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Abstract

We consider the model for the discrete nonboundary wavelet coefficients of ARFIMA

processes. Although many authors have explained the utility of the wavelet transform

for the long dependent processes in semiparametrical literature, there have been a few

studies in parametric setting. In this paper, we restrict the Daubechies wavelets filters

to make the form of the (general) spectral density function of these coefficients clear.
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1 Introduction

What kind of models is the process of the wavelet coefficients of autoregression fraction-

ally integrated moving-average (ARFIMA) processes? This question is simple, but complex,

which we face when we use the wavelet method to ARFIMA processes. Many authors have

explained in semiparametrical literature the reason why the covariances among the wavelet

coefficients of the long memory processes can be assumed zero to construct the wavelet-based

estimation procedures for the memory parameter, d. On the other hands, in order to improve

∗e-mail: b091287x@r.hit-u.ac.jp
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the estimator, there have been some studies in which the dependency between the wavelet

transformed long memory process are taken in consideration. For example, Jensen (2000)

computed the covariance matrix of the wavelet coefficients of the stationary ARFIMA model,

and Craigmile, Guttorp, and Percival (2005) applied an AR(1) model to the nonboundary

wavelet coefficients in each scale. The ARFIMA model is one of the K-th order differenced

processes and introduced by Granger and Joyeux (1980) and Hosking (1981), which is a

generalization of the standard ARIMA(p,d,q,) models.

Let {Xt} be ARFIMA(p,d,q) process, then

Φp(B)(1−B)dXt = Θq(B)εt, (1)

where B is a back shift operator, i.e., BXt = Xt−1,

Φp(B) = 1−
p∑

k=1

ϕkB
k, (2)

and

Θq(B) = 1 +

q∑
k

θkB
k, (3)

with Θq(0) ̸= 0. Φp(B) and Θq(B) are real polynomials of degrees p and q, which share no

common zeros, and all of their zeros are outside the unit circle in the complex plane. Then

we can define its generalized spectral density function (SDF);

SX(f) =
σ2
ε

|2 sin(πf)|2d
|Θq(e

i2πf )|2

|Φp(ei2πf )|2
, |f | ≤ 1

2
. (4)

In this paper, we explore the model for the wavelet transformed ARFIMA processes

by using their generalized SDF defined by eq.(4). This is the similar way to Krim and

Pesquet (1995) where the discrete wavelet transformed coefficients of the process with d ∈ N

are considered, the wavelet filter is not specified and the degree of the MA term is counted

indirectly. In contrast to Krim and Pesquet (1995), we assume that the wavelet filter is one of

Daubechies filters which is denoted as D(L) and LA(L) in Percival and Walden (2000) which
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have the same squared gain functions, in order to represent the SDF of the j-th nonboundary

wavelet coefficients directly and explore its model when d ∈ R and the length of filters is L.

This paper is organized as follows; the notations and definitions of the discrete wavelet

transform (DWT) are in section 2; the main results, theorems and remarks, are in section 3;

the conclusion is in section 4, and the proofs of theorems and lemmas are in the appendix.

2 Notations and definitions

In this section, we prepare the notations and definitions of the DWT which are the similar

as in Percival and Walden (2000). The j-th level DWT consists of two parts; filtering the

original process by j-th level wavelet and scaling filters, and 2j downsampling these filtered

processes.

First, let {hl}L−1
l=0 denote the discrete wavelet filter coefficients of a Daubechies compactly

supported wavelet with the length L and let {gl}L−1
l=0 be the corresponding scaling filter

coefficients which are defined by

gl ≡ (−1)l+1hL−1−l.

Let’s set h1,l = hl, g1,l = gl and L1 = L, then we can obtain the j-th level wavelet and scaling

filter coefficients, {hj,l}
Lj−1
l=0 and {gj,l}

Lj−1
l=0 , for j ≥ 2, by

hj,l =

L−1∑
k=0

h1,kgj−1,l−2j−1k and gj,l =

L−1∑
k=0

g1,kgj−1,l−2j−1k, (5)

where Lj = (2j − 1)(L− 1) + 1. These filters have the following properties;

Lj−1∑
l=0

hj,l = 0,

Lj−1∑
l=0

h2j,l = 1,

Lj−1∑
l=0

gj,l = 2j/2,

Lj−1∑
l=0

g2j,l = 1,

and
Lj−1∑
l=0

gj,lhj,l = 0.
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The (j, k)-th wavelet and scaling coefficients of the series {at}T−1
t=0 are computed as

Wa,j,k =

Lj−1∑
l=0

hj,la2j(k+1)−l−1modN , (6)

and

Va,j,k =

Lj−1∑
l=0

gj,la2j(k+1)−l−1modN . (7)

where L1 = L and Lj = (2j−1)(L−1)+1. Using the relations of eq.(5) and setting Va,0,t = at,

we can calculate the (j, k)-th wavelet and scaling coefficients iteratively as follows;

Wa,j,k =

L−1∑
l=0

hlVa,j−1,2k+1−l mod Nj−1
, (8)

and

Va,j,k =

L−1∑
l=0

glVa,j−1,2k+1−l mod Nj−1
. (9)

These equations are so called “the pyramid algorithm”. The pyramid algorithm which is

introduced by Mallat (1989) is the elegant algorithm to compute the DWT and its inverse

quickly. In practice, the larger the level is, the smaller the number of the wavelet coefficients

in the level are.

To prove the theorems in the next section, we represent the spectral density function of

the wavelet transformed process and need the squared gain functions of wavelet and scaling

filters. First, the transfer functions of {hl} and {gl} are defined as

H1,L(f) =

L−1∑
l=0

hle
i2πf , (10)

and

G1,L(f) =
L−1∑
l=0

gle
i2πf . (11)

When we use the Daubechies wavelet filter, these squared gain functions, i.e., H1,L(f) =

|H1,L(f)|2 and G1,L(f) = |G1,L(f)|2, are

H1,L(f) = 2 sinL(πf)

L
2
−1∑

l=0

 L
2 − 1 + l

l

 cos2l(πf), (12)
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and

G1,L(f) = 2 cosL(πf)

L
2
−1∑

l=0

 L
2 − 1 + l

l

 sin2l(πf), (13)

For j ≥ 2, the transfer functions of {hj,l} and {gj,l} are

Hj,L(f) =

Lj−1∑
l=0

hj,le
i2πf , (14)

and

Gj,L(f) =

Lj−1∑
l=0

gj,le
i2πf . (15)

We can also calculate them as

Hj,L(f) = H1,L(2
j−1f)

j−2∏
l=0

G1,L(2
lf), (16)

and

Gj,L(f) =

j−1∏
l=0

G1,L(2
lf). (17)

To simplify the argument, in the rest of paper, we only consider the nonboundary co-

efficients which are not affected by the boundary condition, i.e., the periodic calculation,

of DWT, because it is difficult to evaluate the SDF of the boundary coefficients and the

wavelet-based estimators for the memory parameter usually consist of only nonboundary

coefficients.

3 Main results

Using the assumption of ARFIMA process and the notations and definitions of DWT in the

previous section, we have the following theorem.

Theorem 1

Under the assumptions that {Xt} is ARFIMA(p,d,q) and the D(L) or LA(L) wavelet filter

is used, the process of the j-th level nonboundary wavelet coefficients of {Xt} becomes the

following model;
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(i) if L/2− d ∈ Z+ ∪ {0}, ARMA(p,qj) with

qj ≤ p+ L− 1 + (q − p− d− L+ 1)/2j ;

(ii) if L/2− d ∈ R+ \ Z+, ARMA(p,∞);

(iii) if L/2− d ∈ Z−, ARFIMA(p,d− L/2,qj) with

qj ≤ d+ p+
L

2
− 1 + (q − p− d− L+ 1)/2j ;

(iv) if L/2− d ∈ R− \ Z−, ARFIMA(p,d− L/2,∞).

The proof is in the appendix.

Remark 1: In case (i) and (ii) of 1, i.e., L/2 > d, the wavelet transformed process

becomes not the negative memory process but the stationary ARMA process. On the other

hand, in case (iii) and (iv) of 1, i.e., L/2 < d, the process becomes weaker long memory

process than before.

Remark 2: The ARMA term in case (ii) and (iv) of 1 can be represent as AR(∞). Under

the setting that d < L/2 and p = q = 0, i.e., the process is I(d), Craigmile, Guttorp, and

Percival (2005) compares the AR(p) approximations by numerical simulation and recommends

the AR(1) approximation.

On a parallel with the above theorem, we can consider the model of the j-th level non-

boundary scaling coefficients of ARFIMA(p,d,q).

Corollary 1

Under the same assumptions as in Theorem 1, the process of the j-th level nonboundary

scaling coefficients of {Xt} becomes the following model;

1. if d ∈ Z, ARFIMA(p,d,q̃j) with

q̃j ≤ p+ d+ L− 1 + (q − p− d− L+ 1)/2j ;
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2. if d ∈ R \ Z, ARFIMA(p,d,∞).

This corollary simply explains that the scaling coefficients are sill long memory process.

We have a spacial case when the process {Xt} is white noise, i.e., p = q = d = 0;

Corollary 2

When {Xt} is white noise, i.e., its SDF is defined as SX(f) = σ2
X for |f | ≤ 1

2 , then the SDFs

of its j-th nonboundary wavelet and scaling coefficients are

SW,j(f) = σ2
X , and SV,j(f) = σ2

X . (18)

So these coefficients become white noises.

4 Conclusion

We have explained the effect of DWT for long memory process in parametric literature and

shown the model of the wavelet transformed ARFIMA process. To use those results in prac-

tice, i.e, to estimate the parameters via the wavelet-based maximal likelihood, we have further

works; we need to check that the MA(∞) or ARMA(p, ∞) term may be approximated to the

AR(p̃) with some integer p̃; we need to compare these performances with the performance

under the white noise approximation.
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A The proofs and the technical lemma

A.1 Lemma

Lemma 1

For j = 1, 2, . . . , and α ∈ R,

2j−1∏
k=0

|1− ei2πk/2
j
ei2πf/2

j |2α = |1− ei2πf |2α. (19)

We show this lemma by the mathematical induction. Proof.

(i) For j = 1,

1∏
k=0

|1− ei2πk/2ei2πf/2|2α = |1− ei2πf |2α.

So eq.(19) is true for j = 1.

(ii) For j = 2, 3, . . . , we assume that eq.(19) is true for j − 1, so it is true that

2j−1−1∏
k=0

|1− ei2πk/2
j−1

ei2πf/2
j−1 |2α = |1− ei2πf |2α. (20)

Now for j = 2, 3, . . . ,

2j−1∏
k=0

|1− ei2πk/2
j
ei2πf/2

j |2α =

2j−1−1∏
k=0

|1− ei2πk/2
j
ei2πf/2

j |2α

×
2j−1−1∏
k=0

|1− ei2π(k+2j−1)/2jei2πf/2
j |2α.

Because (k + 2j−1)/2j = k/2j + 1/2,

2j−1∏
k=0

|1− ei2πk/2
j
ei2πf/2

j |2α =
2j−1−1∏
k=0

|1− ei2πk/2
j−1

ei2πf/2
j−1 |2α.

Under the assumption of eq.(20), eq.(19) is true for j = 2, 3, . . . .

From the arguments of (i) and (ii), the lemma is proven. □
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A.2 Proof of Theorem 1

A.2.1 Proof of (i) and (ii) of Theorem 1

For j = 1, the SDF of the 1-st level non-decimated nonboundary wavelet coefficients becomes

SW̌ ,1(f) = 21−Lσ2
ε |2 sin(πf)|L−2d

L
2
−1∑

l=0

bl|1 + ei2πf |2l |Θq(e
i2πf )|2

|Ψp(ei2πf )|2
,

where

al
def
=

 L
2 − 1 + l

l

 and bl
def
= al2

−2l,

for l = 0, 1, . . . , L2 − 1. Obviously, b0 = 1.

The SDF of the 1-st level nonboundary wavelet coefficients is computed by

SW,1(f) =
1

2

[
SW̌ ,1

(
f

2

)
+ SW̌ ,1

(
f + 1

2

)]
,

and we set

SW,1(f)
set
=

|Θ̂1(e
i2πf )|2

|Ψ̂1(ei2πf )|2
,

where

|Ψ̂1(e
i2πf )|2 = |Ψp(e

i2πf/2)Ψp(−ei2πf/2)|2,

|Θ̂1(e
i2πf )|2 =

1

2

[
|Θ̂1,0(e

i2πf )|2 + |Θ̂1,1(e
i2πf )|2

]
,

with

|Θ̂1,0(e
i2πf )|2

= 21−Lσ2
ε |1− ei2πf/2|L−2d

1 + L
2
−1∑

l=1

bl|1 + ei2πf/2|2l
 |Θq(e

i2πf/2)|2|Ψp(−ei2πf/2)|2,

and

|Θ̂1,1(e
i2πf )|2

= 21−Lσ2
ε |1 + ei2πf/2|L−2d

1 + L
2
−1∑

l=1

bl|1− ei2πf/2|2l
 |Θq(−ei2πf/2)|2|Ψp(e

i2πf/2)|2.
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If Θ̂1(Z) = 0 has roots on the unit-circle, these roots make simultaneously Θ̂1,k(Z) = 0 for

k = 0, 1. But there is no root satisfying this condition, and then Θ̂1(Z) is a stationary MA

term. When L/2− d ∈ Z+, the upper bound of the degree of this MA term is(
L

2
− d

)
/2 +

(
L

2
− 1

)
/2 + q/2 + p/2 = (L− 1)/2 + (q + p− d)/2.

For j ≥ 2, the generalized SDF of the j-th level non-decimated nonboundary wavelet

coefficients is

Hj,L(f)SX(f)

= 21−Lσ2
ε |1− ei2πf |L−2d

L
2
−1∑

l=0

bl|1 + ei2πf2
j−1 |2l


×

j−2∏
m=0

21−L|1 + ei2πf2
m |2L


L
2
−1∑

lm=0

blm |1− ei2πf2
m |2lm




×|Θq(e
i2πf )|2

|Ψp(ei2πf )|2
.

Since the j-th level nonboundary wavelet coefficients are 2j-downsampled series of the j-th

level non-decimated nonboundary wavelet coefficients, its generalized SDF becomes

SW,j(f) = 2−j
2j−1∑
k=0

Hj.L

(
f + k

2j

)
SX

(
f + k

2j

)
,

where

Hj,L

(
f + k

2j

)
SX

(
f + k

2j

)

= 21−Lσ2
ε |1− ei2πk2

−j
ei2πf2

−j |L−2d

L
2
−1∑

l=0

bl|1 + ei2π
k
2 ei2π

f
2 |2l


×

j−2∏
m=0

21−L|1 + e
i2π k

2j−m e
i2π f

2j−m |2L


L
2
−1∑

lm=0

blm |1− e
i2π k

2j−m e
i2π f

2j−m |2lm




×|Θq(e
i2π k

2j e
i2π f

2j )|2

|Ψp(e
i2π k

2j e
i2π f

2j )|2
.

This MA term can be set as follows;

∣∣∣Θ̂j(Z)
∣∣∣2 set

= 2−j
2j−1∑
k=0

∣∣∣Θ̂j,k(Z)
∣∣∣2 ,
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where

∣∣∣Θ̂j,k(Z)
∣∣∣2 def

= 21−Lσ2
ε |1− ei2πk2

−j
Z2−j |L−2d

L
2
−1∑

l=0

bl|1 + ei2π
k
2Z

1
2 |2l


×

j−2∏
m=0

[
21−L|1 + e

i2π k

2j−m Z
1

2j−m |2L

×


L
2
−1∑

lm=0

blm |1− e
i2π k

2j−m Z
1

2j−m |2lm




×|Θq(e
i2π k

2j Z
1

2j )|2
2j−1∏

h=0,h̸=k

|Ψp(e
i2π h

2j Z
1

2j )|2.

There is no root on unit-circle which satisfies Θ̂j(Z) = 0, and, when L
2 − d ∈ Z+, the upper

bound of the degree of the MA term is

2−j

(
L

2
− d

)
+

1

2

(
L

2
− 1

)
+

(
3

2
L− 1

)
2−j

j−2∑
m=0

2m + q2−j + (2j − 1)p2−j

= p+ L− 1 + (q − p− d− L+ 1)/2j .

Since this upper bound is satisfies when j = 1, the process is ARFIMA(p,qj) with qj ≤

p+ L− 1 + (q − p− d− L+ 1)/2j , and then (i) is true.

When L/2−d ∈ R+\Z+, the term of |1−ei2πk2
−j
Z2−j |L−2d in the MA term is represented

an infinite summation of the polynomial of Z2−j
, and the above upper bound becomes infinity.

Therefore (ii) is proven.

A.2.2 Proof of (iii) and (iv) of Theorem 1

For j = 1,

SW,1(f) =
1

2

[
SW̌ ,1

(
f

2

)
+ SW̌ ,1

(
f + k

2

)]
,
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So

SW,1(f)

=
1

2

21−Lσ2
ε |1− ei2πf/2|L−2d

L
2
−1∑

l=0

bl|1 + ei2πf/2|2l
 |Θq(e

i2πf/2)|2

|Ψp(ei2πf/2)|2

+21−Lσ2
ε |1 + ei2πf/2|L−2d

L
2
−1∑

l=0

bl|1− ei2πf/2|2l
 |Θq(−ei2πf/2)|2

|Ψp(−ei2πf/2)|2


=

1

2
21−Lσ2

ε |1− ei2πf/2|L−2d|1 + ei2πf/2|L−2d|Ψp(e
i2πf/2)|−2|Ψp(−ei2πf/2)|−2

×

|1 + ei2πf/2|2d−L|Ψp(−ei2πf/2)|2
L

2
−1∑

l=0

bl|1 + ei2πf/2|2l
 |Θq(e

i2πf/2)|2

+|1− ei2πf/2|2d−L|Ψp(e
i2πf/2)|2

L
2
−1∑

l=0

bl|1− ei2πf/2|2l
 |Θq(−ei2πf/2)|2

 .

From Lemma 1,

|1− ei2πf/2|L−2d|1 + ei2πf/2|L−2d = |1− ei2πf |L−2d,

so the degree of the memory parameter of {Wj,k} becomes d−L/2. We set this MA term as

|Θ̃1(e
i2πf )|2 set

= |Θ̂1,0(e
i2πf )|2 + |Θ̂1,1(e

i2πf )|2,

where

|Θ̂1,0(e
i2πf )|2 = |1 + ei2πf/2|2d−L|Ψp(−ei2πf/2)|2

L
2
−1∑

l=0

bl|1 + ei2πf/2|2l
 |Θq(e

i2πf/2)|2,

and

|Θ̂1,1(e
i2πf )|2 = |1− ei2πf/2|2d−L|Ψp(e

i2πf/2)|2
L

2
−1∑

l=0

bl|1− ei2πf/2|2l
 |Θq(−ei2πf/2)|2.

There is no root on unit-circle which makes the above two equations zero simultaneously, and

when d− L/2 ∈ N, the upper bound of the degree of this MA term is

1

2

(
d− L

2

)
+ p/2 +

(
L

2
− 1

)
/2 + q/2 = (d+ p+ q − 1)/2.
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For j ≥ 2,

SW,j(f)

= 2−j
2j−1∑
k=0

SW̌ ,j

(
f + k

2j

)

= 2−j
2j−1∏
k=0

[
|1− ei2πk/2

j
ei2πf/2

j |L−2d|Ψp(e
i2πk/2jei2πf/2

j
)|−2

]

×
2j−1∑
k=0

21−Lσ2
ε


L
2
−1∑

l=0

bl|1 + ei2π
k
2 ei2π

f
2 |2l


×

j−2∏
m=0

21−L|1 + e
i2π k

2j−m e
i2π f

2j−m |2L
L
2
−1∑

lm=0

blm |1− e
i2π k

2j−m e
i2π f

2j−m |2lm


×|Θq(e
i2π k

2j e
i2π f

2j )|2
2j−1∏

h=0,h ̸=k

[
|1− ei2πh/2

j
ei2πf/2

j |2d−L|Ψp(e
i2πh/2jei2πf/2

j
)|2

]
.

From Lemma 1,

SW,j(f)
set
= 21−Lσ2

ε |1− ei2πf |L−2d |Θ̂j(e
i2πf )|2

|Ψ̂j(ei2πf )|2
,

where

|Ψ̂j(e
i2πf )|2 =

2j−1∏
k=0

|Ψp(e
i2πk/2jei2πf/2

j
)|2, |Θ̂j(e

i2πf )|2 = 2−j
2j−1∑
k=0

|Θ̂j,k(e
i2πf )|2,

with

|Θ̂j,k(e
i2πf )|2

=


L
2
−1∑

l=0

bl|1 + ei2π
k
2 ei2π

f
2 |2l


×

j−2∏
m=0

21−L|1 + e
i2π k

2j−m e
i2π f

2j−m |2L
L
2
−1∑

lm=0

blm |1− e
i2π k

2j−m e
i2π f

2j−m |2lm


×|Θq(e
i2π k

2j e
i2π f

2j )|2
2j−1∏

h=0,h ̸=k

[
|1− ei2πh/2

j
ei2πf/2

j |2d−L|Ψp(e
i2πh/2jei2πf/2

j
)|2

]
.

There is no root on unit-circle which satisfies |Θ̂j,k(Z)|2 = 0 for all k = 0, 1, . . . , 2j −1. When
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d− L/2 ∈ N, the upper bound of the degree of this MA term becomes(
L

2
− 1

)
/2 +

j−2∑
m=0

2−j+m

(
3

2
L− 1

)
+ q/2j

+(2j − 1)

(
d− L

2

)
/2j + (2j − 1)p/2j

= d+ p+
L

2
− 1 + (q − d− p− L+ 1)/2j .

This result includes the result of j = 1, and then (iii) is proven.

When L/2 − d ∈ R− \ Z−,
∏2j−1

h=0,h̸=k |1 − ei2πh/2
j
ei2πf/2

j |2d−L in the k-th MA term is

represented as an infinite summation of the polynomial of Z2−j
, and then the above upper

bound becomes infinity. Therefore (iv) is true.

A.3 Proof of Corollary 1

SV̌ ,j(f) = Gj,L(f)SX(f)

=

j∏
m=1

21−L|1 + ei2π2
m−1f |L

L
2
−1∑

lm=0

blm |1− ei2π2
m−1f |2lmSX(f).

Then the generalized SDF is

SV,j(f) =
1

2j

2j−1∑
k=0

SV̌ ,j

(
f + k

2j

)
. (21)

(i) If d ≥ 0, we can set eq.(21) as

SV,j(f)
set
=

2j−1∏
k=0

|1− ei2π(f+k)/2j |−2d |Θ̃j(e
i2πf )|2

|Ψ̃j(ei2πf )|2
,

where

∣∣∣Θ̃j(e
i2πf )

∣∣∣2 = σ2
ε2

−j
2j−1∑
k=0

∣∣∣Θ̃j,k(e
i2πf )

∣∣∣2 ,
∣∣∣Θ̃j,k(e

i2πf )
∣∣∣2

=

 2j−1∏
h=0,h̸=k

|1− ei2π(f+h)/2j |2d
 2j−1∏

h=0,h ̸=k

|Ψp(e
i2π(f+h)/2j )|2

 |Θq(e
i2π(f+k)/2j )|2

×
j∏

m=1

21−L|1 + ei2π2
m−1(f+k)/2j |L

L
2
−1∑

lm=0

blm |1− ei2π2
m−1(f+k)/2j |2lm,
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and

|Ψ̃j(e
i2πf )|2 =

∣∣∣∣∣∣
2j−1∏
k=0

Ψp(e
i2π(f+k)/2j )

∣∣∣∣∣∣
2

.

From Lemma 1, the degree of the memory parameter is still d, and that of the AR term is p.

When d ∈ Z+, the upper bound of the degree of the MA term is

(2j − 1)d/2j + (2j − 1)p/2j + q/2j +

j∑
m=1

2m−1−j(L/2 + L/2− 1)

= p+ d+ L− 1 + (q − p− d− L+ 1)/2j .

When d ∈ R+ \ Z+, the term

(1− ei2π(f+h)/2j )d

becomes the infinite sum of the polynomial ei2πf/2
j
, so q̃ ≤ ∞.

(ii) If d < 0,

SV,j(f)
set
=

|Θ̃j(e
i2πf )|2

|Ψ̃j(ei2πf )|2
,

where

∣∣∣Θ̃j(e
i2πf )

∣∣∣2 = σ2
ε2

−j
2j−1∑
k=0

∣∣∣Θ̃j,k(e
i2πf )

∣∣∣2 , |Ψ̃j(e
i2πf )|2 =

∣∣∣∣∣∣
2j−1∏
k=0

Ψp(e
i2π(f+k)/2j )

∣∣∣∣∣∣
2

,

and

∣∣∣Θ̃j,k(e
i2πf )

∣∣∣2
= |1− ei2π(f+k)/2j |−2d

 2j−1∏
h=0,h̸=k

|Ψp(e
i2π(f+h)/2j )|2

 |Θq(e
i2π(f+k)/2j )|2

×
j∏

m=1

21−L|1 + ei2π2
m−1(f+k)/2j |L

L
2
−1∑

lm=0

blm |1− ei2π2
m−1(f+k)/2j |2lm.

Since

|1− ei2π(f+k)/2j |−2d
j∏

m=1

|1 + ei2π2
m−1(f+k)/2j |−2d = |1− ei2πf |−2d,
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the above equation becomes

∣∣∣Θ̃j,k(e
i2πf )

∣∣∣2
= |1− ei2πf |−2d

 2j−1∏
h=0,h̸=k

|Ψp(e
i2π(f+h)/2j )|2

 |Θq(e
i2π(f+k)/2j )|2

×
j∏

m=1

21−L|1 + ei2π2
m−1(f+k)/2j |L+2d

L
2
−1∑

lm=0

blm |1− ei2π2
m−1(f+k)/2j |2lm.

So the negative memory d survives, and the rest terms becomes the k-th MA term. When

d ∈ Z−, the upper bound of the degree of the MA term is

(2j − 1)p/2j + q/2j +

j∑
m=1

2m−1−j(L/2 + d+ L/2− 1)

= p+ d+ L− 1 + (q − p− d− L+ 1)/2j .

When d ∈ R− \ Z−, the term that

(1 + ei2π2
m−1(f+k)/2j )L/2+d

becomes the infinite sum of the polynomial ei2π2
m−1f/2j .

In the sequel, from (i) and (ii), Corollary 1 is true. □

A.4 Proof of Corollary 2

Since SX(f) = σ2
X ,

SW,j(f) = 2−jσ2
X

2j−1∑
k=0

Hj,L

(
f + k

2j

)
, SV,j(f) = 2−jσ2

X

2j−1∑
k=0

Gj,L

(
f + k

2j

)
.

From Hj,L(f) = |Hj,L(f)|2 = |
∑Lj−1

l=0 hj,le
i2πfl|2,

2−j
2j−1∑
k=0

Hj,L

(
f + k

2j

)
= 2−j

2j−1∑
k=0

Lj−1∑
l=0

h2j,l + 2−j
∑
l ̸=n

hj,lhj,n

2j−1∑
k=0

e
i2π f+k

2j
(l−n)

.

Because
∑

l=0 h
2
j,l = 1 and

∑2j−1
k=0 e

i2π f+k

2j
(l−n)

= 0 for l ̸= n,

SW,j(f) = σ2
X .

From the similar argument and
∑Lj−1

l=0 g2j,l = 1, SV,j(f) = σ2
X . So, eq.(18) is true. □
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