zoprtys1s Zopngpaos > Zogeym,), 0<h<K,—1, K, = [Ny/M,],

where| - | denotes the integer part of a real numb¥y,is a number of observations within each
subseried Z"} and K, is a total number of subseries. The supersdripf {Z}'} represents that

the subseries take the samg@g, with £ = hM, + 1,--- , (h + 1)M,. The variance estimator is

given by:
K,—1 Ky—1
M _ 1 _ 2
~o AV ( o h )
0= — E Z — § Z : 7
0,f K, — 0,M, K, - 0, M, (7)

whereZ}!,, is a sample mean of subserigg}'}. We have the following lemma for the variance

estimatory ;.

Lemma 2. Suppose Assumptions 1 and 2 hold. Létbe s.t. M, — oo and M,/N, — 0 as

N, — oo. Then we have:
(3'zf =1, Utg,f as N, — oo. (8)

The proof is described in the Appendix.



The purpose of this subsection is to construct a test statistic to detect the threshold value of the
dependence of the noises. The test statistic is derived from the results of Lemmas 1 and 2. Let the
null hypothesis be §Z,,] = 0 for all k, for given/. The alternative hypothesis consists of all

possible deviations from the null. Then we have the following theorem for the test statistic.

Theorem 1. Suppose Assumptions 1 and 2 hold.Mgoes to infinity, we have:

r() = YN ZN: 0 g gy 9)
O'@J

under the null hypothesis.(¢) diverges under the alternative.

The asymptotic normality of the test statistic follows directly from Lemmas 1 and 2.

The large numbers af/, and K, are available for the variance estimation in (7) because the
high-frequency transaction data yield a large numbeWof However, it is difficult to determine
the optimal numbers o/, and K, that minimize the mean squared errorajff because we do
not know the covariance structure of the noises. For fixgdan increase i/, (i.e. a decrease
in K,) reduces the bias but increases the varianczi{pf It is known that the optimal asymptotic
rate of M, is proportional toN,}/3 for the subsampling variance estimation; that is, the asymptotic
formulaisM, = ch/g wherec depends on the noise process. We investigate the influence of the
numbers ofM, and K, selected undek/, = ch/?’ with somec through Monte Carlo simulation
in section 5.

Next, we summarize the procedure to identify the threshold value where the cross-covariance
of noises becomes zero. We first test the null hypothesji& £,] = 0 for all k£ with a large value
L using the test statistic (9). The null hypothesig &, .] = 0 would not be rejected because
the cross-covariance between sufficiently separated noises is zero from (1b) of Assumption 1. If
Eu[Z.x] = Ois notrejected as expected, we then test whethef E ; ;] is zero. If B[ Z,_1 4] = 0
is not rejected, we proceed to judge the statistical significanceydf,E- x]. We continue to test
sequentially until the null is rejected. Finally we regard the distance where the null is rejected the

first time as/* = max{|7(¢)| > c.v.} wherec.v. is the critical value of the test statistic (9).
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4 Consistent covariance estimators of noises

Once the threshold valug& as described in the section 3 has been selected, we find that the cross
covariance of bivariate noise process¢§) is zero wher? > ¢*. However,y(¢) is still unknown

for ¢ < ¢*. In subsection 4.1, we derive the cross-covariance estimator of bivariate noise processes
and its asymptotic distribution, and propose a test statistic for statistical significance of the cross
covariance. The related statistics for autocovariance of univariate noise process are established in

subsection 4.2.

4.1 Cross-covariance estimator of noises

We consider the estimation of the cross-covarian@g in this subsection. For construction of

an unbiased estimator, we only have to remedy the nonoverlapping intervals so that all cross-
covariances in (5) except(¢) become zero by using the threshold value determined through the
test statistic (9). We usev™ andm~ for the threshold values in the casesfof 0 and/ < 0

instead off*. Suppose the bivariate noise processes have finite cross-sectional dependence in the
sense that/(¢) = 0 for ¢ > m™* > 0 and for—¢ > m~ > 0. When/ is positive, we definéﬁ” as

—s; >m" ands\") as the last

transaction time of asset 2, which is followeddyy, subjectta;;_; — §§f)1

the first transaction time of asset 1, which follotysubject tort

> m*. As/is negative,

we defines! ) as the first transaction time of asset 2, which follawsubject ts\~ —; > m~ and
;g:} as the last transaction times of asset 1, which is followet] hysubject tos;_; — gij >m”.

The returns on the intervalg, 1,7 "] and (t'"], t,] are denoted by\") := P, (Z.") — Pi(t;_1)

andﬂ;) .= Pi(t;) — P,(t")). For asset 2, the returns on the interv(a;ljil,gy)] and(gg.f)l, sj]

are denoted by, ) := P,(5\7) — Py(s;_1) andry?) = Py(s;) — Po(s)), respectively. Then

Zy';), which modifiesZ,,;; in (4), is defined as follows:

=) ()

T3 Toj Lt 1—s;=0) if ¢>0
() _ _ ) (= .
Zesj = Tg;) tg;)l{ti—l—SjZO} + ﬁg,i) ré,j)l{Sj_l—ti:O} if /=0 (10)
ﬂ;) Fé,_j)l{%lfti:fe} if ¢<0
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The top panel (a), the middle panel (b) and the lower panel (c) in Figure 3 illustrate each pair of
intervals with? > 0, ¢ = 0 and/ < 0, respectively. For all > 0, cross-covariances where the
distances between the noises are further tharare zero. The nonoverlapping intervals described

in (b) and (c) are given by the same idea as in (a). The conditional expectati@jff}oﬁvhere

the indicator function takes one isjﬁéf.j)] = —y(0). We seIethlff.j) for all ¢, j such that the

indicator function takes a value of one and define a sequence that arranges the @j@ch&d

ascending order of inde)as{Zéj? kNil. Then the cross-covariance estimator is given by:
~ +
V(O = ——=> 7% (11)

The following theorem states the asymptotic normality of the cross-covariance estirt@gtor

Theorem 2. Suppose Assumptions 1 and 2 hold. Then we have:
N2 (0 = 7(0)) 5 N(0,07), (12)

wherew? = limy, . By [{Nj/ 2(4(0) — v(f))}ﬂ .

The proof is described in the Appendix. Then the subsampling variance estimator is given by:

o M i Z(E)h 1 Kz_lz(:i:),h 2 (13)
We = Ehz:% ¢,My _E; My ) o

WhereZéj};h is a sample mean of subseri éi)’h} and theh-th subseries is:

(F)hy (&) (&) (+)
{277} = (Zf,hMg—i-l’ Zy s ’Zé,(h-l—l)Mg)’ Osh<Ke—1 K= {NL’/ME]'

The asymptotic distribution of(¢) established in Theorem 2 and the subsampling variance esti-

mator provide the test statistic for the null hypothegié) = 0 and the alternative(¢) # 0.

Corollary 1. The test for cross-covariance of market microstructure noises.
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As N, goes to infinity s.tM, — oo and M,/N, — 0, we have:

() = M £ N(0,1) (14)

under the null hypothesis*(¢) diverges under the alternative.

It is noted for the integrated covariance estimation that the bias of cumulative covariance estimator
by Hayashi and Yoshida (2005) is virtually zero when the test statistic (14) does not reject the
null v(¢) = 0 for all £. Even if the cumulative covariance estimator is unbiased, the noise has
a strong impact on its variance. An estimator applying subsampling method to the cumulative
covariance estimator by Hayashi and Yoshida (2005) is preferable for such case. It is the same as

the subsampling estimator by Voev and Lunde (2007).

4.2 Autocovariance estimator of noise

In the previous subsection, we have proposed the cross-covariance estimator of the noises and have
derived the test statistic for the significance of the cross-covariance. This framework is applicable
for estimation of the autocovariance of a univariate noise process. We briefly describe a consistent
autocovariance estimator of the noise in this subsection. We start with the construction of the
test statistic to find the threshold value of the dependence of univariate noise process. Define the
product of the returns on theth andj-th intervals for asset 1 satisfying= ¢,_; —¢; > 0 as

follows:
Zl,ﬁ,ij =T1,T14, for all 1,7, such tha‘t]‘_l —t; =0 >0. (15)

Let {Z1.: )} be a sequence that arrang@s,; in ascending order of index N, is the total
number of a sequende”, . }. The null hypothesis is\BZ; ;] = 0 for all k£ for given¢, which

implies, (¢) = 0, and the alternative hypothesis consists of all possible deviations from the null.

13



The test statistic for this hypothesis is given by:

_ VN ZI,Z,NM (16)

0-1 7Z7f

i (0) :

~ . . - . 2 =

ai&f is a subsampling estlmator@fw = limy, ,—o0 Eis [(fM,NM) ],wherefu,Nu = (ZMNM_
—~ 1/2 — .

E; [ZMNM])NLQ andZi , , is a sample mean dfZ; .}

The subsampling variance estimator is denoted by:

K11 K11

~ My, = 1 _ 2
U%,e: Ky, Z (ZﬁK,MM __Ku Z ZﬁZ,MM) ) 17)

h=0

whereZt, ,, , is sample mean of thieth subserie§ 2, }:

{Z{L,g} = (Z1,z,hM1,4+1, Z1 0 h My g2, 7ZI,£,(h+1)M174)7 0<h< Ky, K= [Nl,z/MLe]-

Under the null we have,(¢) < N(0,1) asN, , goes to infinity s.tM; , — oc andM; o /Ny o — 0.
We define the threshold value of the finite dependence of noise for asset liashe sense that
the autocovariance function,(¢) for all ¢/ > m; is zero. The test statistic (16) enables us to
identify the threshold valuer, .

To derive the autocovariance estimator of the noise, we consit’n{@’c\,; for all 4, 5 satisfying

tji—1 —t; = £ > 0 using the selected threshold valug as follows:

+ )= - 7+
Zipy = 1Ty = (P(ti) - P(L(-—%)) <P(t§' ) - P(tj—1)>,
for all 7,5, suchthat;,_, —t;, =¢ >0, (18)

WhereE§.+) is the first transaction time, which follows subject tof ) — t; > my, andzgj is

J
the last transaction time, which is followed by subject tot,;_; — ggj > m,. Then we have
EU[ZSZM] = —,(¢) for all £. We define a sequence that arran@éﬁ?ij in ascending order of

index as{Z{ka ,ivi’f. The autocovariance estimator of the noise and its asymptotic distribution
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are given by:
. 1 R a
An(l) = == Z8 0 NIE(G(0) — 1(0) 5 N(0,02,), (19)

~

wherew? , = limy, ,—.o iy [{Nll’/f(’yn(ﬁ) - 7,7(6))}2] . The subsampling variance estimator.gf,

IS given by:
Ky, Kig_
o My — = (£),h R @ \2 20
Wne = LeMye T e 1LeM, . ) o (20)
1,4 h—0 1,0 0
whereZ\ ;" is a sample means of theth subserie§ 2", :

+)hy + + + -
{Zl(,e) b= (Zl(,e,)hMl,Hla Zl(,e,)hMl,Hm T 7Z§,e,)(h+1)M1,g)7 0<h <Ky, K= [Nl»f/Mlvf]'

The test statistic to find whether the autocovariance of the noise is zero is defined as follows.
Corollary 2. The test for autocovariance of market microstructure noise.

e Case off = 0; that is, test for the variance of the noise.
Let the null hypothesis and the alternative 9g0) = 0 and~,(0) > 0. AsN;, goes to
infinity s.t. M, — oo and M; /N1y — 0, the one-sided test statistic for the variance of
the noise is asymptotically distributed as chi-square with one degree of freedom:

ra(0) = (V0 0O e a (21)

n @n,o
under the null hypothesis;(0) diverges under the alternative.

e Case off > 0.
Let the null hypothesis and the alternative g¢¢) = 0 and~,(¢) # 0. AsN;, goes to

infinity s.t. AM,, — oo and M, ,/N,, — 0, the test statistic for the significance of the
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autocovariance of the noise is:

“(0) = VAL o N(0,1) (22)

Wn,¢

under the null hypothesis; (¢) diverges under the alternative.

5 Monte Carlo simulation and empirical illustration

In this section, we investigate finite sample properties of auto and cross covariance estimators
and the test statistics proposed in this paper through Monte Carlo simulation, and apply them to
the high-frequency transaction prices of several stocks on the Osaka Securities Exchange as an

empirical illustration.

5.1 Finite sample properties of covariance estimators of noises

We employ the data generation process introduced in Voev and Lunde (2007). The equilibrium

price processer; and P; follow the stochastic differential equations:

aR(t) = au()]\/1 =X aw @) + xaw P )], (23)
do?(t) = w0 —o2(t)) dt + wol(t) dW P (), 1=1,2,

wherer(') is a standard Brownian motion and(¢) follows the generalized autoregressive con-
ditional heteroskedasticity (GARCH) diffusion procedd. " and Wi are correlated; that is,
d(Wl(A), WQ(A))t = p*(t)dt. We use the anti-Fisher transformation to generate stochastic correla-
tion p*(t):

exp(2z(t)) — 1

p(t) exp(2z(t)) + 1’
de(t) = rk3(03 — x(t))dt + wsx(t)dW (1),
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wherez(t) follows the GARCH diffusion process. We take;, \;) = (0.5,0.5), (K1, ko, k3) =
(0.006,0.037,0.051), (A1, 62, 63) = (2.719,2.527,0.200) and(wy , w2, ws) = (0.0382,0.216,0.130).

The parameters;, 6, andw;, for [ = 1,2 are obtained by Drost and Werker’s (1996) relationship
between the continuous time and discrete time parameters which are the daily GARCH(1,1) esti-
mates based on Intel Corporation and Microsoft Corporation returns. The trading time per day is

set as 6.5 hours like in the NYSE and NASDAQ.

5.1.1 Bivariate moving average noise

In this simulation, we consider regular and synchronous sampling. First we employ bivariate
moving average noise processes which are truncated at some finite lag. The(tcéseld(¢) are

generated by the following bivariate MA(2) model every a transaction time:

n(t) = €(t)—05e(t—1)4+04¢)(t—2)—0.1¢€5(t—1)+0.15 5(t — 2),

0(t) = e(t)—04e(t—1)4+015¢,(t—2) —0.1e5(t —1)+0.3 5(t — 2).

To set variance of the noise we use a noise-to-signal ratio defined as the variance of the noise
divided by the integrated variance. Hansen and Lunde (2006) report that noise-to-signal ratios take
a range from 0.0002 to 0.006 using transaction data for 30 stocks on the NYSE and NASDAQ. We
then set the variance of noise such that the noise-to-signal ratios of assets 1 and 2 average 0.005
and 0.002, respectively.

The transaction time interval is set to be 10, 15 and 30 seconds, respectively. Two transaction
price series, which are the sum of the equilibrium price and noise, are sampled synchronously at
equidistant times. In the regular and synchronous sampliag] represents one tick time whose
length is equal to each sampling interval (10, 15 and 30 seconds). On each sampling interval, the
sample size oV, (N, ) for ¢ > 0 per day is about 2300, 1550 and 770, respectively. On the other
hand, the irregular and non-synchronous sampling is applied in section 5.1.2.

We use the test statistic (9) and (16) to find the threshold value where the cross and auto covari-

ances of the noises become zero, and estimate the cross and auto covariances of the bivariate noise
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processes by (11) and (19). We compare the performance of the following covariance estimators.

e Cross and auto covariance estimators constructed by the sample ni@areofd 2, , ;.; that
is, 3(0) = —3 30 Zex andAs(€) = oy S V24 Zy 0. FOr example, the conditional
expectation ofZ, . is equal toy(¢ + At;) — y(¢ + At; + As;) — v(0) + y(¢ + As;) as
represented in (5). Therefore, we expect the cross-covariance estiffigtaiith ¢ less than
the threshold value is biased and the autocovariance estimdtoris also biased by the

same reason.

e The proposed cross and auto covariance estimat@jsandy;s(¢) in (11) and (19). These
estimators are unbiased if the threshold values are correctly selected. For the variance es-
timation in the test statistic (9) and (16), we use the asymptotic formlla= ch/?’ and
M, = ¢N,* with somec to determine)/; (the number of observations within each sub-
series) andy, (the total number of subseries). Denote the cross and auto covariance estima-
tors asy(/);q andy(¢). We setc = 4,2,1 and0.5 to investigate the influence df/, and
K,. The corresponding numbers &f, (M, ,) and K, (K> ) are: (¢, My, K;) =(4, 52,44),
(2,26,88), (1,13,176), (0.5,7,330) with sample size = 2300, M,, K;) =(4,46,33),
(2,23,67), (1,12,129), (0.5, 6, 258) with sample size = 1550 and, M,, K,) =(4, 36,21),
(2,18,42), (1,9,85), (0.5, 5, 154) with sample size = 770, respectively.

e The Voev and Lunde’s (2007) cross-covariance estimator:

wheresS; and.S, are numbers of subgrids for asset 1 and 2. Voev and Lunde’s (2007) cross-
covariance estimatady(¢) is based on subsampling method. They do not conduct a selection
of the threshold value before the cross-covariance estimation. Instead of the selgction,
andS, are taken as the values where length of subsampled interval is large enough in order
to eliminate a bias caused by three covariandés- At;), v(¢+At;+As;) andy(As;). For

the b;-th subgrid ¢, = 1,...,5;, forl = 1,2), define the subgrid returns ;» := Py (t») —
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b b
Pi(tp_q) with {tib}gjl andry jp 1= Pa(sp) — Pa(sjp_1) With {sjb}j.vfjl. The shorthand

subscript is used in place of; andb,. Then¥y(¢), is denoted by:

N[,, Elb 1 Z jb— 17“1 T, =5 =L} for ¢ >0,
V(E)b = NZb Zzb 1 Z ib_— 1 &1 Zbr2 jb]-{t b_178;b= O}U{S b_q—tip= =0} for (= ) (24)
NZb Zzb 1 Z ib_ 1 Ty072 jbl{s b_q—tp=—t} for ¢ < 07
with
Zzb 1217 1 {tb 178b= ={} for €>O7
Nf’b - Z Z jb= 1 ]'{t ib—175;6= O}U{S b_1—tp=0} for (= 0, (25)
Elb 1 Z 1{s by —tp=—L} for ¢ <0.

On the other hand, we propose a cross-covariance estimator based on the interval with proper
length where the dependence of the noise disappears. The length of the interval is determined

through the test statistic (9) and (16) proposed in this paper.

We also introduce Voev and Lunde’s (2007) test statisti€),, = 5(¢)/\/V | to test
the significance of cross-covariance of the noises. Their t-statistic uses an approximated
variance of the cross-covariance estimator under i.i.d. noise. The approximated variance is

given by:

1 S152 1 2 2
s vy + 50,05) for £ =0,
V[’y(é)] ~ (5152)2 Zb 1 Ny, b( ) (26)

18
(5122)2 )i Nt (vg + 4020§) for ¢ +#0,

1
2 _ Jooils)ds
x sec,l T 23400/z

average integrated variance of each ass&$ described in Voev and Lunde (2007), the noise

wherev, = 02 102 oo+ 20202 oy + 20507 n O is thez-second
variances;% andc? are estimated by subsampling realized variance with one-minute returns
and dividing by twice the number of returns. And the integrated variance is estimated by a
realized kernel-based estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008).

On the other hand, the test statistic derived in this paper is constructed by the subsampling
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variance estimator which does not require the i.i.d. noise approximation.

The proposed cross and auto covariance estimators (11) and (19) require the threshold value
of noise dependence in advance. First we investigate an accuracy of the threshold value selected
by the test statistic (9) and (16). The bivariate MA(2) noise process has the true threshold values
m*, m~ andm, being 2 tick times|(¢ |= 2). As long as the selected threshold value is not less
than 2 ticks, the proposed covariance estimat@r$ and~;(¢) are unbiased. Figure 4 plots the
probability of miss selection that the estimated threshold valwes~ andm, are less than 2
ticks, where the number of repetitions is one thousand. Although the probability of miss selection
with ¢ = 0.5 is the lowest of all across the sampling interval, the differences of the probability
betweenc = 0.5 and the others are small. And the probabilities of miss selection approach to
zero as the time interval becomes shorter (the sample size increases). The influence caused by the
miss selection of threshold values are reported in Tables 1 and 2. In case of the sample size =
770 (sampling interval = 30 seconds) in Table 1, we find &}y and¥;(¢)y with any c have
a somewhat bias by the miss selection of the threshold value. However, the bias of the estimators
with the higher trading intensity like 10 seconds becomes close to zero because the probability
of the miss selection of the threshold value is quite low. In case of the low trading intensity, we
use the sample over multiple days (for example 3 days) to obtain enough sample size. The fourth
panel in Table 1 shows the biases)of); and¥;(¢)q using sample over 3 days with the sampling
interval being 30 seconds are smaller than those in case of sample over 1 day (the third panel in
Table 1). The behaviors of the proposed cross and auto covariance estimators are much improved
by the use of sample over multiple days even in the low trading intensity.

7(¢) and4s(¢) with ¢ = 0,1 are biased as mentioned above. The bias of Voev and Lunde’s
(2007) cross-covariance estimatgl) is virtually zero for all cases because it is constructed by
the subsampling returns with the intervals being wide enough. However, RMSE)ok larger
than?¥(¢)(y with anyc and RMSE ratio ofy(¢) to 4(¢)p; is more than 1 as summarized in Table 2.

The large RMSE ofj(¢) comes from a large standard deviation induced by the longer intervals for
construction ofy(¢) relative to that fory(¢) .

The large standard deviation of the covariance estimator also makes an impact on behavior
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of the cross and auto correlations of the noises. We compare the cross-correlations computed by
the proposed variance and covariance estimators; tiéf)is= 4(¢);/+/%,(0)35(0), and the

method introduced in Voev and Lunde (2007). Voev and Lunde’s (2007) cross-correlation is com-
puted byp(¢) = %(¢)/(d, 65) wheres?: andg; are estimates of the noise variances by subsampling
realized variance with one-minute returns and dividing by twice the number of returns. Figures 5
and 6 show empirical distributions of the cross-correlations in cases of the true cross-correlations
p(0) = 0.87 andp(2) = 0.26. We find that the cross-correlation estimaté) have a higher degree

of concentration around the true correlation value than that©fin all sampling intervals.

Table 3 summarizes the size and power of test statistics for significance of cross and auto co-
variance estimators as proposed in (14), (21), (22) and Voev and Lunde (2007). The size of the
proposed test statistic takes around the nominal size, but the size of Voev and Lunde’ (2007) test
statistict*(¢)y 1, is large. Figure 7 shows asymptotic distribution (standard normal) and empirical
distributions of¥(¢);;; and#(¢) which are standardized hy, andy/V[5(¢)]. Although the stan-
dardized empirical distribution of(¢)[;; is close to the standard normal distribution, thatjof)

Is heavily tailed. The proposed test statistic also has a larger power as the sample size increases.

Next we summarize the influence &f, and X, selected at fixedv, underiM, = chl/?’ on the
variance estimation. Although the value«$hould be determined in accordance with the depen-
dence of the noises, we do not know about the dependence in advance. Even in this simulation
setting, it is not easy to select the optimal value-.oln general, when noise processes have more
dependence, the value othould be large. The behavior of the covariance estimators and the test
statistics would be also influenced by the value.dflowever, we find that the performance of the
proposed statistics with anydoes not change so much as we have seen in Tables 1, 2 and 3.

So far, we have assumed that the equilibrium price follows ampibcess without drift as in
(1). Now we consider the equilibrium price follows ai fprocess with drift. The product of the
noises dominates that of the drift term as the length of the interval shrinks to zero. However, it is
not clear whether the influence of the drift is negligible because the estimators and test statistics

proposed in this paper are based on the expanded intervals in (10) and (18). In this simulation, we
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add a drift term to the stochastic differential equations:

AP () = udt + o) [, /1= X2dW () + Ndw® (t)], I=1,2, 27)

whereyy, is a constant antju, 112) is set ag0.1,0.1), (0.5,0.5) and(1, 1). We estimaté)(¢);; and

45(¢)p) under the above settings. Table 4 represents the bias and RMSE ratio of thehyt@nd

45(£)py, which are estimated using the data generation process without drift as in (22). The biases
of the estimators are quite small and the RMSE ratios take values of around one, even in the case
of rapid trend acceleration whefg,, u2) = (1,1). We find that the cross and auto covariance

estimators of the noises are not substantially affected by the presence of the nonzero drift term.

5.1.2 Bivariate autoregressive noise

We have investigated the behaviors of covariance estimators of moving average noise processes
and the test statistics for finding the threshold values (9), (16) and the significance (14), (21), (22)
under the regular and synchronous sampling. In the next experiment, we consider the irregular and
non-synchronous sampling where the average observed time interval for asset 1 and 2 are 10 and
5 seconds because this sampling scheme is more realistic for the actual trading system. And we
employ bivariate autoregressive noise processes whose autocorrelation decays gradually to zero,
but is not truncated at some finite lag. Although Assumption (1b) is approximately valid, it is
important to investigate the finite sample properties of the covariance estimators of autoregressive
noises. We generate the noisgsg) andd(¢) by the following bivariate AR(1) model every one

second,

n(t) = 0.6n(t—1)+0.20(t—1)+e,t),

() = 02n(t—1)+0.608(t—1)+est).

After the summing of equilibrium price and noise at the same period, the observed price is ran-

domly selected by Poisson sampling with mean durations for asset 1 and 2 being 10 and 5 seconds.
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In the irregular and non-synchronous samplifig; 1 represents one second. With these simula-
tion settings, we obtain, on average, 900 realizations of samplé\ginath ¢/ = 0. On the other
hand, the average sample size\ofwith | ¢ |> 0 is 450. Then the corresponding numbers\éf
and K, with somec are equal tdc, M,, K,) =(4, 30, 15), (2,15, 30), (1,8,45) and(0.5,4, 110).

Tables 5 and 6 summarize the bias and RMSE of the proposed cross and auto covariance
estimatorsy(¢);4, 75(¢);q and the Voev and Lunde’s (2007) cross-covariance estimator For
the cross-covariance estimators, the biaseg 0fi; and(¢) are virtually zero, and (/) has a
smaller RMSE thary(¢) for all /. The smaller RMSE ofj (/) comes from the shorter intervals
for construction ofy () relative to that fory(¢). For the autocovariance estimators, the biases are
close enough to zero and the RMSESs are the almost the same valuecfdr all

Figure 8 shows the empirical distributions of cross-correlation and autocorrelaiton estimates
p(0) = (0 1/+/30)13s(0) 1 and ps(€) = As(€);/4s(0)y. We find that the correlation esti-
mates take around the true correlation. Figures 9 and 10 show the standardized distribution of the
cross and auto covariance estimat®fé);; andy;(¢)q with each value of. The average sample
size within each subserig¥, is 4 whenc is equal to 0.5. A few standardized empirical distri-
butions have heavy tail caused by smial} and approach to the standard normatascreases.
In the empirical application, we should select the value abt to be)M, too small. However,
most histograms could be approximated by the standard normal distribution and the influences by
the different values of are very small among the proposed statistics. Therefore, these simulation
results show that the proposed covariance estimator and test statistics have a good performance

and are robust for selection okven in case of autoregressive noises.

5.2 Empirical illustration

We have established the covariance estimators (11) and (19) of bivariate noise processes and the
test statistics (9) and (16) for finding the threshold values and the significance (14), (21), (22) in

sections 3 and 4. In this subsection we provide the details of implementing them in practice. We

It is noted that the RMSE of;;(¢) for £ = 1,2 takes somewhat larger values than thatgf¢) for the other.
This is caused by smalle¥, , for ¢ = 1, 2; that is, a sample size for asset 2. In this experim@at; and N, o are
aboutl/6 and1/2 of N, , for the other/ because the average observed time interval of asset 2 is set as 5 seconds.
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illustrate a scheme of whole procedure for the estimation and testing for dependence of microstruc-

ture noise as follows:
e Univariate noise process

— Threshold value step:The threshold value:; of univariate noise dependence is sta-

tistically selected through the test statistic (16).

— Estimation step: Estimate the variance and the autocovariapgé) of the noise with

¢ > 0 using (19).

— Test significance step:Test the null hypotheses,(0) = 0 by (21) andy,(¢) = 0 by
(22).

e Bivariate noise processes

— Threshold value step: The threshold values of cross-sectional noise dependerice

andm~ are statistically selected through the test statistic (9).
— Estimation step: Estimate the cross-covariangg’) of the noises using (11).

— Test significance stepTest the null hypothesig(¢) = 0 by (14).

We apply these statistics to high-frequency transaction prices of four stocks on the Osaka Se-
curities Exchange: OMRON Corporation (OC) and Murata Manufacturing Co., Ltd. (MM) from
manufacturing industry, Ono Pharmaceutical Co., Ltd. (OP) and Santen Pharmaceutical Co., Ltd.
(SP) from medical industry. The trading day on the Osaka Securities Exchange is divided into
morning (9:00-11:00 local time) and afternoon (12:30-15:10) sessions. As illustrated in Andersen,
Bollerslev and Cai (2000), transaction prices at the opening and closing are more volatile than any
other transaction prices. This is due to the call auction to determine the opening and closing prices.
In this empirical illustration, we use the transaction prices during from 9:05 to 15:05 to estimate
the cross and auto covariances of the noises.

For univariate noise process, we start with testing whethe€f £, .| = 0 or E3[Z; 1. x] # 0 for

all £ with a large valuell through the test statistic (16) for the identificatiomof as described
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in section 4.2. When the total number{of, ,, } for each? is not large enough for the inference,

we only have to use samples in multiple days to obtain a large sample size. In the case of high-
frequency data foD days, we defineléd) as the total number ofZ, .} on thed-th day where
d={1,---,D}. We setD = 245 where the sample period is from October 2, 2006 to September
28, 2007. We obtaif 2, 1, - - ’Zl,é,nﬁ”} on the first day and 2, , ,,a) 4, -~ ,Zl’évnél)mém} on

9 We set

the second day. The total number{df, ;. } in the sample period %/, , = Zle n§
L = 70 seconds. If the null g{Z; 70x] = 0 is not rejected, we test the null;EZ; 60 1] = 0. We
continue to test sequentially until the null is rejected. Finally, we regard the distance where the
null is rejected the first time as the estimator of threshold valye

Next we estimate the variance of noigg0) by (19) and test the null hypothesjs(0) = 0 us-
ing (21). If the test statistic (21) rejects the null, we estimate the autocovariance of the,f{djse
by the estimator (19) and check its significance through the test statistic (22). The significance level
is set at 0.05. Table 7 (a) shows the variance estimate of the noise, the test statistic (21) for its sig-
nificance and the noise-to-signal ratio which is the ratio between the variance estimate of the noise
and the integrated variance estimate using a realized kernel-based estimator of Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008). We confirm that the variance of market microstructure noise
in each asset is significantly larger than zero. Table 7 (b) shows the test statistic (22) for the sig-
nificance of the autocovariance. The dependence of the noise in OC, MM, OP and SP disappear
at around 60 seconds. Figure 11 plots four autocorrelation fungligés = 4, (¢) /4,(0). We can
see significantly negative and positive autocorrelations of microstructure noise in OC, MM and SP.
The negative autocorrelations at small lags imply that there exists the opposite orders within small
period that buying (selling) at present follows selling (buying) at small lags. On the other hand,
the positive autocorrelations at higher lags would be induced by the clustering of order flow which
occurs in case of buying or selling pressure. These features are confirmed in Bandi and Russell
(2006).

For bivariate noise processes, we use the test statistic (9) for the identificationafidm
estimate the cross-covariance by (11), and judge the significance of the cross-covariance through

the test statistic (14). The results are reported in Table 8. In both pairs between the same industries
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and between different industries, there exist cross-covariances significantly different from zero
within —33 < ¢ < 66 for OC-MM, —57 < ¢ < 47 for OC-OP,—62 < ¢ < 0 for OC-SP,

—48 < ¢ < 68 for MM-OP, —34 < ¢ < 68 for MM-SP, and—59 < ¢ < 42 for OP-SP, respectively.

Figure 12 plots the six cross-correlation functigit§) = 4(¢)/+/4,(0)7s(0). These plots show

that the market microstructure noises among some assets display asymmetric and different cross-
sectional dependence patterns. Especially the asymmetric cross-correlation in OC and SP captures
their lead-lag relationship. Although we do not go into the details, we find that the proposed test
statistics and cross and auto covariance estimators of the bivariate noise processes provide valuable

insights for the analysis of market microstructure.

6 Concluding remarks

Market microstructure noise occurs in the market with trading imperfections, frictions and in-
formational effects. In this paper, we propose unbiased and consistent estimators of cross and
auto covariances of the noises and derive the asymptotic distributions of them. Through Monte
Carlo simulation, we find that the proposed estimator has small mean squared error. For the cross-
covariance estimation, our estimator has smaller mean squared error than Voev and Lunde’s (2007).
The larger mean squared error of Voev and Lunde’s comes from a large standard deviation induced
by a too wide time interval for construction of their cross-covariance estimator. Our estimator is
based on the interval with proper length such that the dependence of the noise disappears. The
length is determined by testing procedure proposed in this paper. Furthermore, we also propose
the test statistics for the significance of the cross and auto covariances of the noises. We confirm
that our test statistics have good empirical size and power properties.

The empirical illustration confirms that the proposed statistics enable to capture various noise
dependence patterns in several assets. The statistical analysis of market microstructure noise would
provide some evidence on the influence of market regularity and the trading mechanism on asset
pricing in financial markets. For that reason, the proposed method will shed more light on market

microstructure analysis.
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Appendix

The proof of Lemma 1

Let the start and end times of intervals and By, be Ay, B, and Ay, By; thatis, Ay, = ( Ay, Ay ]

and By, = ( @,B_k |. We consider the dependence betwegn and Z, .., for any i such that

Biyn — Ay > 0. Itis obvious thatZ, ;. has finite dependence from (1b) and (1d) in Assumption

1. Although there are some central limit theorems for finite dependence, as in Hoeffding and
Robbins (1948) and Serfling (1968), we apply the results given by Theorem 3.1 in Politis, Romano
and Wolf (1997) because our studies are applicable to more general dependence cases like the
mixing sequence. Assumption 2 implies that the conditional variance of a standardized sample
mean of{ Z; /41, . . ., Zow+n } fOr anyk’ approaches the limiting valu;%f. The condition for the
strong mixing coefficient in Theorem 3.1 of Politis, Romano and Wolf (1997) is satisfied from (1b)
in Assumption 1. Therefore, it suffices to show the following condition (C1) for the application of

their central limit theorem.
(C1) Ey|Zi4]?? < oo, for somes > 1.

Let An(Ay) = n(A4y) — n(Ax) and Ad(By) = 6(By) — d(By,) be the differences between the

noises on each interval, andBy,. Z, is decomposed as:

Zuw = (P(A) = () (Po(B) - PuB0) = [

+ /A o1 (w)dW1 (w) AS(By) + / oo (W) dWa (W) An(Ay) + An(A)AS(By).  (28)

By

al(u)dwl(u)/ oo (u)dWs(u)

By,

We takeo (), 02(t) < C whereC'is a constant because(t) ando,(t) are bounded. On each

interval A;, and By,:

26 243 28 283
En| /A a(waWi(w)| < |C[7Ey| /A AWi(w)| < oo and /B o) dWa(w)|” < oo,
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Becaused, and B, are nonoverlapping, the high-order absolute moment of the first term in (28):

Eo| fy, 01(W)di () fy, ox(w)diWa)| = Eu [, () Wa(w]Eo| fy, on(u)aiVau)|”

is bounded. From (1c) in Assumption 1 and Minkowski's inequality:
26 - 28
Eu|Ad(Bi)|[™ < (11 6(Bg) llas + | 6(Bg) llas )™ < oo,

where|| 6(+) [|o5= (Elj\d(-)fﬂ)%. From (1d) in Assumption 1, the high-order absolute moment

of the second term in (28) has:
26 20 23
E.J‘ / al(u)dwl(u)Aé(Bk)‘ :E.J‘ / al(u)dwl(u)) E.J(Aa(Bk)( < 0.
Ak Ak

26
For the third term of (28), E‘ ka ag(u)dWZ(u)An(Ak)‘ < oo. From (1c) in Assumption 1, the

high-order absolute moment of the fourth term of (28) has:

— Eu|n( A5 )3( B ) — n( A% )3( By ) — n( Ax )8( By ) + n( Ak )8( By )|

Finally, we have

Eol Zen ™ < (I Ly, o1 (w)AWi () [, 2 ()dWalw) g + || [, o1 ()dWa () A6(By) [l

26
1 Sy, r2()dWa () An(AR) [l2g + | An(ADAS(BL) [as ) <00, (29)
Condition (C1) holds. We then obtain the asymptotic normality/of, from the central limit
result in Politis, Romano and Wolf (1997). [

The proof of Lemma 2
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To show the consistency of the variance estimator in (7), we applyonvergence of the subsam-
pling estimator given by Lemma 4.6.1 in Politis, Romano and Wolf (1999). Because the strong
mixing condition holds from (1b) in Assumption 1, it suffices to show the following conditions

(C2) and (C3) for the application of Lemma 4.6.1.
(C2) ;' ot Vo | M 200 | — 0 sit. My — o0 andMy /Ny — 0 s — oo,
(C3) (fun,)* is uniformly integrable.

Denote VJ[ 1/2Zth} asc?,. Then we have:

Ko—1 K,—1

2 2
Uzh Ue > O¢n — Oy sup O¢h — O f| — 0
6 2 ook < g X ot =kl = s lohu ot

s.t. My — oo asN, — oo from Assumption 2. Thus, (C2) holds.

For (C3), we can show @ZM{% < oo for someg > 1 from (1c) in Assumption 1 by
the similar argument as the proof of (C1). Let the centeflgd be Z;,. It is obvious that
EU‘ >t 2
Therefore, the order of | f;, Nz\ = E; ’N V2SN Zi, Y becomes)(1). Then (C3) holds

— O(N?’) because the sequent&;, } is m-dependent with | Z; |’

< 0Q.

because F f N£| < oo implies that(f, x,)* is uniformly integrable. Finally these results yield

6£7f—>05’f aSNZ—)OO. D

The proof of Theorem 2

The conditional expectation 6f(¢) is:

Eul4(0)] = = D EulZii] = (). (30)

LM L o Noe Nk
~ + + + +
Viuly(0)] = VU[ A > Zzg,k)} =3 > Vi (23] + N2 > > Cov 1233, 250
L T b p=1 j=1
Ny Ny my

1
SWZmEX{VU Zﬁ } NQZZmaX{‘COVU “,, Mﬂ]

t p=1 £ =1 j=1

}-o(%). e
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wherem,, is defined aSnaxj{CowJ[Zﬁ),Zﬁlj]# 0,0 < j < N, — k}. Because of the finite

dependence o{fo,ij e, my is finite. This implies \3[3(¢)] — 0 as N, goes to infinity and the
consistency of(¢) holds. Let the asymptotic varianceqpf’) bew? = limy, .o E;3 [{NQ/Q(&(E) -
7(6))}2] . We find that the asymptotic normality §f¢) can be proved by a similar argument to the
proof of Lemma 1. The difference betweg '}, and{Z,},", is the amount of dependence.

A sequence o{Zﬁ) ¢ has more dependence th@f . } ", becauséfﬁ) is constructed by the
product of returns on the nonoverlapping intervals where the length of each interval is longer than

those of4; andBy. However,Zij;) has finite dependence from (1b) and (1d) in Assumption(l.
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Figure 2: An example of each pair of the intervals,, By) for k = 1,2, 3.
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Figure 4: Probability of the estimated threshold value being less than 2.
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Figure 5: Empirical distributions
correlationp(0) = 0.87.
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Figure 7: Standardized empirical distributionsid¥) (left side) andy(¢) (right side), and the
standard normal distributions (solid line).
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Figure 8: Empirical distributions gi(¢) andps(¢).

Note: In the simulation for autocovariance estimator of univariate noise process, the sample sizes
of N,; andN,, are about /6 and1/2 of N, , for the other/ because the average observed time
interval of asset 2 is set as 5 seconds. Empirical distributiops(6f is from sample over 3 days

to obtain a large sample si2é, ;.
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Figure 9: Standardized empirical distributions of the cross-covariance estimator of noises (his-
togram) and the standard normal distributions (solid line).
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Table 7: Autocovariance of univariate noise process.

(a) The variance estimates and the test statistics for the variance.

Industry Manufacturers Medicals
ocC MM OP SP

noise variance 1.1% 10° 1.37x 10’ 2.54x 10’7 1.04x 10°

test statistics ~ 2240.84* 159.09* 142.27* 1251.67*

NSR 0.0049 0.0009 0.0014 0.0042

(b) The test statistics for the autocovariance.

1 ocC MM OoP SP
1 -3.22¢ (25132) -5.00 (43753) -1.19 (14838) -1.99 (12163)
2 -3.11" (15821) -3.55 (31658) -0.46  (8542) -0.95 (6936)
3 -2.71" (14909) -1.52 (29671) 1.07 (7227)  0.30 (5813)
4 -2.58" (14696) -3.66 (28661) -0.08 (6415) 0.24 (5677)
5 -1.92 (12958) -3.18 (27087) -0.35 (5680) -0.83 (4855)
6 -2.04% (12599) -0.99 (27243) 0.21 (5567) -0.72 (4786)
7 -2.00" (11752) -4.0Z2 (25902) -0.45 (5130) -0.37 (4385)
8 -0.68 (11599) -2.60 (25476) -0.63 (5125) 0.25 (4390)
9 -152 (10923) -1.63 (24362) 0.22 (4855) -0.71 (3956)
10 -1.36 (11018) -2.88 (23916) 0.51 (4879) -0.03 (3960)
20 -0.14 (9123) -1.54 (21664) 0.72 (3643) 1.46 (3223)
22  0.17 (8870) -2.10 (21306) 1.46 (3432) 251 (3032
24 1.16 (8726) -0.65 (21264) 0.13 (3476) 260 (3048)
30 1.74 (9672) -1.07 (21414) 0.23 (3730) 0.76 (3581)
40 0.33 (8284) 0.23  (20047) 1.81 (3072) 0.22 (2690)
43 -0.04 (8148) -2.15 (19972) 3.05 (3077) 0.63 (2749)
50 -0.45 (8211) -0.50  (19996) 0.56 (2983) 0.39 (2775)
52 1.00 (8101) -1.10 (19868) 0.63 (2879) -3114 (2666)
54 0.16 (8093) -1.83 (19886) -0.70  (2927) -2100 (2798)
55 -0.02 (7985) -0.54 (19890) -0.85 (2903) -0.40 (2582)
60 5.79° (9709) 4.89° (21240) -0.43 (3521) 3.19 (3545)
61 1.71 (8705) -0.59 (20239) 1.96 (3273) -0.20 (3018)
62 0.82 (8497) 0.31  (19754) 0.68 (3009) 252 (2823)
63 -0.36 (8336) -0.53 (19989) 0.55 (2911) 2'81 (2843)
70 -0.45 (7989) -1.06  (19547) 1.24 (2850) 0.22 (2598)

Note: In the top table (a), the test statistic for the variance of noise is given by (21). The critical value at
5% significance level is equal to 3.84. NSR is an abbreviation for noise-to-signal ratio which is the ratio
between the variance estimate of the noise and the integrated variance estimate using a realized kernel-based
estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008). The bottom table (b) shows the test
statistic (22) for the significance of the autocovariance of noise fith0. The critical value of the test

statistic (22) is+1.96 at 5% significance level. Superscriptenotes significance at the 5% levels. The

numbers in parentheses represent a samplehsize
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Table 8: Test statistics for the cross-covariance of bivariate noise processes.

7 OC-MM OC-OP OC-SP MM-OP MM-SP OP-SP
70 -091  (10615)  1.30 (4217) 074 (3952)  -0.55 (6527)  -0.36 (6114)  0.89  (2366)
62 -050  (10801)  1.07 (4245)  -2.72  (4105)  -1.06 (6500)  -0.56 (6124) 053  (2360)
59 101  (10987) 1.28 (4207) 113 (4043)  -0.87 (6467)  0.80 (6006)  *2.48(2456)

57 049  (11071) 225  (4092)  -0.30 (3939)  -0.72 (6528)  -0.70 (6161)  0.82  (2478)
55 -0.30  (10966)  0.90 (4143) 218 (3863)  -0.68 (6355)  -0.80 (6107) -052  (2417)
48 -1.60  (10905) -1.26 (4171)  -0.57 (3825) 2551 (6500)  0.74 (6283) -0.68  (2455)
34 093  (10832) -1.32 (4205)  -0.88 (3889)  -0.96 (6572)  -2.22 (6213) -0.07  (2442)

33  -2.68* (10826) -0.79 (4317) 067 (3874)  -0.28 (6496)  -1.06 (6166)  0.60  (2386)
30 092  (10959) -0.05 (4225)  -1.06 (3959)  -0.44 (6562)  -0.59 (6306) 147  (2506)
25 -095  (10917) -1.25 (4251)  -0.88 (4051)  0.80 (6464)  1.56 (6191)  -1.06  (2442)
17  -013  (10862) -0.19 (4290)  -0.29 (4069)  -2'36 (6634)  0.31 (6283)  -0.38  (2448)
-0 -1.71 (11441) -1.16 (4398)  -0.77 (4016)  -1.74 (6868)  -0.72 (6431) -091  (2547)
-9 262 (11197) -2.47  (4335)  -1.12 (4225)  -1.98 (6863)  -0.79 (6549)  -1.49  (2649)
-8 -185  (11214) -0.87 (4506)  -1.74 (4096)  -244 (7025)  -0.51 (6474)  -152  (2668)
-7 -2.05* (11295) -1.09 (4528)  -0.03 (4108)  -1.97 (6993)  -1.62 (6556)  0.02  (2663)
6 -3.19* (11457) -1.35 (4575)  -2.25 (4082) -2.86° (7158)  -1.82 (6564) -057  (2616)
-5 145 (11411) -0.47 (4627)  -2.83 (4129) -3.88° (7121) -1.45 (6512)  -0.34  (2706)
-4 272 (11358) -0.19 (4703)  -1.34 (4200) -2.90 (7129) -2.90° (6659) -2.23° (2824)

-3 429 (11577) -1.01 (4776)  -1.13 (4404)  -2.97 (7300) -2.17° (6800) -1.87  (2894)

2 190  (11671) -1.25 (4808)  -0.88 (4474) 296 (7410) -2.96° (6739) -2.53° (2980)

-4 -252¢ (11942)  -1.49 (5019)  -0.53 (4657)  -2.46 (7824) -0.78 (6948)  -041  (3414)

0 232 (27263) -0.21  (12576) 3.58 (11042) -4.51° (17583) -0.81  (15319) 2.03 (9256)

1 -337* (12401) -1.39 (5239)  -0.67 (4751) -2.98 (7648)  -0.67 (6822) -1.54  (3257)

2 -2.64* (12046) -1.94 (4832)  0.07 (4461)  -3.56 (7391) -1.54 (6787)  -1.54  (2922)

3 -3.19% (11628) -1.67 (4712)  -0.68 (4437)  -4.81 (7149) -1.33 (6681) -1.32  (2807)

4 -2.99* (11473) -2.03  (4790) -0.78 (4245)  -4.39 (7141)  0.24 (6637) -1.12  (2853)

5  -217% (11454) -161 (4619)  -1.37 (4235)  -3.23 (7197) -2.05  (6659) -1.64  (2773)

6 -1.78  (11371) -2.08 (4496) -1.78 (4073)  -3.30 (7154)  -0.34 (6568) -0.73  (2647)

7 -3.87* (11308) -1.96 (4554)  0.24 (4026)  -3.24 (7081)  0.03 (6547) -1.62  (2613)

8  -354* (11486) -2.27° (4602)  0.38 (4141)  -3.18 (6987)  -2.14° (6554) -1.91  (2572)

9  -4.08* (11307) -357 (4541)  0.72 (4089)  -2.93 (6975)  -1.02 (6233) -1.42  (2640)
10  -1.87  (11247) -1.13 (4399)  -0.97 (4205)  -2:32 (6770)  -1.75 (6362) -1.31  (2551)
15  -2.98* (11265) -2.17 (4373) -0.73 (4168)  -2.45 (6874)  -0.85 (6347)  -3.3%1  (2459)

20 -2.83° (11053) -2.97 (4368)  0.89 (4049)  -1.35 (6556)  1.19 (6300) -1.53  (2419)
30 -1.98 (11014) -3.06¢ (4281)  0.53 (4024)  -2.18  (6700)  -0.44 (6251) -0.30  (2382)
42 -0.48  (10801) -0.68 (4206)  -0.02 (3961)  -2716 (6531)  1.91 (6247) 418  (2345)

43  -1.04  (10696) -0.99 (4187)  -0.42 (3981)  -2:77 (6462) 2.28°  (6156)  0.44  (2369)
47 -155  (10989) -2.25 (4116)  -0.29 (3897)  -1.93 (6547)  0.11 (6064) -0.66  (2336)
64 -0.05  (10916) -0.47 (4225)  -1.83 (3913)  -2:39 (6398)  -0.91 (6073) -0.65  (2337)
66  2.86* (10848)  0.61 (4067)  0.63 (3996)  -1.86 (6341)  1.19 (6108)  -0.10  (2424)
68 -0.67  (10927) -0.72 (4127)  -0.39 (4011)  -2716 (6560)  2.04°  (6092)  1.04  (2372)
70 004  (10733) -0.24 (4146)  -1.25 (3922) 173 (6445)  -0.02 (6140) 163  (2381)

Note: The test statistic for the significance of the cross-covariance of the bivariate noise processes is given

by (14). The critical value of the test statistics (14)Hi$.96 at 5% significance level. Superscriptienote
significance at the 5% levels. The numbers in parentheses represent a sample size
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