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Abstract

Market microstructure noise, which is induced by market frictions such as the bid-ask

bounce and the discreteness of the price change, generates deviations of observed price from

frictionless equilibrium price. Estimation of the noise dependence is of direct economic inter-

est because it sheds light on market microstructure effects such that the bid-ask bounce and

the clustering of order flow are related to negative and positive autocorrelations of the noises,

respectively. This paper proposes a test statistic for the dependence and cross and auto co-

variance estimators of the bivariate noise processes, and derives their asymptotic distributions.

The asymptotic distributions provide another test statistics for statistical significance for the

cross and auto covariances. Monte Carlo simulation shows the covariance estimators and test

statistics provide good performance in a finite sample. An empirical illustration confirms the

proposed statistics and estimators capture various dependence patterns in market microstruc-

ture noise.

Keywords: test statistic; market microstructure noise; time dependence; nonsynchronous ob-

servations; high-frequency data.
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1 Introduction

Market microstructure noise is induced by some market frictions: the bid-ask bounce, the dis-

creteness of price change and asymmetric information of traders, etc. A study about each of these

market frictions have been pioneered in market microstructure literature. Roll (1984) derives a

simple measure of estimating the bid-ask spread based on negative autocovariance of observed

return. Other covariance spread model is established by Stoll (1989) and George, Kaul and Ni-

malendran (1991). A related literature includes inferences about the decomposition of the bid-ask

spread using an indicator function driven by the direction of trade as in Glosten and Harris (1988),

Huang and Stoll (1997) and Madhavan, Richardson and Roomans (1997). Harris (1990) studies the

rounding effects by the discreteness of transaction price. The asymmetric information of traders

causes adverse selection components within bid-ask spread in both market maker system and limit

order market (see, e.g., Glosten and Milgrom 1985, Easley and O’Hara 1987, Copeland and Galai

1983, Foucault 1999 and Glosten 1994).

A recent microstructure noise analysis has provided a way to measure how much impact the

noise causes to transaction price because it deviates from frictionless equilibrium price by mi-

crostructure effects. Bandi and Russell (2006) propose an estimator to evaluate full-information

cost which is a difference between the transaction price and the unobserved price reflecting all

private and public information about the asset. Medahhi (2002) and Hansen and Lunde (2006)

study the variance of noise and correlation between the noise and an instanteneous volatility of

semimartingale price process which appear in the market with no frictions.

Many empirical analyses exhibit autocorrelations and read-lag relationship of cross-correlation

in observed intraday returns and these correlations could be induced by the dependence of mi-

crostructure noises. This paper studies a degree of the dependence of the microstructure noise.

The main contributions and results of the study are the followings: we propose a test statistic

for the dependence and cross and auto covariance estimators of bivariate noise processes and de-

rive their asymptotic distributions. Furthermore, we provide test statistics for significance of the

variance and covariance of the noise. We confirm that the proposed cross and auto covariance
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estimators and test statistics have a good performance in finite samples through Monte Carlo sim-

ulation. As an empirical illustration, the statistics are applied to high-frequency asset prices on

the Osaka Securities Exchange and we find various dependence patterns in market microstructure

noise.

The measurement of the noise dependence enables bias correction for the integrated variance

and covariance estimation, which is important for option pricing, the measurement of value-at-

risk, and portfolio evaluation. We must be careful to the noise which contaminates high-frequency

prices. Realized variance and covariance are not necessarily the best approaches.

In the literature on integrated variance estimation with noise, Zhou (1996) proposes a kernel-

based estimator, and Zhang, Mykland and Aı̈t-Sahalia (2005) suggest two scales of realized vari-

ance as a linear combination of realized variances at two frequencies, with Zhang (2006) extending

this estimator to multiple scales. Although these studies are conducted under an i.i.d. noise as-

sumption, market microstructure noise possibly has time dependence. Under the dependent noise

assumption, Äıt-Sahalia, Mykland and Zhang (2006) modify the two- and multiple-scale real-

ized variances, and Hansen and Lunde (2005, 2006) and Barndorff-Nielsen, Hansen, Lunde and

Shephard (2008) develop the kernel-based estimator. Bandi and Russell (2008) show the optimal

frequency based on the minimization of the mean squared error. For integrated covariance esti-

mation with dependent noise, Voev and Lunde (2007) show that Hayashi and Yoshida’s (2005)

cumulative covariance estimator is biased in the presence of cross-correlated noises and propose

modified cumulative covariance estimators based on kernel and subsampling methods. However,

it is important that the adequacy of these estimators such as their unbiasedness, consistency and

efficiency depend on the dependence structure of the noise process. Therefore, we should know

whether the market microstructure noise is time dependent and how the degrees of the dependence

are for the estimation of integrated variance and covariance.

Voev and Lunde (2007) propose a test statistic for the cross-sectional dependence of the noises

in order to determine the kernel bandwidth of their estimator. The main differences from Voev and

Lunde (2007) and our study are a choice of the intervals used for the cross-covariance estimation

of the noises and an evaluation of a variance of the cross-covariance estimator of the noises. First,
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Voev and Lunde’s (2007) cross-covariance estimator is based on subsampled interval whose length

is large enough in order to guarantee the unbiasedness of the estimator. If the interval is too wide,

the cross-covariance estimator may have a large variance. To take care of it, we propose a cross-

covariance estimator based on the interval with proper length where the dependence of the noise

disappears. The length of the interval is determined by a testing procedure proposed in this paper.

Second, although Voev and Lunde (2007) show the unbiasedness of the kernel-based cumulative

covariance estimator under dependent noise, their t-statistic uses an approximated variance of the

cross-covariance estimator under i.i.d. noise. As suggested in their paper, it is natural that this

approximation leads to t-statistics that are somewhat larger than they should be. On the other

hand, the test statistic derived in this paper does not require the i.i.d. noise approximation by using

subsampling methods.

The paper itself proceeds as follows. In section 2, the transaction price model and properties of

market microstructure noise are presented under a framework of high-frequency financial analysis.

We propose the test statistic for the cross-sectional dependence of noises in section 3. We provide

the cross and auto covariance estimators of the bivariate noise processes, their asymptotic distri-

butions, and the test statistics for their significance in section 4. Section 5 includes a simulation

experiment and an empirical illustration. We conclude the paper with an appendix that provides

proofs for the several lemmas and theorems.

2 Price process and market microstructure noise

We assume logarithmic equilibrium price processes of two assets,{P ∗
1 (t)} and{P ∗

2 (t)}, which

follow two-dimensional It̂o process without drift on a probability space(Ω,F ,P):

dP ∗
l (t) = σl(t)dWl(t), l = 1, 2, t ∈ [0, T ], (1)

d⟨W1,W2⟩t = ρ∗(t)dt, ρ∗(t) ∈ (−1, 1),
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whereW1 andW2 are standard Brownian motions. We assume that the initial value of the price

P ∗
l (0) is a constant andσl(t) > 0 is a bounded progressively measurable function.{P ∗

1 (t)} and

{P ∗
2 (t)} correspond to the logarithmic prices which appear in the market without trading imper-

fections, frictions and informational effects.

We make some notation to represent intraday returns and an irregularly nonsynchronous trad-

ing. r1,i := P1(ti) − P1(ti−1) is the i-th observed intraday return of an asset 1, andr2,j :=

P2(sj) − P2(sj−1) is the j-th one of an asset 2, whereti andsj are the end times of thei-th and

j-th intervals. The different notations of the transaction times for the two assets are due to the

nonsynchronous trading. A simple way to model high-frequency transaction price is to use hid-

den semimartingale processes, as named by Mykland and Zhang (2005). In this framework, the

logarithmic transaction pricePl is observed with market microstructure noise as follows:

P1(ti) = P ∗
1 (ti) + η(ti), P2(sj) = P ∗

2 (sj) + δ(sj), (2)

whereP ∗
l (t) is the logarithmic equilibrium price described in (1).η(ti) andδ(sj) are the market

microstructure noises in asset 1 and 2 which have many sources, including the presence of bid ask

spreads, the discreteness of prices change and the difference in trade sizes, etc. We assume the

market microstructure noises have the following properties.

Assumption 1. Market microstructure noise.

Let a vector of market microstructure noise of asset 1 and 2 beu(t) = (η(t) δ(t))′.

(1a) {u(t)} is a sequence of random variables with zero mean.

(1b) The bivariate noise processes are covariance stationary with autocovariance function, which

has finite dependence in the sense that:

Γ(ℓ) = E[u(t)u′(t − ℓ)] =

 γη(ℓ) γηδ(ℓ)

γδη(ℓ) γδ(ℓ)

 = 0, for all | ℓ |> m.

m is a finite positive number.Γ(ℓ) is a covariance matrix with finite elements.
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(1c) There exists some positive numberβ > 1 that satisfiesE
∣∣u(t)u′(s)

∣∣4β
< ∞ for all t, s.

(1d) The noise process is independent of the equilibrium price process.P ∗
l u(t), l = 1, 2.

To avoid complication of the subscript for (1b),γηδ(ℓ) andγδη(ℓ) are rewritten asγ(ℓ) andγ(−ℓ)

because ofγηδ(ℓ) = E[η(t)δ(t − ℓ)] andγδη(ℓ) = E[η(t − ℓ)δ(t)] = E[η(t)δ(t + ℓ)]. The auto

and cross correlation coefficients of the two noises are defined asρη(ℓ), ρδ(ℓ) andρ(ℓ). For (1d),

even if P ∗
l andu(t) are correlated, the dependence between the noises generally dominates the

dependence between the equilibrium price and noise as the number of high-frequency observa-

tions increases. Furthermore, Hansen and Lunde (2006) suggest that the independence assumption

between the equilibrium price and noise does not statistically damage the analysis of asset prices

with high trading intensities.

Our interest of the study is to estimate the covariance matrix in Assumption (1b) and charac-

terize the asymptotic and finite sample properties of the auto and cross covariance estimators of

bivariate noise processes. A test statistic for the cross-sectional dependence of the noises using

the subsampling method is introduced in section 3. We provide the auto and cross covariance es-

timators of the bivariate noise processes, their asymptotic distributions, and test statistics for their

significance in section 4.

3 Cross-sectional dependence of noises

Microstructure noise as well as equilibrium price are unobservable. We introduce a simple identi-

fication approach to measure cross-sectional dependence of the noises and propose a test statistic

to detect a distance where the dependence of the noises disappears.

3.1 How to measure cross-sectional dependence of noises

First we define expectation and variance conditional on the stochastic arrival times. Denote the

conditional expectation and variance given intervalsI i := (ti−1, ti] andJ j := (sj−1, sj] for all i, j

as EIJ[ · ] and VIJ[ · ]. We cannot identify the covariation of the equilibrium price processes that
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have martingale properties and the covariance of the market microstructure noises in the pair of

overlapping intervals because the covariation of the equilibrium price processes is not zero. On the

other hand, in the pair of the nonoverlapping intervals{I i ∩ J j = ∅}, we have:

EIJ

[ ∑
i,j

r1,ir2,j1{Ii∩Jj ]=∅}

]
= EIJ

[∑
i,j

eη,ieδ,j1{Ii∩Jj=∅}

]
, (3)

whereeη,i := η(ti) − η(ti−1) andeδ,j := δ(sj) − δ(sj−1). The product of returns on the nonover-

lapping intervals is used to identify the covariance of the noises as in Voev and Lunde (2007).

For the nonoverlapping intervals{I i ∩ J j = ∅} and ti−1 − sj > 0, the distance between

the intervals is defined asℓ = ti−1 − sj. In the case ofsj−1 − ti > 0, the difference of the

nonoverlapping intervals is denoted byℓ = −(sj−1 − ti). In Figure 1, the top panel (a) and the

lower panel (b) illustrate the former and latter cases, respectively. The nonoverlapping adjacent

intervals such thatti−1 − sj = 0 or sj−1 − ti = 0 are used in the case ofℓ = 0. In what follows, we

consider the case ofℓ > 0 because, for the other cases, we have only to replace the corresponding

definition ofℓ. It is noted thatℓ = ti−1 − sj > 0 implies{I i ∩ J j = ∅}. We define the product of

returns on thei-th andj-th intervals satisfyingti−1 − sj = ℓ > 0 as follows:

Zℓ,ij = r1,ir2,j, for all, i, j, such that ti−1 − sj = ℓ. (4)

The conditional expectation ofZℓ,ij is:

EIJ

[
Zℓ,ij

]
= EIJ

[
η(ti)δ(sj)

]
− EIJ

[
η(ti)δ(sj−1)

]
− EIJ

[
η(ti−1)δ(sj)

]
+ EIJ

[
η(ti−1)δ(sj−1)

]
= γ(ℓ + ∆ti) − γ(ℓ + ∆ti + ∆sj) − γ(ℓ) + γ(ℓ + ∆sj), (5)

where∆ti := ti − ti−1 and∆sj := sj − sj−1. For all ℓ taking more than a large enoughL such

thatγ(L) = 0, we obtainγ(ℓ) = 0 and EIJ

[
Zℓ,ij

]
= 0 from (1b) in Assumption 1. Now suppose

s∗ := mins{s | γ(L − s) ̸= 0, s ≥ 0}. This impliesγ(L) = γ(L − 1) = γ(L − 2) = · · · =

γ(L − s∗ + 1) = 0 andγ(L − s∗) ̸= 0, and EIJ

[
ZL,ij

]
= EIJ

[
ZL−1,ij

]
= EIJ

[
ZL−2,ij

]
= · · · =

EIJ

[
ZL−s∗+1,ij

]
= 0 and EIJ

[
ZL−s∗,ij

]
̸= 0 because ofγ(L − s∗) ̸= 0. Denoteℓ∗ = L − s∗.
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Then we haveγ(ℓ∗ + 1) = 0 andγ(ℓ∗) ̸= 0 and conclude that the distanceℓ∗ is the threshold

value of dependence of the noises. We note that whether EIJ

[
Zℓ,ij

]
= 0 does not necessarily imply

whetherγ(ℓ) = 0. This is because the sum of all cross-covariances in (5) possibly takes a value

of zero, even whereγ(ℓ) ̸= 0. To avoid this situation, we apply the method of determination for

ℓ∗ described above. Thus, a test statistic for determining the threshold value can be constructed by

using a sample mean ofZℓ,ij, which satisfies the nonoverlapping intervals with the distanceℓ.

3.2 Test statistic for cross-sectional dependence of noises

From Assumption (1b), the dependence of the two noises disappears when the noises are suffi-

ciently separated. In this subsection, we propose a test statistic to detect the threshold value as

in the previous subsection. For the construction of the test statistic, we define a sequence that

arrangesZℓ,ij in ascending order of indexi as{Zℓ,k}Nℓ
k=1. Nℓ is the total number of the products

of returns on the nonoverlapping intervals with the distanceℓ. We define thek-th pair of the se-

lected intervals asAk andBk. ThenZℓ,k is defined as a product of returns on nonoverlapping

intervalsAk andBk. Figure 2 illustrates each pair of intervals(Ak, Bk), (Ak+1, Bk+1) and(Ak+2,

Bk+2) for k = 1. We define the sample mean ofZℓ,k; that isZ̄ℓ,Nℓ
:= 1

Nℓ

∑Nℓ

k=1 Zℓ,k, as the esti-

mator ofEIJ[Zℓ,k]. Let fℓ,Nℓ
:=

(
Z̄ℓ,Nℓ

− EIJ

[
Z̄ℓ,Nℓ

])
N

1/2
ℓ be the theoretical standardization for

Z̄ℓ,Nℓ
. We make the following assumption for the asymptotic variance offℓ,Nℓ

which is given by

limNℓ→∞ EIJ

[(
fℓ,Nℓ

)2
]

= σ2
ℓ,f :

Assumption 2. VIJ

[
n−1/2

∑k′+n
k=k′+1 Zℓ,k

]
→ σ2

ℓ,f , uniformly in anyk′, asn → ∞. This means that

for any sequence{nNℓ
} that tends to infinity withNℓ, supk′

∣∣VIJ

[
n
−1/2
Nℓ

∑k′+nNℓ

k=k′+1 Zℓ,k

]
− σ2

ℓ,f

∣∣ → 0

asNℓ → ∞.

Next we consider the asymptotic normality of the estimator ofEIJ[Zℓ,k]. It is noted that{Zℓ,k}Nℓ
k=1

is a sequence of dependent and heterogeneously distributed random scalars because the variance

depends on the length of the irregularly observed interval and{Zℓ,k} is serially correlated. We

obtain the following lemma for the asymptotic normality of the estimator ofEIJ[Zℓ,k].
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Lemma 1. Suppose Assumptions 1 and 2 hold. AsNℓ goes to infinity, we have:

fℓ,Nℓ

σℓ,f

a→ N(0, 1). (6)

The proof is given in the Appendix.

Although the asymptotic varianceσ2
ℓ,f is unknown, we can construct a consistent estimator

of σ2
ℓ,f by applying a subsampling method first proposed by Carlstein (1986). Carlstein (1986)

considers variance estimation for a general statistic without specifying the dependence in a sta-

tionary sequence. Fukuchi (1999) and Politis, Romano and Wolf (1999) extend their results to

heteroskedastic observations.

We define theh-th subseries using{Zℓ,k}Nℓ
k=1 as follows:

{Zh
ℓ } :=

(
Zℓ,hMℓ+1, Zℓ,hMℓ+2, · · · , Zℓ,(h+1)Mℓ

)
, 0 ≤ h ≤ Kℓ − 1, Kℓ =

[
Nℓ/Mℓ

]
,

where[ · ] denotes the integer part of a real number,Mℓ is a number of observations within each

subseries{Zh
ℓ } andKℓ is a total number of subseries. The superscripth of {Zh

ℓ } represents that

the subseries take the sampleZℓ,k with k = hMℓ + 1, · · · , (h + 1)Mℓ. The variance estimator is

given by:

σ̂2
ℓ,f =

Mℓ

Kℓ

Kℓ−1∑
h=0

(
Z̄h

ℓ,Mℓ
− 1

Kℓ

Kℓ−1∑
h=0

Z̄h
ℓ,Mℓ

)2

, (7)

whereZ̄h
ℓ,Mℓ

is a sample mean of subseries{Zh
ℓ }. We have the following lemma for the variance

estimator̂σ2
ℓ,f .

Lemma 2. Suppose Assumptions 1 and 2 hold. LetMℓ be s.t. Mℓ → ∞ and Mℓ/Nℓ → 0 as

Nℓ → ∞. Then we have:

σ̂2
ℓ,f →L2 σ2

ℓ,f as Nℓ → ∞. (8)

The proof is described in the Appendix.
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The purpose of this subsection is to construct a test statistic to detect the threshold value of the

dependence of the noises. The test statistic is derived from the results of Lemmas 1 and 2. Let the

null hypothesis be EIJ[Zℓ,k] = 0 for all k, for givenℓ. The alternative hypothesis consists of all

possible deviations from the null. Then we have the following theorem for the test statistic.

Theorem 1. Suppose Assumptions 1 and 2 hold. AsNℓ goes to infinity, we have:

τ(ℓ) :=

√
NℓZ̄ℓ,Nℓ

σ̂ℓ,f

a→ N(0, 1) (9)

under the null hypothesis.τ(ℓ) diverges under the alternative.

The asymptotic normality of the test statistic follows directly from Lemmas 1 and 2.

The large numbers ofMℓ andKℓ are available for the variance estimation in (7) because the

high-frequency transaction data yield a large number ofNℓ. However, it is difficult to determine

the optimal numbers ofMℓ andKℓ that minimize the mean squared error ofσ̂2
ℓ,f because we do

not know the covariance structure of the noises. For fixedNℓ, an increase inMℓ (i.e. a decrease

in Kℓ) reduces the bias but increases the variance ofσ̂2
ℓ,f . It is known that the optimal asymptotic

rate ofMℓ is proportional toN1/3
ℓ for the subsampling variance estimation; that is, the asymptotic

formula isMℓ = cN
1/3
ℓ wherec depends on the noise process. We investigate the influence of the

numbers ofMℓ andKℓ selected underMℓ = cN
1/3
ℓ with somec through Monte Carlo simulation

in section 5.

Next, we summarize the procedure to identify the threshold value where the cross-covariance

of noises becomes zero. We first test the null hypothesis EIJ[ZL,k] = 0 for all k with a large value

L using the test statistic (9). The null hypothesis EIJ[ZL,k] = 0 would not be rejected because

the cross-covariance between sufficiently separated noises is zero from (1b) of Assumption 1. If

EIJ[ZL,k] = 0 is not rejected as expected, we then test whether EIJ[ZL−1,k] is zero. If EIJ[ZL−1,k] = 0

is not rejected, we proceed to judge the statistical significance of EIJ[ZL−2,k]. We continue to test

sequentially until the null is rejected. Finally we regard the distance where the null is rejected the

first time asℓ∗ = maxℓ{|τ(ℓ)| > c.v.} wherec.v. is the critical value of the test statistic (9).
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4 Consistent covariance estimators of noises

Once the threshold valueℓ∗ as described in the section 3 has been selected, we find that the cross

covariance of bivariate noise processesγ(ℓ) is zero whenℓ ≥ ℓ∗. However,γ(ℓ) is still unknown

for ℓ < ℓ∗. In subsection 4.1, we derive the cross-covariance estimator of bivariate noise processes

and its asymptotic distribution, and propose a test statistic for statistical significance of the cross

covariance. The related statistics for autocovariance of univariate noise process are established in

subsection 4.2.

4.1 Cross-covariance estimator of noises

We consider the estimation of the cross-covarianceγ(ℓ) in this subsection. For construction of

an unbiased estimator, we only have to remedy the nonoverlapping intervals so that all cross-

covariances in (5) exceptγ(ℓ) become zero by using the threshold value determined through the

test statistic (9). We usem+ andm− for the threshold values in the cases ofℓ > 0 andℓ < 0

instead ofℓ∗. Suppose the bivariate noise processes have finite cross-sectional dependence in the

sense thatγ(ℓ) = 0 for ℓ > m+ > 0 and for−ℓ > m− > 0. Whenℓ is positive, we definet(+)
i as

the first transaction time of asset 1, which followsti subject tot(+)
i − sj > m+ ands

(+)
j−1 as the last

transaction time of asset 2, which is followed bysj−1 subject toti−1−s
(+)
j−1 > m+. As ℓ is negative,

we defines(−)
j as the first transaction time of asset 2, which followssj subject tos(−)

j −ti > m− and

t
(−)
i−1 as the last transaction times of asset 1, which is followed byti−1 subject tosj−1 − t

(−)
i−1 > m−.

The returns on the intervals(ti−1, t
(+)
i ] and(t

(−)
i−1, ti] are denoted byr(+)

1,i := P1

(
t
(+)
i

)
− P1(ti−1)

andr
(−)
1,i := P1(ti) − P1

(
t
(−)
i−1

)
. For asset 2, the returns on the intervals(sj−1, s

(−)
j ] and(s

(+)
j−1, sj]

are denoted byr(−)
2,j := P2

(
s
(−)
j

)
− P2(sj−1) andr

(+)
2,j := P2(sj) − P2

(
s
(+)
j−1

)
, respectively. Then

Z
(±)
ℓ,ij , which modifiesZℓ,ij in (4), is defined as follows:

Z
(±)
ℓ,ij =


r
(+)
1,i r

(+)
2,j 1{ti−1−sj=ℓ} if ℓ > 0

r
(+)
1,i r

(+)
2,j 1{ti−1−sj=0} + r

(−)
1,i r

(−)
2,j 1{sj−1−ti=0} if ℓ = 0

r
(−)
1,i r

(−)
2,j 1{sj−1−ti=−ℓ} if ℓ < 0

(10)
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The top panel (a), the middle panel (b) and the lower panel (c) in Figure 3 illustrate each pair of

intervals withℓ > 0, ℓ = 0 andℓ < 0, respectively. For allℓ > 0, cross-covariances where the

distances between the noises are further thanm+ are zero. The nonoverlapping intervals described

in (b) and (c) are given by the same idea as in (a). The conditional expectation ofZ
(±)
ℓ,ij where

the indicator function takes one is EIJ

[
Z

(±)
ℓ,ij

]
= −γ(ℓ). We selectZ(±)

ℓ,ij for all i, j such that the

indicator function takes a value of one and define a sequence that arranges the selectedZ
(±)
ℓ,ij in

ascending order of indexi as{Z(±)
ℓ,k }Nℓ

k=1. Then the cross-covariance estimator is given by:

γ̂(ℓ) = − 1

Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k . (11)

The following theorem states the asymptotic normality of the cross-covariance estimatorγ̂(ℓ).

Theorem 2. Suppose Assumptions 1 and 2 hold. Then we have:

N
1/2
ℓ (γ̂(ℓ) − γ(ℓ))

a→ N(0, ω2
ℓ ), (12)

whereω2
ℓ = limNℓ→∞ EIJ

[{
N

1/2
ℓ (γ̂(ℓ) − γ(ℓ))

}2
]
.

The proof is described in the Appendix. Then the subsampling variance estimator is given by:

ω̂2
ℓ =

Mℓ

Kℓ

Kℓ−1∑
h=0

(
Z̄

(±),h
ℓ,Mℓ

− 1

Kℓ

Kℓ−1∑
h=0

Z̄
(±),h
ℓ,Mℓ

)2

, (13)

whereZ̄
(±),h
ℓ,Mℓ

is a sample mean of subseries{Z(±),h
ℓ } and theh-th subseries is:

{Z(±),h
ℓ } :=

(
Z

(±)
ℓ,hMℓ+1, Z

(±)
ℓ,hMℓ+2, · · · , Z

(±)
ℓ,(h+1)Mℓ

)
, 0 ≤ h ≤ Kℓ − 1, Kℓ =

[
Nℓ/Mℓ

]
.

The asymptotic distribution of̂γ(ℓ) established in Theorem 2 and the subsampling variance esti-

mator provide the test statistic for the null hypothesisγ(ℓ) = 0 and the alternativeγ(ℓ) ̸= 0.

Corollary 1. The test for cross-covariance of market microstructure noises.
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AsNℓ goes to infinity s.t.Mℓ → ∞ andMℓ/Nℓ → 0, we have:

τ ∗(ℓ) :=

√
Nℓ γ̂(ℓ)

ω̂ℓ

a→ N(0, 1) (14)

under the null hypothesis.τ ∗(ℓ) diverges under the alternative.

It is noted for the integrated covariance estimation that the bias of cumulative covariance estimator

by Hayashi and Yoshida (2005) is virtually zero when the test statistic (14) does not reject the

null γ(ℓ) = 0 for all ℓ. Even if the cumulative covariance estimator is unbiased, the noise has

a strong impact on its variance. An estimator applying subsampling method to the cumulative

covariance estimator by Hayashi and Yoshida (2005) is preferable for such case. It is the same as

the subsampling estimator by Voev and Lunde (2007).

4.2 Autocovariance estimator of noise

In the previous subsection, we have proposed the cross-covariance estimator of the noises and have

derived the test statistic for the significance of the cross-covariance. This framework is applicable

for estimation of the autocovariance of a univariate noise process. We briefly describe a consistent

autocovariance estimator of the noise in this subsection. We start with the construction of the

test statistic to find the threshold value of the dependence of univariate noise process. Define the

product of the returns on thei-th andj-th intervals for asset 1 satisfyingℓ = tj−1 − ti ≥ 0 as

follows:

Z1,ℓ,ij = r1,ir1,j, for all i, j, such thattj−1 − ti = ℓ ≥ 0. (15)

Let {Z1,ℓ,k}
N1,ℓ

k=1 be a sequence that arrangesZ1,ℓ,ij in ascending order of indexi. N1,ℓ is the total

number of a sequence{Z1,ℓ,k}. The null hypothesis is EIJ[Z1,ℓ,k] = 0 for all k for givenℓ, which

impliesγη(ℓ) = 0, and the alternative hypothesis consists of all possible deviations from the null.

13



The test statistic for this hypothesis is given by:

τη(ℓ) :=

√
N1,ℓ Z̄1,ℓ,N1,ℓ

σ̂1,ℓ,f

, (16)

σ̂2
1,ℓ,f is a subsampling estimator ofσ2

1,ℓ,f = limN1,ℓ→∞ EIJ

[(
f1,ℓ,N1,ℓ

)2
]
, wheref1,ℓ,N1,ℓ

:=
(
Z̄1,ℓ,N1,ℓ

−

EIJ

[
Z̄1,ℓ,N1,ℓ

])
N

1/2
1,ℓ andZ̄1,ℓ,N1,ℓ

is a sample mean of{Z1,ℓ,k}.

The subsampling variance estimator is denoted by:

σ̂2
1,ℓ =

M1,ℓ

K1,ℓ

K1,ℓ−1∑
h=0

(
Z̄h

1,ℓ,M1,ℓ
− 1

K1,ℓ

K1,ℓ−1∑
h=0

Z̄h
1,ℓ,M1,ℓ

)2

, (17)

whereZ̄h
1,ℓ,M1,ℓ

is sample mean of theh-th subseries{Zh
1,ℓ}:

{Zh
1,ℓ} :=

(
Z1,ℓ,hM1,ℓ+1, Z1,ℓ,hM1,ℓ+2, · · · , Z1,ℓ,(h+1)M1,ℓ

)
, 0 ≤ h ≤ K1,ℓ−1, K1,ℓ =

[
N1,ℓ/M1,ℓ

]
.

Under the null we haveτη(ℓ)
a→ N(0, 1) asN1,ℓ goes to infinity s.t.M1,ℓ → ∞ andM1,ℓ/N1,ℓ → 0.

We define the threshold value of the finite dependence of noise for asset 1 asm1 in the sense that

the autocovariance functionγη(ℓ) for all ℓ > m1 is zero. The test statistic (16) enables us to

identify the threshold valuem1.

To derive the autocovariance estimator of the noise, we constructZ
(±)
1,ℓ,ij for all i, j satisfying

tj−1 − ti = ℓ ≥ 0 using the selected threshold valuem1 as follows:

Z
(±)
1,ℓ,ij = r

(−)
1,i r

(+)
1,j =

(
P (ti) − P

(
t
(−)
i−1

))(
P

(
t
(+)
j

)
− P (tj−1)

)
,

for all i, j, such thattj−1 − ti = ℓ ≥ 0, (18)

wheret
(+)
j is the first transaction time, which followstj subject tot

(+)
j − ti > m1, andt

(−)
i−1 is

the last transaction time, which is followed byti−1 subject totj−1 − t
(−)
i−1 > m1. Then we have

EIJ[Z
(±)
1,ℓ,ij] = −γη(ℓ) for all ℓ. We define a sequence that arrangesZ

(±)
1,ℓ,ij in ascending order of

index i as{Z(±)
1,ℓ,k}

N1,ℓ

k=1 . The autocovariance estimator of the noise and its asymptotic distribution

14



are given by:

γ̂η(ℓ) = − 1

N1,ℓ

N1,ℓ∑
k=1

Z
(±)
1,ℓ,k, N

1/2
1,ℓ

(
γ̂η(ℓ) − γη(ℓ)

) a→ N
(
0, ω2

η,ℓ

)
, (19)

whereω2
η,ℓ = limN1,ℓ→∞ EIJ

[{
N

1/2
1,ℓ (γ̂η(ℓ)−γη(ℓ))

}2
]
. The subsampling variance estimator ofω2

η,ℓ

is given by:

ω̂2
η,ℓ =

M1,ℓ

K1,ℓ

K1,ℓ−1∑
h=0

(
Z̄

(±),h
1,ℓ,M1,ℓ

− 1

K1,ℓ

K1,ℓ−1∑
h=0

Z̄
(±),h
1,ℓ,M1,ℓ

)2

, (20)

whereZ̄
(±),h
1,ℓ,Mℓ

is a sample means of theh-th subseries{Z(±),h
1,ℓ }:

{Z(±),h
1,ℓ } :=

(
Z

(±)
1,ℓ,hM1,ℓ+1, Z

(±)
1,ℓ,hM1,ℓ+2, · · · , Z

(±)
1,ℓ,(h+1)M1,ℓ

)
, 0 ≤ h ≤ K1,ℓ−1, K1,ℓ =

[
N1,ℓ/M1,ℓ

]
.

The test statistic to find whether the autocovariance of the noise is zero is defined as follows.

Corollary 2. The test for autocovariance of market microstructure noise.

• Case ofℓ = 0; that is, test for the variance of the noise.

Let the null hypothesis and the alternative beγη(0) = 0 and γη(0) > 0. AsN1,0 goes to

infinity s.t. M1,0 → ∞ andM1,0/N1,0 → 0, the one-sided test statistic for the variance of

the noise is asymptotically distributed as chi-square with one degree of freedom:

τ ∗
η (0) =

(√
N1,0 γ̂η(0)

ω̂η,0

)2 a→ χ2(1) (21)

under the null hypothesis.τ ∗
η (0) diverges under the alternative.

• Case ofℓ > 0.

Let the null hypothesis and the alternative beγη(ℓ) = 0 and γη(ℓ) ̸= 0. AsN1,ℓ goes to

infinity s.t. M1,ℓ → ∞ and M1,ℓ/N1,ℓ → 0, the test statistic for the significance of the

15



autocovariance of the noise is:

τ ∗
η (ℓ) :=

√
N1,ℓ γ̂η(ℓ)

ω̂η,ℓ

a→ N(0, 1) (22)

under the null hypothesis.τ ∗
η (ℓ) diverges under the alternative.

5 Monte Carlo simulation and empirical illustration

In this section, we investigate finite sample properties of auto and cross covariance estimators

and the test statistics proposed in this paper through Monte Carlo simulation, and apply them to

the high-frequency transaction prices of several stocks on the Osaka Securities Exchange as an

empirical illustration.

5.1 Finite sample properties of covariance estimators of noises

We employ the data generation process introduced in Voev and Lunde (2007). The equilibrium

price processesP ∗
1 andP ∗

2 follow the stochastic differential equations:

dP ∗
l (t) = σl(t)

[√
1 − λ2

l dW
(A)
l (t) + λl dW

(B)
l (t)

]
, (23)

dσ2
l (t) = κl(θl − σ2

l (t)) dt + ωlσ
2
l (t) dW

(B)
l (t), l = 1, 2,

whereW
(·)
l is a standard Brownian motion andσ2

l (t) follows the generalized autoregressive con-

ditional heteroskedasticity (GARCH) diffusion process.W
(A)
1 andW

(A)
2 are correlated; that is,

d⟨W (A)
1 ,W

(A)
2 ⟩t = ρ∗(t)dt. We use the anti-Fisher transformation to generate stochastic correla-

tion ρ∗(t):

ρ∗(t) =
exp(2x(t)) − 1

exp(2x(t)) + 1
,

dx(t) = κ3(θ3 − x(t))dt + ω3x(t)dW (t),
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wherex(t) follows the GARCH diffusion process. We take(λ1, λ2) = (0.5, 0.5), (κ1, κ2, κ3) =

(0.006, 0.037, 0.051), (θ1, θ2, θ3) = (2.719, 2.527, 0.200) and(ω1, ω2, ω3) = (0.0382, 0.216, 0.130).

The parametersκl, θl andωl, for l = 1, 2 are obtained by Drost and Werker’s (1996) relationship

between the continuous time and discrete time parameters which are the daily GARCH(1,1) esti-

mates based on Intel Corporation and Microsoft Corporation returns. The trading time per day is

set as 6.5 hours like in the NYSE and NASDAQ.

5.1.1 Bivariate moving average noise

In this simulation, we consider regular and synchronous sampling. First we employ bivariate

moving average noise processes which are truncated at some finite lag. The noiseη(t) andδ(t) are

generated by the following bivariate MA(2) model every a transaction time:

η(t) = ϵη(t) − 0.5 ϵη(t − 1) + 0.4 ϵη(t − 2) − 0.1 ϵδ(t − 1) + 0.15 ϵδ(t − 2),

δ(t) = ϵδ(t) − 0.4 ϵη(t − 1) + 0.15 ϵη(t − 2) − 0.1 ϵδ(t − 1) + 0.3 ϵδ(t − 2).

To set variance of the noise we use a noise-to-signal ratio defined as the variance of the noise

divided by the integrated variance. Hansen and Lunde (2006) report that noise-to-signal ratios take

a range from 0.0002 to 0.006 using transaction data for 30 stocks on the NYSE and NASDAQ. We

then set the variance of noise such that the noise-to-signal ratios of assets 1 and 2 average 0.005

and 0.002, respectively.

The transaction time interval is set to be 10, 15 and 30 seconds, respectively. Two transaction

price series, which are the sum of the equilibrium price and noise, are sampled synchronously at

equidistant times. In the regular and synchronous sampling,ℓ = 1 represents one tick time whose

length is equal to each sampling interval (10, 15 and 30 seconds). On each sampling interval, the

sample size ofNℓ (N2,ℓ) for ℓ > 0 per day is about 2300, 1550 and 770, respectively. On the other

hand, the irregular and non-synchronous sampling is applied in section 5.1.2.

We use the test statistic (9) and (16) to find the threshold value where the cross and auto covari-

ances of the noises become zero, and estimate the cross and auto covariances of the bivariate noise
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processes by (11) and (19). We compare the performance of the following covariance estimators.

• Cross and auto covariance estimators constructed by the sample mean ofZℓ,k andZ2,ℓ,k; that

is, γ̃(ℓ) := − 1
Nℓ

∑Nℓ

k=1 Zℓ,k and γ̃δ(ℓ) := − 1
N2,ℓ

∑N2,ℓ

k=1 Z2,ℓ,k. For example, the conditional

expectation ofZℓ,k is equal toγ(ℓ + ∆ti) − γ(ℓ + ∆ti + ∆sj) − γ(ℓ) + γ(ℓ + ∆sj) as

represented in (5). Therefore, we expect the cross-covariance estimatorγ̃(ℓ) with ℓ less than

the threshold value is biased and the autocovariance estimatorγ̃δ(ℓ) is also biased by the

same reason.

• The proposed cross and auto covariance estimatorsγ̂(ℓ) and γ̂δ(ℓ) in (11) and (19). These

estimators are unbiased if the threshold values are correctly selected. For the variance es-

timation in the test statistic (9) and (16), we use the asymptotic formulaMℓ = cN
1/3
ℓ and

M2,ℓ = cN
1/3
2,ℓ with somec to determineMℓ (the number of observations within each sub-

series) andKℓ (the total number of subseries). Denote the cross and auto covariance estima-

tors asγ̂(ℓ)[c] andγ̂(ℓ)[c]. We setc = 4, 2, 1 and0.5 to investigate the influence ofMℓ and

Kℓ. The corresponding numbers ofMℓ (M2,ℓ) andKℓ (K2,ℓ) are: (c,Mℓ, Kℓ) =(4, 52, 44),

(2, 26, 88), (1, 13, 176), (0.5, 7, 330) with sample size = 2300,(c,Mℓ, Kℓ) =(4, 46, 33),

(2, 23, 67), (1, 12, 129), (0.5, 6, 258) with sample size = 1550 and(c, Mℓ, Kℓ) =(4, 36, 21),

(2, 18, 42), (1, 9, 85), (0.5, 5, 154) with sample size = 770, respectively.

• The Voev and Lunde’s (2007) cross-covariance estimator:

γ̈(ℓ) =
1

S1S2

S1∑
b1=1

S2∑
b2=1

γ̈(ℓ)b ,

whereS1 andS2 are numbers of subgrids for asset 1 and 2. Voev and Lunde’s (2007) cross-

covariance estimator̈γ(ℓ) is based on subsampling method. They do not conduct a selection

of the threshold value before the cross-covariance estimation. Instead of the selection,S1

andS2 are taken as the values where length of subsampled interval is large enough in order

to eliminate a bias caused by three covariancesγ(ℓ+∆ti), γ(ℓ+∆ti+∆sj) andγ(∆sj). For

thebl-th subgrid (bl = 1, . . . , Sl, for l = 1, 2), define the subgrid returnsr1,ib := P1(tib) −
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P1(tib−1) with {tib}
Nb

1,ℓ

ib=1
and r2,jb := P2(sjb) − P2(sjb−1) with {sjb}Nb

2,ℓ

jb=1
. The shorthand

subscriptb is used in place ofb1 andb2. Thenγ̈(ℓ)b is denoted by:

γ̈(ℓ)b =


− 1

Nℓ,b

∑Nb
1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
r1,ibr2,jb1{t

ib−1
−s

jb=ℓ} for ℓ > 0,

− 1
Nℓ,b

∑Nb
1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
r1,ibr2,jb1{t

ib−1
−s

jb=0}∪{s
jb−1

−t
ib

=0} for ℓ = 0,

− 1
Nℓ,b

∑Nb
1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
r1,ibr2,jb1{s

jb−1
−t

ib
=−ℓ} for ℓ < 0,

(24)

with

Nℓ,b =


∑Nb

1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
1{t

ib−1
−s

jb=ℓ} for ℓ > 0,∑Nb
1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
1{t

ib−1
−s

jb=0}∪{s
jb−1

−t
ib

=0} for ℓ = 0,∑Nb
1,ℓ

ib=1

∑Nb
2,ℓ

jb=1
1{s

jb−1
−t

ib
=−ℓ} for ℓ < 0.

(25)

On the other hand, we propose a cross-covariance estimator based on the interval with proper

length where the dependence of the noise disappears. The length of the interval is determined

through the test statistic (9) and (16) proposed in this paper.

We also introduce Voev and Lunde’s (2007) test statisticτ ∗(ℓ)V L = γ̈(ℓ)/
√

V[γ̈(ℓ)] to test

the significance of cross-covariance of the noises. Their t-statistic uses an approximated

variance of the cross-covariance estimator under i.i.d. noise. The approximated variance is

given by:

V[γ̈(ℓ)] ≈


1

(S1S2)2

∑S1S2

b=1
1

Nℓ,b
(vx + 5σ2

ησ
2
δ ) for ℓ = 0,

1
(S1S2)2

∑S1S2

b=1
1

Nℓ,b
(vx + 4σ2

ησ
2
δ ) for ℓ ̸= 0,

(26)

wherevx := σ2
x sec,1σ

2
x sec,2 + 2σ2

ησ
2
x sec,1 + 2σ2

δσ
2
x sec,2 , σ2

x sec,l =
R 1
0 σ2

1(s)ds

23400/x
is thex-second

average integrated variance of each assetl. As described in Voev and Lunde (2007), the noise

variancesσ2
η andσ2

δ are estimated by subsampling realized variance with one-minute returns

and dividing by twice the number of returns. And the integrated variance is estimated by a

realized kernel-based estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008).

On the other hand, the test statistic derived in this paper is constructed by the subsampling
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variance estimator which does not require the i.i.d. noise approximation.

The proposed cross and auto covariance estimators (11) and (19) require the threshold value

of noise dependence in advance. First we investigate an accuracy of the threshold value selected

by the test statistic (9) and (16). The bivariate MA(2) noise process has the true threshold values

m+, m− andm2 being 2 tick times (| ℓ |= 2). As long as the selected threshold value is not less

than 2 ticks, the proposed covariance estimatorsγ̂(ℓ) and γ̂δ(ℓ) are unbiased. Figure 4 plots the

probability of miss selection that the estimated threshold valuesm̂+, m̂− andm̂2 are less than 2

ticks, where the number of repetitions is one thousand. Although the probability of miss selection

with c = 0.5 is the lowest of all across the sampling interval, the differences of the probability

betweenc = 0.5 and the others are small. And the probabilities of miss selection approach to

zero as the time interval becomes shorter (the sample size increases). The influence caused by the

miss selection of threshold values are reported in Tables 1 and 2. In case of the sample size =

770 (sampling interval = 30 seconds) in Table 1, we find thatγ̂(ℓ)[c] andγ̂δ(ℓ)[c] with any c have

a somewhat bias by the miss selection of the threshold value. However, the bias of the estimators

with the higher trading intensity like 10 seconds becomes close to zero because the probability

of the miss selection of the threshold value is quite low. In case of the low trading intensity, we

use the sample over multiple days (for example 3 days) to obtain enough sample size. The fourth

panel in Table 1 shows the biases ofγ̂(ℓ)[c] andγ̂δ(ℓ)[c] using sample over 3 days with the sampling

interval being 30 seconds are smaller than those in case of sample over 1 day (the third panel in

Table 1). The behaviors of the proposed cross and auto covariance estimators are much improved

by the use of sample over multiple days even in the low trading intensity.

γ̃(ℓ) and γ̃δ(ℓ) with ℓ = 0, 1 are biased as mentioned above. The bias of Voev and Lunde’s

(2007) cross-covariance estimatorγ̈(ℓ) is virtually zero for all cases because it is constructed by

the subsampling returns with the intervals being wide enough. However, RMSE ofγ̈(ℓ) is larger

thanγ̂(ℓ)[c] with anyc and RMSE ratio of̈γ(ℓ) to γ̂(ℓ)[1] is more than 1 as summarized in Table 2.

The large RMSE of̈γ(ℓ) comes from a large standard deviation induced by the longer intervals for

construction of̈γ(ℓ) relative to that for̂γ(ℓ)[c].

The large standard deviation of the covariance estimator also makes an impact on behavior
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of the cross and auto correlations of the noises. We compare the cross-correlations computed by

the proposed variance and covariance estimators; that isρ̂(ℓ) = γ̂(ℓ)[1]/
√

γ̂η(0)[1]γ̂δ(0)[1], and the

method introduced in Voev and Lunde (2007). Voev and Lunde’s (2007) cross-correlation is com-

puted byρ̈(ℓ) = γ̈(ℓ)/(σ̂η σ̂δ) whereσ̂2
η andσ̂2

δ are estimates of the noise variances by subsampling

realized variance with one-minute returns and dividing by twice the number of returns. Figures 5

and 6 show empirical distributions of the cross-correlations in cases of the true cross-correlations

ρ(0) = 0.87 andρ(2) = 0.26. We find that the cross-correlation estimateρ̂(ℓ) have a higher degree

of concentration around the true correlation value than that ofρ̈(ℓ) in all sampling intervals.

Table 3 summarizes the size and power of test statistics for significance of cross and auto co-

variance estimators as proposed in (14), (21), (22) and Voev and Lunde (2007). The size of the

proposed test statistic takes around the nominal size, but the size of Voev and Lunde’ (2007) test

statisticτ ∗(ℓ)V L is large. Figure 7 shows asymptotic distribution (standard normal) and empirical

distributions ofγ̂(ℓ)[1] andγ̈(ℓ) which are standardized bŷωℓ and
√

V̂ [γ̈(ℓ)]. Although the stan-

dardized empirical distribution of̂γ(ℓ)[1] is close to the standard normal distribution, that ofγ̈(ℓ)

is heavily tailed. The proposed test statistic also has a larger power as the sample size increases.

Next we summarize the influence ofMℓ andKℓ selected at fixedNℓ underMℓ = cN
1/3
ℓ on the

variance estimation. Although the value ofc should be determined in accordance with the depen-

dence of the noises, we do not know about the dependence in advance. Even in this simulation

setting, it is not easy to select the optimal value ofc. In general, when noise processes have more

dependence, the value ofc should be large. The behavior of the covariance estimators and the test

statistics would be also influenced by the value ofc. However, we find that the performance of the

proposed statistics with anyc does not change so much as we have seen in Tables 1, 2 and 3.

So far, we have assumed that the equilibrium price follows an Itô process without drift as in

(1). Now we consider the equilibrium price follows an Itô process with drift. The product of the

noises dominates that of the drift term as the length of the interval shrinks to zero. However, it is

not clear whether the influence of the drift is negligible because the estimators and test statistics

proposed in this paper are based on the expanded intervals in (10) and (18). In this simulation, we
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add a drift term to the stochastic differential equations:

dP ∗
l (t) = µldt + σl(t)

[√
1 − λ2

l dW
(A)
l (t) + λldW

(B)
l (t)

]
, l = 1, 2, (27)

whereµl is a constant and(µ1, µ2) is set as(0.1, 0.1), (0.5, 0.5) and(1, 1). We estimatêγ(ℓ)[1] and

γ̂δ(ℓ)[1] under the above settings. Table 4 represents the bias and RMSE ratio of them toγ̂(ℓ)[1] and

γ̂δ(ℓ)[1], which are estimated using the data generation process without drift as in (22). The biases

of the estimators are quite small and the RMSE ratios take values of around one, even in the case

of rapid trend acceleration where(µ1, µ2) = (1, 1). We find that the cross and auto covariance

estimators of the noises are not substantially affected by the presence of the nonzero drift term.

5.1.2 Bivariate autoregressive noise

We have investigated the behaviors of covariance estimators of moving average noise processes

and the test statistics for finding the threshold values (9), (16) and the significance (14), (21), (22)

under the regular and synchronous sampling. In the next experiment, we consider the irregular and

non-synchronous sampling where the average observed time interval for asset 1 and 2 are 10 and

5 seconds because this sampling scheme is more realistic for the actual trading system. And we

employ bivariate autoregressive noise processes whose autocorrelation decays gradually to zero,

but is not truncated at some finite lag. Although Assumption (1b) is approximately valid, it is

important to investigate the finite sample properties of the covariance estimators of autoregressive

noises. We generate the noisesη(t) andδ(t) by the following bivariate AR(1) model every one

second,

η(t) = 0.6 η(t − 1) + 0.2 δ(t − 1) + ϵη(t),

δ(t) = 0.2 η(t − 1) + 0.6 δ(t − 1) + ϵδ(t).

After the summing of equilibrium price and noise at the same period, the observed price is ran-

domly selected by Poisson sampling with mean durations for asset 1 and 2 being 10 and 5 seconds.
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In the irregular and non-synchronous sampling,ℓ = 1 represents one second. With these simula-

tion settings, we obtain, on average, 900 realizations of sample sizeNℓ with ℓ = 0. On the other

hand, the average sample size ofNℓ with | ℓ |> 0 is 450. Then the corresponding numbers ofMℓ

andKℓ with somec are equal to(c,Mℓ, Kℓ) =(4, 30, 15), (2, 15, 30), (1, 8, 45) and(0.5, 4, 110).

Tables 5 and 6 summarize the bias and RMSE of the proposed cross and auto covariance

estimatorŝγ(ℓ)[c], γ̂δ(ℓ)[c] and the Voev and Lunde’s (2007) cross-covariance estimatorγ̈(ℓ). For

the cross-covariance estimators, the biases ofγ̂(ℓ)[c] andγ̈(ℓ) are virtually zero, and̂γ(ℓ)[c] has a

smaller RMSE than̈γ(ℓ) for all ℓ. The smaller RMSE of̂γ(ℓ)[c] comes from the shorter intervals

for construction of̂γ(ℓ)[c] relative to that for̈γ(ℓ). For the autocovariance estimators, the biases are

close enough to zero and the RMSEs are the almost the same value for allc. 1

Figure 8 shows the empirical distributions of cross-correlation and autocorrelaiton estimates

ρ̂(ℓ) = γ̂(ℓ)[1]/
√

γ̂η(0)[1]γ̂δ(0)[1] and ρ̂δ(ℓ) = γ̂δ(ℓ)[1]/γ̂δ(0)[1]. We find that the correlation esti-

mates take around the true correlation. Figures 9 and 10 show the standardized distribution of the

cross and auto covariance estimatorsγ̂(ℓ)[c] andγ̂δ(ℓ)[c] with each value ofc. The average sample

size within each subseriesMℓ is 4 whenc is equal to 0.5. A few standardized empirical distri-

butions have heavy tail caused by smallMℓ and approach to the standard normal asc increases.

In the empirical application, we should select the value ofc not to beMℓ too small. However,

most histograms could be approximated by the standard normal distribution and the influences by

the different values ofc are very small among the proposed statistics. Therefore, these simulation

results show that the proposed covariance estimator and test statistics have a good performance

and are robust for selection ofc even in case of autoregressive noises.

5.2 Empirical illustration

We have established the covariance estimators (11) and (19) of bivariate noise processes and the

test statistics (9) and (16) for finding the threshold values and the significance (14), (21), (22) in

sections 3 and 4. In this subsection we provide the details of implementing them in practice. We

1It is noted that the RMSE of̂γδ(ℓ) for ℓ = 1, 2 takes somewhat larger values than that ofγ̂δ(ℓ) for the otherℓ.
This is caused by smallerN2,ℓ for ℓ = 1, 2; that is, a sample size for asset 2. In this experiment,N2,1 andN2,2 are
about1/6 and1/2 of N2,ℓ for the otherℓ because the average observed time interval of asset 2 is set as 5 seconds.
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illustrate a scheme of whole procedure for the estimation and testing for dependence of microstruc-

ture noise as follows:

• Univariate noise process

– Threshold value step:The threshold valuem1 of univariate noise dependence is sta-

tistically selected through the test statistic (16).

– Estimation step: Estimate the variance and the autocovarianceγη(ℓ) of the noise with

ℓ ≥ 0 using (19).

– Test significance step:Test the null hypothesesγη(0) = 0 by (21) andγη(ℓ) = 0 by

(22).

• Bivariate noise processes

– Threshold value step:The threshold values of cross-sectional noise dependencem+

andm− are statistically selected through the test statistic (9).

– Estimation step: Estimate the cross-covarianceγ(ℓ) of the noises using (11).

– Test significance step:Test the null hypothesisγ(ℓ) = 0 by (14).

We apply these statistics to high-frequency transaction prices of four stocks on the Osaka Se-

curities Exchange: OMRON Corporation (OC) and Murata Manufacturing Co., Ltd. (MM) from

manufacturing industry, Ono Pharmaceutical Co., Ltd. (OP) and Santen Pharmaceutical Co., Ltd.

(SP) from medical industry. The trading day on the Osaka Securities Exchange is divided into

morning (9:00-11:00 local time) and afternoon (12:30-15:10) sessions. As illustrated in Andersen,

Bollerslev and Cai (2000), transaction prices at the opening and closing are more volatile than any

other transaction prices. This is due to the call auction to determine the opening and closing prices.

In this empirical illustration, we use the transaction prices during from 9:05 to 15:05 to estimate

the cross and auto covariances of the noises.

For univariate noise process, we start with testing whether EIJ[Z1,L,k] = 0 or EIJ[Z1,L,k] ̸= 0 for

all k with a large valueL through the test statistic (16) for the identification ofm1 as described
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in section 4.2. When the total number of{Z1,ℓ,k} for eachℓ is not large enough for the inference,

we only have to use samples in multiple days to obtain a large sample size. In the case of high-

frequency data forD days, we definen(d)
ℓ as the total number of{Z1,ℓ,k} on thed-th day where

d = {1, · · · , D}. We setD = 245 where the sample period is from October 2, 2006 to September

28, 2007. We obtain{Z1,ℓ,1, · · · , Z
1,ℓ,n

(1)
ℓ
} on the first day and{Z1,ℓ,n(1)+1, · · · , Z

1,ℓ,n
(1)
ℓ +n

(2)
ℓ
} on

the second day. The total number of{Z1,ℓ,k} in the sample period isN1,ℓ =
∑D

d=1 n
(d)
ℓ . We set

L = 70 seconds. If the null EIJ[Z1,70,k] = 0 is not rejected, we test the null EIJ[Z1,69,k] = 0. We

continue to test sequentially until the null is rejected. Finally, we regard the distance where the

null is rejected the first time as the estimator of threshold valuem1.

Next we estimate the variance of noiseγη(0) by (19) and test the null hypothesisγη(0) = 0 us-

ing (21). If the test statistic (21) rejects the null, we estimate the autocovariance of the noiseγη(ℓ)

by the estimator (19) and check its significance through the test statistic (22). The significance level

is set at 0.05. Table 7 (a) shows the variance estimate of the noise, the test statistic (21) for its sig-

nificance and the noise-to-signal ratio which is the ratio between the variance estimate of the noise

and the integrated variance estimate using a realized kernel-based estimator of Barndorff-Nielsen,

Hansen, Lunde and Shephard (2008). We confirm that the variance of market microstructure noise

in each asset is significantly larger than zero. Table 7 (b) shows the test statistic (22) for the sig-

nificance of the autocovariance. The dependence of the noise in OC, MM, OP and SP disappear

at around 60 seconds. Figure 11 plots four autocorrelation functionsρ̂η(ℓ) = γ̂η(ℓ)/γ̂η(0). We can

see significantly negative and positive autocorrelations of microstructure noise in OC, MM and SP.

The negative autocorrelations at small lags imply that there exists the opposite orders within small

period that buying (selling) at present follows selling (buying) at small lags. On the other hand,

the positive autocorrelations at higher lags would be induced by the clustering of order flow which

occurs in case of buying or selling pressure. These features are confirmed in Bandi and Russell

(2006).

For bivariate noise processes, we use the test statistic (9) for the identification ofm+ andm−,

estimate the cross-covariance by (11), and judge the significance of the cross-covariance through

the test statistic (14). The results are reported in Table 8. In both pairs between the same industries
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and between different industries, there exist cross-covariances significantly different from zero

within −33 ≤ ℓ ≤ 66 for OC-MM, −57 ≤ ℓ ≤ 47 for OC-OP,−62 ≤ ℓ ≤ 0 for OC-SP,

−48 ≤ ℓ ≤ 68 for MM-OP,−34 ≤ ℓ ≤ 68 for MM-SP, and−59 ≤ ℓ ≤ 42 for OP-SP, respectively.

Figure 12 plots the six cross-correlation functionsρ̂(ℓ) = γ̂(ℓ)/
√

γ̂η(0)γ̂δ(0). These plots show

that the market microstructure noises among some assets display asymmetric and different cross-

sectional dependence patterns. Especially the asymmetric cross-correlation in OC and SP captures

their lead-lag relationship. Although we do not go into the details, we find that the proposed test

statistics and cross and auto covariance estimators of the bivariate noise processes provide valuable

insights for the analysis of market microstructure.

6 Concluding remarks

Market microstructure noise occurs in the market with trading imperfections, frictions and in-

formational effects. In this paper, we propose unbiased and consistent estimators of cross and

auto covariances of the noises and derive the asymptotic distributions of them. Through Monte

Carlo simulation, we find that the proposed estimator has small mean squared error. For the cross-

covariance estimation, our estimator has smaller mean squared error than Voev and Lunde’s (2007).

The larger mean squared error of Voev and Lunde’s comes from a large standard deviation induced

by a too wide time interval for construction of their cross-covariance estimator. Our estimator is

based on the interval with proper length such that the dependence of the noise disappears. The

length is determined by testing procedure proposed in this paper. Furthermore, we also propose

the test statistics for the significance of the cross and auto covariances of the noises. We confirm

that our test statistics have good empirical size and power properties.

The empirical illustration confirms that the proposed statistics enable to capture various noise

dependence patterns in several assets. The statistical analysis of market microstructure noise would

provide some evidence on the influence of market regularity and the trading mechanism on asset

pricing in financial markets. For that reason, the proposed method will shed more light on market

microstructure analysis.
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Appendix

The proof of Lemma 1.

Let the start and end times of intervalsAk andBk beAk, Bk andAk, Bk; that is,Ak = ( Ak, Ak ]

andBk = ( Bk, Bk ]. We consider the dependence betweenZℓ,k andZℓ,k+h for anyh such that

Bk+h − Ak ≥ 0. It is obvious thatZℓ,k has finite dependence from (1b) and (1d) in Assumption

1. Although there are some central limit theorems for finite dependence, as in Hoeffding and

Robbins (1948) and Serfling (1968), we apply the results given by Theorem 3.1 in Politis, Romano

and Wolf (1997) because our studies are applicable to more general dependence cases like the

mixing sequence. Assumption 2 implies that the conditional variance of a standardized sample

mean of{Zℓ,k′+1, . . . , Zℓ,k′+n} for anyk′ approaches the limiting valueσ2
ℓ,f . The condition for the

strong mixing coefficient in Theorem 3.1 of Politis, Romano and Wolf (1997) is satisfied from (1b)

in Assumption 1. Therefore, it suffices to show the following condition (C1) for the application of

their central limit theorem.

(C1) EIJ|Zℓ,k|2β < ∞, for someβ > 1.

Let ∆η(Ak) := η(Ak) − η(Ak) and∆δ(Bk) := δ(Bk) − δ(Bk) be the differences between the

noises on each intervalAk andBk. Zℓ,k is decomposed as:

Zℓ,k =
(
P1(Ak) − P1(Ak)

)(
P2(Bk) − P2(Bk)

)
=

∫
Ak

σ1(u)dW1(u)

∫
Bk

σ2(u)dW2(u)

+

∫
Ak

σ1(u)dW1(u)∆δ(Bk) +

∫
Bk

σ2(u)dW2(u)∆η(Ak) + ∆η(Ak)∆δ(Bk). (28)

We takeσ1(t), σ2(t) < C whereC is a constant becauseσ1(t) andσ2(t) are bounded. On each

intervalAk andBk:

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

<
∣∣C∣∣2β

EIJ

∣∣∣ ∫
Ak

dW1(u)
∣∣∣2β

< ∞ and EIJ

∣∣∣ ∫
Bk

σ2(u)dW2(u)
∣∣∣2β

< ∞.
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BecauseAk andBk are nonoverlapping, the high-order absolute moment of the first term in (28):

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∫

Bk
σ2(u)dW2(u)

∣∣∣2β

= EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

EIJ

∣∣∣ ∫Bk
σ2(u)dW2(u)

∣∣∣2β

is bounded. From (1c) in Assumption 1 and Minkowski’s inequality:

EIJ

∣∣∆δ(Bk)
∣∣2β ≤

(
∥ δ(Bk) ∥2β + ∥ δ(Bk) ∥2β

)2β
< ∞,

where∥ δ(·) ∥2β=
(
EIJ

∣∣δ(·)∣∣2β) 1
2β . From (1d) in Assumption 1, the high-order absolute moment

of the second term in (28) has:

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)∆δ(Bk)
∣∣∣2β

= EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

EIJ

∣∣∣∆δ(Bk)
∣∣∣2β

< ∞.

For the third term of (28), EIJ
∣∣∣ ∫

Bk
σ2(u)dW2(u)∆η(Ak)

∣∣∣2β

< ∞. From (1c) in Assumption 1, the

high-order absolute moment of the fourth term of (28) has:

EIJ

∣∣∆η(Ak)∆δ(Bk)
∣∣2β

= EIJ

∣∣η( Ak )δ( Bk ) − η( Ak )δ( Bk ) − η( Ak )δ( Bk ) + η( Ak )δ( Bk )
∣∣2β

≤
(
∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β

)2β

< ∞.

Finally, we have

EIJ

∣∣Zℓ,k

∣∣2β ≤
(
∥

∫
Ak

σ1(u)dW1(u)
∫

Bk
σ2(u)dW2(u) ∥2β + ∥

∫
Ak

σ1(u)dW1(u)∆δ(Bk) ∥2β

+ ∥
∫

Bk
σ2(u)dW2(u)∆η(Ak) ∥2β + ∥ ∆η(Ak)∆δ(Bk) ∥2β

)2β

< ∞. (29)

Condition (C1) holds. We then obtain the asymptotic normality offℓ,Nℓ
from the central limit

result in Politis, Romano and Wolf (1997).

The proof of Lemma 2.
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To show the consistency of the variance estimator in (7), we applyL2-convergence of the subsam-

pling estimator given by Lemma 4.6.1 in Politis, Romano and Wolf (1999). Because the strong

mixing condition holds from (1b) in Assumption 1, it suffices to show the following conditions

(C2) and (C3) for the application of Lemma 4.6.1.

(C2) K−1
ℓ

∑Kℓ−1
h=0 V IJ

[
M

1/2
ℓ Z̄hMℓ

ℓ,Mℓ

]
→ σ2

ℓ,f s.t.Mℓ → ∞ andMℓ/Nℓ → 0 asNℓ → ∞.

(C3) (fℓ,Nℓ
)4 is uniformly integrable.

Denote VIJ

[
M

1/2
ℓ Z̄hMℓ

ℓ,Mℓ

]
asσ2

ℓ,h. Then we have:

1

Kℓ

Kℓ−1∑
h=0

σ2
ℓ,h − σ2

ℓ,f ≤ 1

Kℓ

Kℓ−1∑
h=0

∣∣σ2
ℓ,h − σ2

ℓ,f

∣∣ = sup
0≤h≤Kℓ−1

∣∣σ2
ℓ,h − σ2

ℓ,f

∣∣ → 0

s.t.Mℓ → ∞ asNℓ → ∞ from Assumption 2. Thus, (C2) holds.

For (C3), we can show EIJ
∣∣Zℓ,k

∣∣4β
< ∞ for someβ > 1 from (1c) in Assumption 1 by

the similar argument as the proof of (C1). Let the centeredZℓ,k be Z∗
ℓ,k. It is obvious that

EIJ

∣∣∣ ∑Nℓ

k=1 Z∗
ℓ,k

∣∣∣4β

= O
(
N2β

ℓ

)
because the sequence{Z∗

ℓ,k} is m-dependent with EIJ
∣∣Z∗

ℓ,k

∣∣4β
< ∞.

Therefore, the order of EIJ
∣∣fℓ,Nℓ

∣∣4β
= EIJ

∣∣∣N−1/2
ℓ

∑Nℓ

k=1 Z∗
ℓ,k

∣∣∣4β

becomesO(1). Then (C3) holds

because EIJ
∣∣fℓ,Nℓ

∣∣4β
< ∞ implies that(fℓ,Nℓ

)4 is uniformly integrable. Finally these results yield

σ̂2
ℓ,f

a→ σ2
ℓ,f asNℓ → ∞.

The proof of Theorem 2.

The conditional expectation of̂γ(ℓ) is:

EIJ[γ̂(ℓ)] = − 1

Nℓ

Nℓ∑
k=1

EIJ[Z
(±)
ℓ,k ] = γ(ℓ). (30)

For the conditional variance of̂γ(ℓ), we have:

V IJ[γ̂(ℓ)] = VIJ

[
− 1

Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k

]
=

1

N2
ℓ

Nℓ∑
k=1

VIJ

[
Z

(±)
ℓ,k

]
+

2

N2
ℓ

Nℓ∑
k=1

Nℓ−k∑
j=1

CovIJ

[
Z

(±)
ℓ,k , Z

(±)
ℓ,k+j

]
≤ 1

N2
ℓ

Nℓ∑
k=1

max
k

{
VIJ

[
Z

(±)
ℓ,k

]}
+

2

N2
ℓ

Nℓ∑
k=1

m̃k∑
j=1

max
k

{∣∣∣CovIJ

[
Z

(±)
ℓ,k , Z

(±)
ℓ,k+j

]∣∣∣} = O
( 1

Nℓ

)
, (31)
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wherem̃k is defined asmaxj{CovIJ[Z
(±)
ℓ,k , Z

(±)
ℓ,k+j ]̸= 0, 0 < j ≤ Nℓ − k}. Because of the finite

dependence of{Z(±)
ℓ,k+j}

Nℓ
k=1, m̃k is finite. This implies VIJ[γ̂(ℓ)] → 0 asNℓ goes to infinity and the

consistency of̂γ(ℓ) holds. Let the asymptotic variance ofγ̂(ℓ) beω2
ℓ = limNℓ→∞ EIJ

[{
N

1/2
ℓ (γ̂(ℓ)−

γ(ℓ))
}2

]
. We find that the asymptotic normality ofγ̂(ℓ) can be proved by a similar argument to the

proof of Lemma 1. The difference between{Z(±)
ℓ,k }Nℓ

k=1 and{Zℓ,k}Nℓ
k=1 is the amount of dependence.

A sequence of{Z(±)
ℓ,k }Nℓ

k=1 has more dependence than{Zℓ,k}Nℓ
k=1 becauseZ(±)

ℓ,k is constructed by the

product of returns on the nonoverlapping intervals where the length of each interval is longer than

those ofAk andBk. However,Z(±)
ℓ,k has finite dependence from (1b) and (1d) in Assumption 1.
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Figure 1: Pairs of returns on nonoverlapping intervals with (a)ℓ > 0 and (b)ℓ < 0.
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Figure 5: Empirical distributions of̂ρ(0) (left side) andρ̈(0) (right side), where true cross-
correlationρ(0) = 0.87.
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Figure 6: Empirical distributions of̂ρ(2) (left side) andρ̈(2) (right side), where true cross-
correlationρ(2) = 0.26.
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Figure 7: Standardized empirical distributions ofγ̂(ℓ) (left side) andγ̈(ℓ) (right side), and the
standard normal distributions (solid line).
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Figure 8: Empirical distributions of̂ρ(ℓ) andρ̂δ(ℓ).

Note: In the simulation for autocovariance estimator of univariate noise process, the sample sizes
of N2,1 andN2,2 are about1/6 and1/2 of N2,ℓ for the otherℓ because the average observed time
interval of asset 2 is set as 5 seconds. Empirical distributions ofρ̂δ(ℓ) is from sample over 3 days
to obtain a large sample sizeN2,1.
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Figure 9: Standardized empirical distributions of the cross-covariance estimator of noises (his-
togram) and the standard normal distributions (solid line).
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Figure 10: Standardized empirical distributions of the autocovariance estimator of noises (his-
togram) and the standard normal distributions (solid line).
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Figure 11: Autocorrelation functions of the noise in OC, MM, OP and SP.
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Figure 12: Cross-correlation functions of the noises among the four assets.
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Table 7: Autocovariance of univariate noise process.

(a) The variance estimates and the test statistics for the variance.

Industry Manufacturers Medicals
OC MM OP SP

noise variance 1.17× 10-6 1.37× 10-7 2.54× 10-7 1.04× 10-6

test statistics 2240.84∗ 159.09∗ 142.27∗ 1251.67∗

NSR 0.0049 0.0009 0.0014 0.0042

(b) The test statistics for the autocovariance.

ℓ OC MM OP SP
1 -3.22∗ (25132) -5.00∗ (43753) -1.19 (14838) -1.99∗ (12163)
2 -3.11∗ (15821) -3.55∗ (31658) -0.46 (8542) -0.95 (6936)
3 -2.71∗ (14909) -1.52 (29671) 1.07 (7227) 0.30 (5813)
4 -2.58∗ (14696) -3.66∗ (28661) -0.08 (6415) 0.24 (5677)
5 -1.92 (12958) -3.18∗ (27087) -0.35 (5680) -0.83 (4855)
6 -2.04∗ (12599) -0.99 (27243) 0.21 (5567) -0.72 (4786)
7 -2.00∗ (11752) -4.02∗ (25902) -0.45 (5130) -0.37 (4385)
8 -0.68 (11599) -2.60∗ (25476) -0.63 (5125) 0.25 (4390)
9 -1.52 (10923) -1.63 (24362) 0.22 (4855) -0.71 (3956)
10 -1.36 (11018) -2.88∗ (23916) 0.51 (4879) -0.03 (3960)
20 -0.14 (9123) -1.54 (21664) 0.72 (3643) 1.46 (3223)
22 0.17 (8870) -2.10∗ (21306) 1.46 (3432) 2.51∗ (3032)
24 1.16 (8726) -0.65 (21264) 0.13 (3476) 2.60∗ (3048)
30 1.74 (9672) -1.07 (21414) 0.23 (3730) 0.76 (3581)
40 0.33 (8284) 0.23 (20047) 1.81 (3072) 0.22 (2690)
43 -0.04 (8148) -2.15∗ (19972) 3.05∗ (3077) 0.63 (2749)
50 -0.45 (8211) -0.50 (19996) 0.56 (2983) 0.39 (2775)
52 1.00 (8101) -1.10 (19868) 0.63 (2879) -3.14∗ (2666)
54 0.16 (8093) -1.83 (19886) -0.70 (2927) -2.00∗ (2798)
55 -0.02 (7985) -0.54 (19890) -0.85 (2903) -0.40 (2582)
60 5.79∗ (9709) 4.89∗ (21240) -0.43 (3521) 3.19∗ (3545)
61 1.71 (8705) -0.59 (20239) 1.96∗ (3273) -0.20 (3018)
62 0.82 (8497) 0.31 (19754) 0.68 (3009) 2.52∗ (2823)
63 -0.36 (8336) -0.53 (19989) 0.55 (2911) 2.81∗ (2843)
70 -0.45 (7989) -1.06 (19547) 1.24 (2850) 0.22 (2598)

Note: In the top table (a), the test statistic for the variance of noise is given by (21). The critical value at
5% significance level is equal to 3.84. NSR is an abbreviation for noise-to-signal ratio which is the ratio
between the variance estimate of the noise and the integrated variance estimate using a realized kernel-based
estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008). The bottom table (b) shows the test
statistic (22) for the significance of the autocovariance of noise withℓ > 0. The critical value of the test
statistic (22) is±1.96 at 5% significance level. Superscript∗ denotes significance at the 5% levels. The
numbers in parentheses represent a sample sizeN1,ℓ.
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Table 8: Test statistics for the cross-covariance of bivariate noise processes.
ℓ OC-MM OC-OP OC-SP MM-OP MM-SP OP-SP

-70 -0.91 (10615) 1.30 (4217) 0.74 (3952) -0.55 (6527) -0.36 (6114) 0.89 (2366)
-62 -0.50 (10801) 1.07 (4245) -2.72∗ (4105) -1.06 (6500) -0.56 (6124) 0.53 (2360)
-59 1.01 (10987) 1.28 (4207) 1.13 (4043) -0.87 (6467) 0.80 (6006) 2.48∗ (2456)
-57 0.19 (11071) 2.25∗ (4092) -0.30 (3939) -0.72 (6528) -0.70 (6161) 0.82 (2478)
-55 -0.30 (10966) 0.90 (4143) 2.18∗ (3863) -0.68 (6355) -0.80 (6107) -0.52 (2417)
-48 -1.60 (10905) -1.26 (4171) -0.57 (3825) 2.51∗ (6500) 0.74 (6283) -0.68 (2455)
-34 0.93 (10832) -1.32 (4205) -0.88 (3889) -0.96 (6572) -2.22∗ (6213) -0.07 (2442)
-33 -2.68∗ (10826) -0.79 (4317) 0.67 (3874) -0.28 (6496) -1.06 (6166) 0.60 (2386)
-30 0.92 (10959) -0.05 (4225) -1.06 (3959) -0.44 (6562) -0.59 (6306) 1.47 (2506)
-25 -0.95 (10917) -1.25 (4251) -0.88 (4051) 0.80 (6464) 1.56 (6191) -1.06 (2442)
-17 -0.13 (10862) -0.19 (4290) -0.29 (4069) -2.36∗ (6634) 0.31 (6283) -0.38 (2448)
-10 -1.71 (11441) -1.16 (4398) -0.77 (4016) -1.74 (6868) -0.72 (6431) -0.91 (2547)
-9 -2.62∗ (11197) -2.47∗ (4335) -1.12 (4225) -1.98∗ (6863) -0.79 (6549) -1.49 (2649)
-8 -1.85 (11214) -0.87 (4506) -1.74 (4096) -2.44∗ (7025) -0.51 (6474) -1.52 (2668)
-7 -2.05∗ (11295) -1.09 (4528) -0.03 (4108) -1.97∗ (6993) -1.62 (6556) 0.02 (2663)
-6 -3.19∗ (11457) -1.35 (4575) -2.25∗ (4082) -2.86∗ (7158) -1.82 (6564) -0.57 (2616)
-5 -1.45 (11411) -0.47 (4627) -2.53∗ (4129) -3.88∗ (7121) -1.45 (6512) -0.34 (2706)
-4 -2.72∗ (11358) -0.19 (4703) -1.34 (4200) -2.90∗ (7129) -2.90∗ (6659) -2.23∗ (2824)
-3 -4.29∗ (11577) -1.01 (4776) -1.13 (4404) -2.97∗ (7300) -2.17∗ (6800) -1.87 (2894)
-2 -1.90 (11671) -1.25 (4808) -0.88 (4474) -2.96∗ (7410) -2.96∗ (6739) -2.53∗ (2980)
-1 -2.52∗ (11942) -1.49 (5019) -0.53 (4657) -2.46∗ (7824) -0.78 (6948) -0.41 (3414)
0 -2.32∗ (27263) -0.21 (12576) 3.58∗ (11042) -4.51∗ (17583) -0.81 (15319) 2.03∗ (9256)
1 -3.37∗ (12401) -1.39 (5239) -0.67 (4751) -2.98∗ (7648) -0.67 (6822) -1.54 (3257)
2 -2.64∗ (12046) -1.94 (4832) 0.07 (4461) -3.56∗ (7391) -1.54 (6787) -1.54 (2922)
3 -3.19∗ (11628) -1.67 (4712) -0.68 (4437) -4.81∗ (7149) -1.33 (6681) -1.32 (2807)
4 -2.99∗ (11473) -2.03∗ (4790) -0.78 (4245) -4.39∗ (7141) 0.24 (6637) -1.12 (2853)
5 -2.17∗ (11454) -1.61 (4619) -1.37 (4235) -3.23∗ (7197) -2.05∗ (6659) -1.64 (2773)
6 -1.78 (11371) -2.08∗ (4496) -1.78 (4073) -3.30∗ (7154) -0.34 (6568) -0.73 (2647)
7 -3.87∗ (11308) -1.96 (4554) 0.24 (4026) -3.24∗ (7081) 0.03 (6547) -1.62 (2613)
8 -3.54∗ (11486) -2.27∗ (4602) 0.38 (4141) -3.16∗ (6987) -2.14∗ (6554) -1.91 (2572)
9 -4.08∗ (11307) -3.57∗ (4541) 0.72 (4089) -2.93∗ (6975) -1.02 (6233) -1.42 (2640)
10 -1.87 (11247) -1.13 (4399) -0.97 (4205) -2.32∗ (6770) -1.75 (6362) -1.31 (2551)
15 -2.98∗ (11265) -2.17∗ (4373) -0.73 (4168) -2.45∗ (6874) -0.85 (6347) -3.34∗ (2459)
20 -2.83∗ (11053) -2.97∗ (4368) 0.89 (4049) -1.35 (6556) 1.19 (6300) -1.53 (2419)
30 -1.98∗ (11014) -3.06∗ (4281) 0.53 (4024) -2.18∗ (6700) -0.44 (6251) -0.30 (2382)
42 -0.48 (10801) -0.68 (4206) -0.02 (3961) -2.16∗ (6531) 1.91 (6247) 4.18∗ (2345)
43 -1.04 (10696) -0.99 (4187) -0.42 (3981) -2.77∗ (6462) 2.28∗ (6156) 0.44 (2369)
47 -1.55 (10989) -2.25∗ (4116) -0.29 (3897) -1.93 (6547) 0.11 (6064) -0.66 (2336)
64 -0.05 (10916) -0.47 (4225) -1.83 (3913) -2.39∗ (6398) -0.91 (6073) -0.65 (2337)
66 2.86∗ (10848) 0.61 (4067) 0.63 (3996) -1.86 (6341) 1.19 (6108) -0.10 (2424)
68 -0.67 (10927) -0.72 (4127) -0.39 (4011) -2.16∗ (6560) 2.04∗ (6092) 1.04 (2372)
70 0.04 (10733) -0.24 (4146) -1.25 (3922) 1.73 (6445) -0.02 (6140) 1.63 (2381)

Note: The test statistic for the significance of the cross-covariance of the bivariate noise processes is given
by (14). The critical value of the test statistics (14) is±1.96 at 5% significance level. Superscript∗ denote
significance at the 5% levels. The numbers in parentheses represent a sample sizeNℓ.
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